
Optica Applicata, Vol. XXXVIII, No. 3, 2008

An iterative programmable graphics process 
unit based on ray casting approach 
for virtual endoscopy system

FEINIU YUAN

School of Information Technology, Jiangxi University of Finance and Economics, 
Nanchang 330013, Jiangxi, China; e-mail: yfn@ustc.edu

State Key Lab of Fire Science, University of Science and Technology of China, 
Hefei 230027, Anhui, China

In this paper, a fast graphics process unit (GPU) based ray casting algorithm is presented to improve
image quality. A linear interpolation is used to estimate the intersection between a ray and
isosurfaces. Thus,  resampling artefacts is greatly reduced and the performance is not influenced.
An iterative estimation is presented to further improve image quality. According to the distance
the ray goes across, z values in the z-buffer are modified to implement hiding of hybrid scenes.
Experimental results show that the algorithm can produce high quality images at interactive frame
rates and implement hiding of hybrid scenes very well.

Keywords: virtual endoscopy, linear interpolation, medical image processing, graphics process unit
(GPU), ray casting, isosurface.

1. Introduction
Virtual endoscopy is a new diagnostic and surgery planning method that is non-invasive
and reusable compared with traditional optical endoscopy. There are two main groups
of visualization techniques including surface rendering and volume rendering. In
surface rendering techniques, intermediate polygons of isosurfaces must be extracted
from the 3D volumetric data set and then the polygons are rendered using the traditional
computer graphics rendering algorithms. It can obtain interactive rendering rates.
However, the quality of the rendered images is not very high because of much detailed
information lost during the process of extraction of polygons. While in volume
rendering techniques, extraction of polygons is not required and the volume data set
is directly rendered according to a specific transfer function, so it can produce high
quality images. But it is memory and computation intensive. Ray casting algorithm
is a volume rendering technique, which belongs to image space rendering techniques.



520 FEINIU YUAN

It can generate high quality images and often be applied in virtual endoscopy systems.
It can obtain high frame rates on high end workstations and special volume rendering
hardware (such as VolumePro [1], etc.) and so on. However, it is unable to acquire
interactive frame rates on the popular PC platform without special purpose hardware.

There are many acceleration techniques to speed up the brute force ray casting
algorithm. One kind of these techniques is the acceleration technique based on space
leaping, which can avoid many empty samplings and does not degrade the image quality,
such as cylindrical approximation of tubular organs presented by VILANOVA et al. [2],
spherical approximation of tubular organs proposed by SHARGHI and RICKETTS [3].
Another kind of these techniques is the acceleration technique with a fundamental
tradeoff between image quality and rendering speed, such as two-phase perspective
ray casting for interactive volume navigation presented by BRADY et al. [4], screen and
object adaptive sampling, etc.

A third kind of acceleration techniques is based on consumer level graphics
hardware. There are two distinct approaches.

The first approach which originally presented by CULLIP et al. [5] and further
developed by CABRAL et al. [6] is directly exploiting the texture mapping capabilities
of graphics hardware by resampling proxy surfaces. Proxy surfaces are either axis-
-aligned [7] with three 2D textures or view-aligned [8] with one 3D texture, as shown
in Fig. 1. This technique can obtain interactive frame rates, but produce relatively low
quality images. 

The second approach is to implement a ray caster in the fragment shader of
the GPU, as proposed by KRUGER and WESTERMANN [9]. In the algorithm, the dataset
is stored as a 3D-texture to take advantage of the built-in tri-linear interpolation in
graphics hardware [10]. And then a bounding box for the dataset is created where all
the coordinates of 8 corner points are within the range from 0.0 to 1.0. Supposed each
corner point (x, y, z) of the bounding box has the color (r, g, b), and then r, g, b are
equal to x, y, z. That is to say, the position on the surface of the box is encoded in
the color channel, as shown in the Fig. 2a. The viewing vector at any given pixel can
be easily computed by subtracting the color of the front surfaces of the color cube at
this pixel from the color of the back surfaces at this pixel, as shown in Fig. 2. The color
of the front surfaces is also regarded as the start point at each pixel for the ray casting
process. And the color of the back surfaces is regarded as the end point at each pixel
for the ray casting process. KIM et al. [11] presented vertex transformation streams
based on GPU, which addressed the input geometry bandwidth bottleneck for
interactive 3D graphics applications. Flexibility of GPU programming improves
parallel computing performance in many time-critical applications [12, 13].

In this paper, an optimized approach is presented, in order to avoid artifacts and
improve rendering performance. Modification of z values in the fragment shader
program can simply implement hybrid visualization of polygons and volumetric
objects. Our approach is similar to the algorithm that NEUBAUER et al. [14] presented.
But our approach is different from Neubauer’s method in three aspects. First,
the approach is based on GPU and it can obtain interactive frame rates. Second, it uses



An iterative programmable graphics process unit ... 521

regular ray traversal strategy with linear estimation of intersection, so it does not need
any special data structure. Third, z modification implements hybrid visualization.

This paper is organized as follows. In Section 2, an initial plane is created to
generate start points of all the rays. Section 3 discusses the iterative linear interpolation
of intersection to avoid artifacts and speedup rendering. In Section 4, modification
of z values is used to implement hiding of polygons and volumes. At last, some
experiments are performed and conclusions are drawn.

2. Entering into the volume

For virtual endoscopy applications, the viewpoint is usually located in the volume to
generate similar views to those produced by traditional optical endoscopic diagnoses.
In the GPU based ray casting algorithm presented by KRUGER and WESTERMANN [9],
front and back surfaces of the bounding box of the volume are successively rendered
to produce entry and exit points of the ray cast from the viewpoint. However, when
the viewpoint moves into the volume, the front surfaces of the bounding box would
become invisible. In this case, the color of the front surfaces usually becomes solid
color and does not contain any position information. So, we cannot directly compute
the viewing vector by subtracting the color of the front surfaces from the color of
the back surfaces. In order to solve this problem, when the virtual camera is located
in the volume, an initial plane is created in the neighborhood of the near clipping plane

Fig. 1. Axis-aligned (a) and view-aligned resampling slices (b).

Fig. 2. Front (a) and back (b) faces of the bounding box encoding the position.



522 FEINIU YUAN

that replaces the front surface of the bounding box as the proxy geometry where start
points of all the rays are located in, as shown in Fig. 3. And end points of all the rays
are still located in the back surfaces of the bounding box. 

The initial plane is parallel to the near clipping plane and located in the viewing
volume to assure that the initial plane is visible all the time, as shown in Fig. 4.
And the initial plane is very close to the near clipping plane. Following the processes

Fig. 3. The viewpoint in the volume.

Fig. 4. Location of the initial plane.

Fig. 6. Linear interpolation of intersection.

Fig. 5. Virtual endoscopic views.



An iterative programmable graphics process unit ... 523

mentioned above, the viewing ray can be directly computed by subtracting the color
of the initial plane from the color of the back surfaces of the bounding box.

The GPU based ray casting algorithm for virtual endoscopic applications is
described as follows:

1. Render back surfaces of the bounding box into an intermediate texture.
2. Render the initial plane, subtract the color of initial plane from the color of back

surfaces to get a direction vector, store the normalized vector together with the length
of the vector in a direction texture. The length of the vector is just the maximum
distance that the ray goes across. The normalized viewing vector and the distance are
encoded in the color channel and the alpha channel, respectively.

3. Regard the color of initial plane as an inputted start point of the ray for the fragment
shader program. Cast a ray along the viewing vector stored in the direction texture,
and composite color and opacity of each resampling. Terminate the ray if the distance
the ray goes across is greater than the distance stored in alpha channel of the direction
texture or the opacity has reached a certain threshold (early ray termination).

Figure 5 illustrates two experimental results by the algorithm. From rendered
images, we can find that colon and chine cavity of human are clearly displayed by
GPU based ray casting algorithm. 

3. Linear interpolation of intersection

In many virtual endoscopic diagnoses, rendering of one or multiple isosurfaces is usually
adopted. High accurate computation of intersection between the ray and isosurfaces is
very important for correct rendering. But high accurate computation of intersection
will greatly increase the searching time of isosurfaces and markedly decrease frame
rates.

In order to improve the performance, a linear interpolation of intersection is
proposed to approximate the actual intersection. As shown in Fig. 6, sn–1 and Pn–1 are
the intensity value and position of resampling at the (n–1)-th step, respectively; sn and
Pn are the intensity value and position of resampling at the n-th step, respectively.
T is a threshold value for an isosurface and P is the estimated intersection between
the ray and isosurface. When sn–1 is less than T and sn is greater than T, there must be
an isosurface between these two resampling points. So, the estimated intersection P
can be computed by the following equation:

(1)

where

Pn = P0 + L dn (2)

dn = nd (3)

P
sn T–

sn sn 1––
--------------------------- Pn 1–

T sn 1––
sn sn 1––

--------------------------- Pn+=



524 FEINIU YUAN

In the above Eqs. (1)–(3), d is the resampling step size, P0 – the start point in
the initial plane, L – the normalized vector of a ray and n the count of steps.

According to the estimated intersection, the Phong lighting effects are computed
for current pixel. Linear interpolation of intersection with a relatively larger resampling
distance can improve frame rates without obviously degrading image quality. Searching
codes of isosurfaces in the fragment shader program can be written as follows:

/* P0 is the start point in the initial plane. DirectionTexture is
the direction texture containing the normalized viewing ray and the
maximum distance the ray goes across */

vec4 L=texture3D(DirectionTexture, P0);
vec3 Pn, P;
vec4 vol;
float dn=0.0;
float dp;
float sn, sn_1=0.0;
while (dn<L.a)
{ Pn =P0 +L.xyz*dn;

vol=texture3D(VolumeTexture, Pn); 
//T is the threshold for isosurfaces
if(vol.a<T)
{ sn_1=vol.a;
 dn=dn+d; //d is the resampling step size
}else
{ sn=vol.a;
 break;
}

}
if(dn>=L.a) discard;
if((sn- sn_1)>=0.0001)
{

dp=dn-d*(sn-T)/ (sn- sn_1);
}else
{

dp=dn;
}
P=P0+L.xyz*dp; //P is the estimated intersection

After the above searching with linear interpolation, the estimated intersection is
reasonably accurate. So, using the estimated intersection, we can produce high quality
images. We can repeat the linear interpolation of intersection again using newly
estimated positions P and Pn or Pn–1, in order to obtain more accurate estimation of
intersection between the ray and isosurfaces. Experiments show that only 1 to 3 times
are enough to obtain very good estimation of intersection. So, it is still useful for
acceleration of rendering. Iterative searching codes in the fragment shader program
are given as follows:

int i=0;
float sp,dn_1;
dn_1=dn-d;
while(i<3)



An iterative programmable graphics process unit ... 525

{ vol=texture3D(VolumeTexture, P);
sp=vol.a; 
/*When the estimation error is very small, iteration can be stopped
in advance*/
if(abs(sp-T)<0.0001) break;
if(sp<T)

{ /*The resampling step d is the half distance between points P and
Pn */
d=(dn-dp)/2.0;
sn_1=sp;
dn_1=dp;

}else
{ /*The resampling step d is the half distance between points Pn_1

and P */
d=(dp-dn_1)/2.0;
sn=sp;
dn=dp;

}
dp=dn_1+d;
P=P0 +L.xyz*dp;
vol=texture3D(VolumeTexture, P);
if(vol.a>T) 
{ //Linear interpolation between Pn_1 and P

sn=vol.a;
dp=dp-d*(sn-T)/ (sn- sn_1);

}else
{ //Linear interpolation between P and Pn

sn_1=vol.a;
dp=dn-d*(sn-T)/ (sn- sn_1);

}
//P is the estimated intersection at current time

P=P0+L.xyz*dp;
i=i+1;

}

In the above iterative program, if the estimation error is very small, for example,
it is less than 0.0001, the iteration can be early terminated in order to improve
performance, otherwise, the linear estimation must be performed for this time. And
then, if the resampling value at the estimated position P is less than the threshold T,
the linear interpolation of intersection should be performed between positions P and Pn.

Fig. 7. Iterative linear interpolation of intersection.



526 FEINIU YUAN

Accordingly, the step d is the half distance between P and Pn. Otherwise, the linear
interpolation should be done between points Pn–1 and P, and the step d  is set to the
half distance between Pn–1 and P.

The iterative process can be shown as Fig. 7. In Figure 7, a quadrangle stands for
the estimated intersection for the first time, a pentagon for the second time, and a circle
for the third time. As we can see, the accuracy is rapidly improved while times of
iteration increase.

4. Hybrid visualization

In virtual endoscopy systems, volumetric datasets and traditional polygons usually
exist together. Traditional primitives often assist doctors to complete the diagnosis,
for example, polygons may be used to indicate the orientation and location of the virtual
camera in the 3D datasets. So, the problem must be solved of how to correctly render
the hybrid scenes. 

In the z-buffering algorithm, hiding is naturally implemented according to depths
of screen pixels and the principle is very simple. So, it is very easy to be implemented
in hardware. Nearly all the consumer-level graphics hardware supports z-buffering.
Due to the mathematics involved, the generated value z in a z-buffer is not distributed
evenly across the z-buffer range (typically, 0.0 to 1.0, inclusive)

(4)

As shown in Eq. (4), r is the actual distance between the viewpoint and the estimated
intersection, zn is the distance between the viewpoint and near clipping plane, and zf
is the distance between the viewpoint and far clipping plane. Corresponding z value
in the z-buffer can be computed according to Eq. (4). So, in the fragment shader
program, we add the following codes before writing the color to frame buffer:

float z=10.0/(10.0-0.002)*(1.0-0.002/r);
if(z<gl_FragDepth) discard;
gl_FragDepth=z;

In our implementation, zn and zf are equal to 0.002 and 10.0, respectively, and
the variable r is the actual distance between the viewpoint and the estimated
intersection. In Figure 8, the hybrid scene includes an MRI head volume and polygons
of the bounding box. Figure 8a illustrates no hiding effects and Fig. 8b shows
the hiding effects after adding the above codes in the fragment shader program. We
can see that modification of z values can visualize the hybrid scene correctly.

5. Experiments

We have implemented the proposed and traditional GPU based ray casting algorithms
using VC++ and OpenGL, and several experiments were performed on a Pentium D/
3.0GHz PC with a GeForce FX7300 graphics card. Compared with traditional 3D

z
zf

zf zn–
------------------- 1

zn

r
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=



An iterative programmable graphics process unit ... 527

texture based methods, our optimized method produces high quality images at
interactive frame rates.

First, navigate into an abdomen volumetric dataset (512×512×86) with the algorithm
proposed. As shown in Fig. 9, we can find that the rendered images have high quality.
Those images were generated using the isosurface ray casting based on GPU. We can

Fig. 8. Visualization of hybrid scene including an MRI volume and its bounding box, a – no hiding,
b – hiding.

Fig. 9. Rendered images by the algorithm while
interactively navigating through human colon.



528 FEINIU YUAN

observe highlight effects on the colon due to enabling the Phong illumination model
after classification. 

Second, navigate into another volumetric dataset (512×512×112) with the algorithm.
As shown in Fig. 10, we can find that the rendered images have high quality. We can
interactively alter the transfer function by simply regenerating the 2D lookup texture
or directly specifying different ambient, diffuse and specular colors. So, our algorithm
is very convenient in cases where users need to frequently modify material property.

We also implemented traditional GPU based ray casting algorithm. The Table
gives frame rates. In the Table, our optimized searching approach can greatly
accelerate rendering speed without degrading image quality when the resampling step
in the optimized algorithm is 4 times the step in traditional algorithms. As shown in
Fig. 11a, although large steps can accelerate rendering speed, the traditional algorithm

Fig. 10. A series of images rendered while inter-
actively navigating through human trachea.

Fig. 11. A comparison of image quality:  a – traditional method, b – our method.

a b

T a b l e. Frame rates. 

Datasets Traditional GPU ray casting Our optimized GPU ray casting
Human colon 12.5 fps 30.2 fps
Human trachea 16.8 fps 39.3 fps



An iterative programmable graphics process unit ... 529

produces severe artifacts due to large steps. As shown in Fig. 11b, our method is able
to avoid such artifacts and obtain obvious improvements of computation. In order to
further speedup visualization, space leaping based acceleration techniques is very
suitable for being implemented using GPU shader programs.

6. Conclusions

GPU based ray casting in the fragment shader program has been presented that allows
both orthogonal and perspective projection and enables the user to move the viewpoint
into the dataset for virtual endoscopic visualization. An optimized GPU based ray
casting algorithm is used in virtual endoscopy applications. To avoid artifacts, a linear
interpolation of intersection is presented to estimate the actual intersection between
the viewing ray and the isosurface. Thus, resampling artifacts is greatly avoided and
the performance is not influenced. A larger resampling step with the linear
interpolation of intersection can speed up rendering. Using the accurate estimated
intersection, we can produce high quality images. Iterative linear interpolation of
intersection is presented in order to obtain more accurate estimation of intersection
between the ray and isosurfaces. Experiments show that only 1 to 3 times are enough
to obtain very good estimation of intersection. So, it is still useful for acceleration of
rendering. The author takes advantage of currently available programmable graphics
hardware and OpenGL Shading Language to enable Phong lighting model with a point
light source on the fly. Thus, it is possible that we can acquire high quality rendered
images as well as interactive frame rates. The z values in the z-buffer are modified to
implement visualization of hybrid scenes that usually exist in virtual endoscopy
application. Several experiments show that the optimized GPU based ray casting
algorithm is very useful for virtual endoscopy.

Acknowledgements – This project was supported by Natural Science Foundation of Jiangxi Province
(2007GQS0076), Foundation of Education Department of Jiangxi Province (2007[272]), Key project of
Jiangxi University of Finance and Economics, Open Foundation of the State Key Lab of Fire Science
(HZ2006-KF03) and China Postdoctoral Science Foundation (20070410792).

References

[1] PFISTER H., Architectures for real-time volume rendering, Future Generation Computer Systems
15(1), 1999, pp. 1–9.

[2] VILANOVA I BARTROLÍ A., KÖNG A., GRÖLLER M.E., Cylindrical Approximation of Tubular Organs for
Virtual Endoscopy, Technical Report TR-186-2-00-02, February 2000, Abteilung für Computer-
graphik, Institut für Computergraphik und Algorithmen, Technische Universität Wien, Austria.

[3] SHARGHI M., RICKETTS I.W., A novel method for accelerating the visualization process used in virtual
colonoscopy, Proceedings of Fifth International Conference on Information Visualisation, 2001, San
Diego, California, October 22–23, 2001, pp. 167–72.

[4] BRADY M., JUNG K., NGUYEN H.T., NGUYEN T., Two-phase perspective ray casting for interactive
volume navigation, IEEE Visualization’97 Conference, Phoenix, Arizona, October 19–24, 1997,
pp. 183–9.



530 FEINIU YUAN

[5] CULLIP T., NEUMANN U., Accelerating volume reconstruction with 3D texture mapping hardware,
Technical Report TR93-027, Department of Computer Science, University of North Carolina,
Chapel Hill, 1993.

[6] CABRAL B., CAM N., FORAN J., Accelerated volume rendering and tomographic reconstruction
using texture mapping hardware, Proceedings of IEEE Symposium on Volume Visualization 1994,
pp. 91–8.

[7] REZK-SALAMA C., ENGEL K., BAUER M., GREINER G., ERTL T., Interactive volume rendering on
standard PC graphics hardware using multi-textures and multi-stage rasterization, [In] Proceedings
of Graphics Hardware 2000, pp. 109–18.

[8] WESTERMANN R., ERTL T., Efficiently using graphics hardware in volume rendering applications,
[In] Proceedings of SIGGRAPH’98, 1998, pp. 169–78.

[9] KRUGER J., WESTERMANN R., Acceleration techniques for GPU-based volume rendering, IEEE
Visualization 2003, pp. 287–92.

[10] STEGMAIER S., STRENGERT M., KLEIN T., ERTL T., A simple and flexible volume rendering framework
for graphics-hardware based raycasting, Fourth International Workshop on Volume Graphics, 2005,
pp. 187–241.

[11] YOUNGMIN KIM, CHANG HA LEE, AMITABH VARSHNEY, Vertex–transformation streams, Graphical
Models 68(), 2006, pp. 371–83.

[12] FIALKA O., CADK M., FFT and Convolution Performance in Image Filtering on GPU, Tenth
International Conference on Information Visualization, 2006, pp. 609–14.

[13] KRUGER J., WESTERMANN R., Linear Algebra Operators for GPU Implementation of Numerical
Algorithms, SIGGRAPH 2003, pp. 908–16.

[14] NEUBAUER A., MROZ L., HAUSER H., WEGENKITTLE R., Cell-based first-hit ray casting, Proceedings
of the Symposium on Data, Visualization 2003, 2002, pp. 77–86.

Received December 11, 2007
in revised form January 22, 2008


