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A method for detecting forest fires smoke using SeaWiFS (Sea-viewing Wide Field-of View Sensor)
images is developed in this paper. The colour masking technique is proposed to extract the maximum
fires smoke pixels from the SeaStar/SeaWiFS satellite images by using Fusion by Arithmetic Com-
bination (FAC) of the spectral bands method. Each image used is converted from RGB (Red, Green,
Blue) to HIS (Hue, Saturation, Intensity) system. The resulting smoke plumes pixels are obtained
visually in the Intensity and Saturation images. Then the values of intensity and saturation are ana-
lyzed to be potentially applied in other images. In this research, we applied our detecting forest fires
smoke algorithm in seven different scenes, and in a variety of conditions, including different regions
of the planet, and different dates. Next, Smoke Pixel Reference Ratio (SPRR) was used to test the
proposed method. We found that the method can detect maximum pixels of smoke plumes in spite of
some limitations.
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1. Introduction

Biomass burning has tremendous impact on the Earth’s ecosystems and climate, for
it drastically alters the landscape and vegetation patterns and emits large amounts of
greenhouse gases and aerosol particles [1–3]. Smoke aerosols may interact with cloud
droplets [4, 5] and alter considerably the Earth’s radiation budget [6, 7]. Assessment
and understanding of the wide-reaching and long-lasting effects of fires on the envi-
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ronment and climate entails a good knowledge of the spatial distribution and temporal
variation of fire activity on a global scale [8]. This may be achieved only through the
use of remote sensing technologies, which provide an efficient and economical means
of acquiring fire information over large areas on a routine basis, despite various limi-
tations and shortcomings [9, 10].

A forest fire can be a real ecological disaster, regardless of whether it is caused by
natural forces or human activity. It is impossible to control nature, but it is possible to
map forest fire risk zones and thereby minimise the frequency of fire, avert damage,
etc. [11].

Automated fire detection algorithms are used for NOAA’s Geostationary Opera-
tional Environmental Satellites (GOES-10 and 12) and Polar Orbiting Operational
Environmental Satellites (POES, NOAA-15, 16 and 17). The Moderate Resolution
Imaging Spectroradiometer (MODIS) from NASA’s Terra and Aqua spacecraft
(MODIS fire detection) is performed using a contextual algorithm that exploits the
strong emission of mid-infrared radiation from fires. The algorithm examines each
pixel of the MODIS swath and ultimately assigns to each one of the following classes:
missing data, cloud, water, non-fire, fire, or unknown. The Wildfire Automated Bio-
mass Burning Algorithm (WF_ABBA) is employed for GOES imagery. The
WF_ABBA is a dynamic multi-spectral thresholding contextual algorithm that uses
the visible (when available), 3.9 µm, and 10.7 µm, infrared bands to locate and char-
acterize hot spot pixels. Descriptions of the algorithm can be found at the link:
http://cimss.ssec.wisc.edu/goes/burn/publications.html.

The NOAA polar orbiting satellites use the Fire Identification Mapping and Monitor-
ing Algorithm (FIMMA), which is described at link: http://www.ssd.noaa.gov/PS/FIRE/
Layers/FIMMA/fimma.html.

Fire detects from MODIS are obtained using the algorithms described at
http://modis-fire.gsfc.nasa.gov/methodology.asp.

It should be noted that many of the fires detected by these algorithms are not wild-
fires but rather agricultural or control burns and there is no attempt to distinguish be-
tween the two [12]. The most serious problems suffered by NOAA algorithms are
caused by the saturation of channel 3 (3.7 µm) in AVHRR (Advanced Very High
Resolution Radiometer) and its contamination by solar reflection. The problem is an-
ticipated to be resolved or lessened by the MODIS sensors due to the inclusion of
a special fire channel (3.9 µm instead of 3.7 µm) that has a wider dynamic range and
is less influenced by solar reflection [13]. The most challenging is to account for the
contribution of solar radiation due to the reflection from cloud and Earth’s surfaces.
The majority of the algorithms include cloud screening tests that are reasonably effi-
cient in removing false alarms by clouds.

Due to the similar appearance of smoke and clouds, identification of smoke is
better achieved by using SeaStar/SeaWiFS radiometer, because it has wide spectral
coverage comprising the visible (ch.1, 0.41 µm, to ch.6, 0.67 µm), and near-infrared
(ch.7, 0.76 µm and ch.8, 0.86 µm) wavebands. All channels pertain to certain attrib-
utes of fire smoke plume, but contain different information.
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SeaWiFS measures light intensity in several bands. The measurements allow quantifi-
cation of light absorption and subsequent estimation of fires. SeaWiFS improves by hav-
ing better bands for atmospheric correction (i.e., removing the effect of light scattering by
the Earth’s atmosphere), which will particularly aid the estimation of forest fires smoke.

In light of their unique and important role, SeaWiFS smoke detection scenes are
the focus of this work. This paper presents an idea which derives from the fusion of
the satellite images. The images resulting from only one process are not enough with
the thematic requests for the diagnosis and the treatment. However, to separately ob-
serve a series of multimode images of a same object is not a better solution. The fu-
sion of these data is thus a paramount stage.There are three methods of fusion:

1. Statistical methods, like PCA (Principal Component Analysis) method.
2. Methods resulting from signal processing, like WT (Wavelet Transformer)

method.
3. Colorimetric methods, like FAC (Fusion by Arithmetic Combination) of spec-

tral bands method.
The FAC method is classified in the colorimetric part, because it is often used with

an aim of visual improvement of the data. Of all the methods used, it is simplest, how-
ever, its effectiveness depends on the data input. The images are mixed by addition
and/or subtraction and/or product, after D-sampling of the data to the same size. This
method is selected in this work.

Each image in this paper is converted from RGB (Red, Green and Blue) field to
HSI (Hue, Saturation and Intensity) field. We seek to obtain the maximum of smoke
plumes pixels on the images, then one looks at the values taken by intensity and satu-
ration for potentially applying them to other images in routine.

2. Material

2.1. Sensor description

The SeaWiFS instrument on board of the SeaStar spacecraft is an eight-band radi-
ometer covering wavelengths between 402–885 nm.

The SeaWiFS instrument consists of an optical scanner and an electronics module
(line drawing). Table 1 is a listing of the central wavelengths and bandwidths for
SeaWiFS. Applications for imagery include fishing, agriculture, naval operations, and
environmental [14].

Table 1. SeaWiFS sensor description.

Instrument Bands

Band Wavelength

1 402–422 nm

2 433–453 nm

3 480–500 nm

4 500–520 nm



A. HASSINI et al.740

Table 1. Continued.

5 545–565 nm

6 660–680 nm

7 745–785 nm

8 845–885 nm

Mission characteristics

Orbit type Sun synchronous at 705 km

Equator crossing Noon +20 min, descending

Orbital period 99 minutes

Swath width 2.801 km LAC/HRPT (58.3 degrees)

Swath width 1.502 km GAC (45 degrees)

Spatial resolution 1.1 km LAC, 4.5 km GAC

Real-time data rate 665 kbps

Transmission frequency 1702.5 MHz (encrypted)

Revisit time 1 day

Digitization 10 bits

2.2. SeaWiFS level-1A data

There are Level-1A products for each of the following data types: global-area cover-
age (GAC), local-area coverage (LAC), lunar calibration, solar calibration, and High
Resolution Picture Transmission (HRPT) for direct-readout data [15]. GAC data are
sub sampled from full-resolution data with every fourth pixel of a scan line (from LAC
pixels 147 to 1135) and every fourth scan line being recorded for each swath (the
Earth data collection portion of an orbit). Thus, GAC data are comprised of 2048 pixels
per scan line, whereas all other types are comprised of 1285 pixels per scan line.
A GAC scene will also represent an entire swath; whereas LAC scenes are defined by
the number of continuously recorded scans, and HRPT scenes are defined by the num-
ber of continuously received scans from one satellite pass [16].

2.3. Smoke and fires detection

SeaStar/SeaWiFS radiometer, has two major advantages for fires smoke monitoring.
First, the instrument provides daily coverage of the entire planet at a moderate spatial
resolution (approximately 1 km), which is critical for operational global fire monitor-
ing. Second, it has wide spectral coverage comprising the visible (ch.1, 0.41 µm, to
ch.6, 0.67 µm), and near-infrared (ch.7, 0.76 µm and ch.8, 0.86 µm) wavebands. All
channels pertain to certain attributes of fire smoke plume, but contain different infor-
mation. Smoke is more discernible in the visible channels, which has been employed
to estimate fire smoke and trace gas emissions [17]. However, due to the similar ap-
pearance of smoke and clouds in each SeaWiFs visible channel, identification of
smoke is better achieved with RGB (R: Red, G: Green, B: Blue) and HSI (H: Hue,
S: Saturation, I: Intensity) combinations of these channels [18].
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3. Methods

3.1. RGB to HSI components conversion

The colour of a pixel with coordinates (x, y), denoted as f (x, y), is a triplet (r, g, b),
where r, g, and b are the intensities of the R, G, and B components, respectively. The
origin (0, 0) is at the upper-left comer of an image with the x-axis horizontal and the
y-axis vertical.

The three components of the HSI colour model (Fig. 1) are hue (H), saturation (S),
and intensity (I, or brightness). Hue represents a dominant (pure) colour as perceived
by an observer. Saturation refers to the amount of white light mixed with a hue. Two
important facts make the HSI colour model useful to simulate the colour sensing prop-
erties of the human visual system. First, the intensity component is decoupled from
the colour information in an image. Second, the hue and saturation components are
intimately related to the way in which human beings perceive colour. The geometric
conversion from the familiar RGB colour model to the HSI colour model can be found
in Fig. 1. In the following Eqs. (1)–(4), the formulas for conversion are listed for ref-
erence [19].

Black
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White              Intensity
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Black Blue Black Red

           RGB system                                                     HSI system

Fig. 1. Geometric representation of RGB and HSI systems.
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3.2. Building a smoke plume feature model

In the study of image-based smoke detection, it is necessary to build a more precise
smoke plumes feature model for vision-based smoke plumes detection systems. In
this research, we used two SeaStar/SeaWiFS images carrying various dates and ar-
eas to analyze the colour features of smoke plumes according to the HSI colour
model.

A colour set, C, is a set of colours such that for each colour in the set, represented
as a triplet (h, s, i) in the HSI colour model, the following conditions are satisfied:
[hmin ≤ h ≤ hmax], [smin ≤ s ≤ smax], and, [imin ≤ i ≤ imax] in which [hmin, hmax] is the range
of hue, [smin, smax] is the range of saturation, and [imin, imax] is the range of intensity of
the colour set C. Formally, the colour set may be denoted as:

{ }maxminmaxminmaxmin ,,),,(),,( iiissshhhishishC ≤≤≤≤≤≤= (5)

The colour separation algorithm for an input image f (x, y) based on some smoke
plumes colour set C is as follows: or each pixel in the image, if the colour of the pixel
does belong to the colour set, then set the pixel colour to red; otherwise, keep the pixel
colour unchanged (a background colour, unchanged). The result image g(x, y) after
performing the above colour separation can be represented as:



 ∈
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4. Results and discussions

In our case, we have used Local Area Coverage Level 1A images with spatial resolu-
tion of 1.1 km at nadir. This class of filenames begins with the following convention:
syyyydddhhmmss, where s denotes the sensor (currently S for SeaWiFS, A for Aqua-
MODIS, and T for Terra-MODIS), yyyy is the year, ddd is the day of the year (001–
366), hh is the hour (UTC) when the sensor began collecting the scene’s data (00–23),
mm is the minute (00–59), and ss is the second (00–59).
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Each image product in this paper is generated from a corresponding Level-1A
product. The main data contents of the product are the geophysical values for each
pixel, derived from the Level-1A raw radiance counts by applying the sensor calibra-
tion, and atmospheric corrections.

The radiometric operation of calibration is used to eliminate the side effects on the
rough images. They are corrections of the true brightness measured by the radiometer
SeaWIFs in order to eliminate the effects of the atmosphere and the solar angle of
illumination. Therefore, the effect of incoming solar radiation on the model colorimet-
ric is compensated.

a

  Ch1: 0.41 µm       Ch2: 0.44 µm        Ch3: 0.49 µm      Ch4: 0.51 µm       Ch5: 0.55 µm       Ch6: 0.67 µm      Ch7: 0.76 µm       Ch8: 0.86 µm

b

 Ch1: 0.41 µm       Ch2: 0.44 µm       Ch3: 0.49 µm       Ch4: 0.51 µm       Ch5: 0.55 µm       Ch6: 0.67 µm        Ch7: 0.76 µm       Ch8: 0.86 µm

Fig. 2. Eight spectral channels of image A (reference image) with the representation of the central spectral
wave of each band (a), eight spectral channels of image B with the representation of the central spectral wave
of each band (b).

Figure 2a shows the eight raw channels (6 visible and 2 NIR) of image A (labelled
in this work); all channels are splitted and radiometrically calibrated by using ENVI
Software (the Environment for Visualizing Images, Research Systems, Inc., Boulder,
USA). The file of this image named S2000238120538.L1A_MLAC was received from
official source (OCEANCOLOUR GSFC NASA US data base). In this case, our image
was received on day 238 (25 August) of year 2000 at 12:05:38 UTC.



A. HASSINI et al.744

For each band, the detector measures the intensity of the light that reaches the
sensor. When these data are displayed visually, the result is a series of gray-scale
images. Notice how different features have different intensities in the various bands.
For example, clouds and water appear bright in the blue and purple bands, while
land is dark. In the red and infrared bands, it is the land that is bright, while the wa-
ter is dark.

Image A is used to process forest fires smoke pixels covering the North African
Coast. Because of the important number of forest fires smoke pixels on this image, it
is considered like the reference image in this work.

-14

N

0          150 Km

Fig. 3. R: ch3, G: ch2, B: ch1 combination result.

By RGB combination between visible channels 3, 2 and 1 successively (R: ch3,
G: ch2, B: ch1) from image A, we can watch clearly the smoke from fires along the
North African coast Fig. 3. This combination most closely represents fires smoke in
the visible spectrum. Winds generated large quantities of smoke dust storms, which
blanketed the Mediterranean Sea. This event can be also clearly watched on the high
right part from image of Fig. 4. This image was realised by combination between the
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visible and the NIR channels. We have used the following combination R: ch7, G:
ch4, B: ch1.

0        150 Km

–14

N

Fig. 4. R: ch7, G: ch4, B: ch1 combination result.

The colour separation algorithm is applied to channel 1, 2 and 3 from image A, by
using r: ch3, g: ch2, b: ch1 combination in Eq. (1). The result image is given in Fig. 5.
In this image, we can watch the intensity edges of smoke plumes presented as red
colour separation.

Saturation pixels are calculated by using the same combination (i.e. r: ch3, g: ch2,
b: ch1 combination) in Eq. (2), the result is given in Fig. 6. In this image, the region of
interest was selected, and the red mask of separation presents the areas of smoke
plumes.

The other event, on 13 September 2003 – a huge plume of smoke drifts westward
over the Atlantic Ocean from a massive forest fire in South-Western Portugal. This
event (image B of Fig. 2b) is acquired by Sea-viewing Wide-Field-of View Sensor
(SeaWiFS) from the SeaStar satellite.
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Fig. 5. Extraction of the edge of fires smoke pixels from the intensity image (image A).

Fig. 6. Extraction of maximum fires smokes pixels from saturation image (image A).
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Figure 2b shows the eight spectral channels of the image B (all channels are radi-
ometrically calibrated), whose file is named S2003256132227. L1A_MLAC was ac-
quired on 13 September 2003 and covers the forest fires smoke pixels in the south
west of Portugal. This image is used to validate our research.

The HIS color model has been adopted because it is intimately related to the way
in which human beings perceive colors. According to the empirical analysis of the set
of forest fires images, the hue values for forest fires flames from red to yellow are
usually in the range of [0°–60°]. The range of [200°–280°] includes the higher tem-
perature flames. This point is not discussed in our research.

The intensity values in image A are in the range [230, 980] and, on the other hand,
the intensity values in image B are in the range [184, 1023]. The saturation values
after normalization are distributed in the range [0, 100] in the two images. By using
colour separation algorithm (Eq. (6)) in image A, the saturation values from the smoke
pixels are in the range [65, 80], and the intensity values from the smoke pixels are in
the range [780, 800].

0        150 Km

-16

N

Fig. 7. Extractions of the edge of fires smoke pixels from the intensity image (image B).

By using the same RVB combination and the same  intervals of the smoke plumes
extracted from image A and Eq. (1), Eq. (2) and Eq. (6) (Saturation: [780–800], Inten-
sity: [65–80], Hue: [0°–60°] ), the active forest fires smoke locations in image B have
been enhanced and edged in red colour. In Fig. 7 and Fig. 8, we can watch respec-
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tively, the intensity edges and saturation pixels of smoke plumes presented as red col-
our separation. The limit values for the fires smoke with HSI system are summarized
in Table 2 for each image.

Table 2. List of images used.

Environment Date of acquisition
Start time
of acquisition (UTC)

Region

Image A
(image reference)

25 August 2000 12 h 05 min 38 sec North of Algeria

Image B 13 September 2003 13 h 22 min 27 sec South West of Portugal

Image C 24 March 2003 06 h 12 min 10 sec South of the United States of America

Image D 20 December 2002 11 h 50 min 15 sec West  of Africa

Image E 23 January 2003 18 h 21 min 09 sec South East of Australia

Image F 05 January 2005 08 h 33 min 45 sec Dominican Republic and Haiti

Image G 20 May 2001 10 h 20 min 55 sec
Angola and Democratic Republic
of the Congo

0        150 Km

-16

N

Fig. 8. Extraction of maximum fires smokes pixels from saturation image (image B).

For each image (image A and image B), we used 2-D scatter plots to present fires
smoke pixels distribution for each image combination selected (visible channels:
channel 2 with channel 3, IR channels: channel 7 with channel 8), to compare the fires
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smoke pixels in two selected bands as both a scatter plot and in terms of their spatial
distribution in each image. Blue pixels show the distribution of fires smoke pixels
(Fig. 9a–9d).

We can observe that fires smoke pixels distribution in both Fig. 9a and Fig. 9c (visible
channels combination) presents a larger part compared to Fig. 9b and Fig. 9d (IR
channels combination), which follows from the fact that smoke from forest fires is
more discernible in the visible channels.

Fires smoke pixels distribution
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Fires smoke pixels distribution

SeaWiFS 1A Band 3 (0.4900):S2003256132227.L1A_MLAC_2
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Fig. 9. 2D scatter plots with fires smoke pixels distribution: image A, ch7, and ch3 (a), image A, ch7
and ch8 (b), image B, ch2 and ch3 (c), image B, ch7 and ch8 (d).

The proposed forest fires smoke method is tested with five other scenes of images
(image C to image G in Table 2) for a variety of conditions, including different re-
gions of the planet and different times. The experimental results of the proposed
method are shown in Table 3.

c

d
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Table 3. Features of fires smoke.

Environment Hue [°] Saturation (S) Intensity (I)

Image A (reference)

Smoke plume coverage A

SPRR [%]

0–60 0–100

65–80

0

230–980

780–800

0

Image B

Smoke plume coverage B

SPRR [%]

0–60 0–100

66–81

0.342

180–1023

782–800

0.0633

Image C

Smoke plume coverage C

SPRR [%]

0–60 0–100

65–79

0.346

130–986

780–801

0.0316

Image D

Smoke plume coverage D

SPRR [%]

0–60 0–100

65–82

0.685

240–980

779–802

0.0949

Image E

Smoke plume coverage E

SPRR [%]

0–60 0–100

66–81

0.342

156–898

780–800

0.0

Image F

Smoke plume coverage F

SPRR [%]

0–60 0–100

64–80

0.346

80–1020

781–798

0.0950

Image G

Smoke plume coverage G

SPRR [%]

0–60 0–100

67–79

1.031

250–988

778–799

0.0950

Smoke Pixel Reference Ratio SPRR denotes the detection rate between each image
from Table 2 and the reference image (image A). It is defined as the ratio

100
minminmaxmax

minminmaxmax
[%] ⋅

+++
−+−

=
VifViVifVi

VifViVifVi
SPRRi (7)

for the Intensity images and

100
minminmaxmax

minminmaxmax
[%] ⋅

+++
−+−

=
VsfVsVsfVs

VsfVsVsfVs
SPRRs (8)

for the saturation images. In the above equations Vimax and Vsmax indicate respectively
the maximum value of the intensity and the saturation in each image (from image A to
image G), while Vimin and Vsmin are respectively the minimum value of the intensity
and the saturation in each image (from image A to image G). On the other hand, Vifmax
and Vsfmax are respectively the maximum value of the intensity and the saturation of
forest fire smoke pixels in each image (from image A to image G), Vifmin and Vsfmin
are respectively the minimum value of the intensity and the saturation of forest fire
smoke pixels in each image (from image A to image G). The SPRR ratio is applied
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to establish the efficiency of our method to localise the forest fires smoke pixels for
various environments.

We can observe in Table 3 that the values of the SPRRs [%] and the  SPRRi [%]
are respectively in the interval [0.342, 1.031] and [0.0316, 0.0950]. In general, these
results are very encouraging and promising, because the method can detect maximum
pixels of smoke plumes. The largest values are observed in image G, because of
a small area of smoke plumes in this scene of image (Fig. 10).

0        150 Km

-14

N

Fig. 10. Image G: Angola and Democratic Republic of the Congo region with a small area of smoke plumes.

5. Conclusions

This paper presents an overview of one of the environmental phenomena: forest
fires smoke. The RGB combination method (colorimetric method) is the aim of our
present work to extract the smoke pixels. This purpose will be designed primarily
for use with SeaWiFS data, because of the long field of view in the visible spectrum
of the onboard sensor. Each band is displayed in a monochromatic scale corre-
sponding to its appropriate color. When these are mixed, they produce the entire
range of visible colors, creating an image that is fairly close to what the human eye
would perceive.

A new method derived from the RGB combination based on the computer vision
techniques and some theory of chromatics is proposed. The colour masking technique
is proposed to extract the maximum fires smoke pixels from the SeaStar/SeaWiFS
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images. As a result, smoke plumes pixels are obtained visually on the images intensity
and saturation; then one looks at the values taken by intensity and saturation for po-
tentially applying them to other images in routine.

We validated the proposed method by using other scenes of images with different
dates and different regions (seven images). The obtained results show that the method
can detect maximum pixels of smoke plumes. We found the results almost identical to
treat forest fires smoke pixels.

Some limitations of the method proposed are represented as follows:
– this method is used only in diurnal period of day,
– smoke generated by the higher temperature flames; this point is not discussed in

the present work,
– in a few cases, this method couldn’t distinguish clouds and dust storms from

fires smoke pixels,
– small areas of smoke plumes cannot be depicted by the proposed method in

some cases.
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