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Soliton pairing of two coaxially co-propagating 
mutually incoherent 1-D beams in Kerr type media
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In this paper, we have developed a theory (using parabolic equation approach) of coupled
propagation of two coaxially co-propagating and mutually incoherent bright 1-D beams in Kerr
type media. We have provided a detailed account of the propagation behavior and condition of
formation of spatial soliton pairs for various coupling coefficients (κ = 1, 2/3, 2) when wavelengths
and widths of the beams are the same/different. We have also identified conditions for a distinct
type of coupled propagation. Our simple and straightforward theory presents many features of co-
propagating beams which are in agreement with the features reported earlier using coupled
nonlinear Schrödinger equation (NLSE). The paper adds to the understanding of coupled
propagation by revealing many additional features not reported earlier. 
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1. Introduction

Formation of optical spatial soliton has attracted a lot of attention following
the progress on photorefractive solitons [1], quadratic solitons [2] and solitons in
saturable nonlinear media [3]. Investigation of soliton formation, interaction and
soliton induced waveguide is of high interest due to their potential applications in
all-optical switching and all-optical interconnects [4, 5], as well as waveguide
applications [6–8]. Coupled spatial soliton pairs obtained using two co-propagating
beams in nonlinear media are a special case of multicomponent solitons being
studied starting from the early 1970’s [9] and are important in all-optical switching
devices (see, for example, references [10–13]) and therefore, such pairing has
always been an intriguing issue among spatial soliton interactions. Interaction of two
spatial/temporal co-propagating solitons in bulk/waveguide media, and the possibility
of formation of bright and/or dark soliton pairs have already been discussed in many
papers, for example, in [14–20]. 

In the present paper, we have extended the work of [19, 21] to obtain general
coupled propagation equations for two co-propagating 1-D beams. The theory
presented is based on WKB and paraxial ray approximation and the assumption that
the beams maintain their Gaussian shape while the widths vary along propagation
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length. Using these equations, we have provided a detailed explanation of the coupled
propagation of two bright beams in Kerr media. We have identified conditions for
distinct types of coupled propagation. Considering propagation of beams in all possible
physical situations and parameters, we have obtained solitonic solutions for various
coupling coefficients (κ = 1, 2/3, 2) when wavelengths and widths of the beams are
the same/different.

It is worth mentioning here that a similar theory can be found in [19] for two
co-propagating 2-D beams (whereas the present theory is for 1-D beams). However,
in that theory, the choice of constants εij is not obvious and becomes very difficult
particularly when coupling coefficient is not equal to unity. All results given in [19]
could be reproduced by considering 2-D beams and coupling coefficient equal to unity
in the present theory. In addition, the present theory is also capable of dealing with
other possible cases like coupling coefficient other than unity and different/same beam
widths. Therefore, the present theory is more versatile and simple.

The chief aim of this paper is to provide a simple and straightforward theory of
coaxially co-propagating 1-D beams in nonlinear media. Another goal is to provide
a physically intuitive understanding of the coupled propagation of coaxially
co-propagating 1-D beams in all possible physical situations and parameters. 

2. Theory of coupled propagation

2.1. One dimensional (1-D) bright Gaussian beams

A Gaussian beam of elliptical cross-section could, ingeneral, be expressed as

where A1 is the real amplitude of the electric vector of the beam, fx and fy are
the dimensionless beam width parameters with the initial value 1, and rx and ry
are the initial widths of the beam along the x- and y-directions, respectively.

A 1-D optical beam could be viewed as a beam of elliptical cross-section with finite
minor axis and infinite major axis, i.e., ry → ∞, therefore

In the above equation, the dimensionless beam width parameter fy remains
constant at its initial value 1 as the beam does not diffract along the y-axis (as ry → ∞),
therefore,
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we rename x as r in the above equation and replace the subscript x by 1, i.e.,

Similarly, the second 1-D beam may be expressed as:

or

 j = 1, 2. (1)

2.2. Dielectric constant of the medium

We consider coaxial co-propagation of the above-mentioned two 1-D Gaussian beams
of frequencies ω1 and ω2, respectively, along the z-axis. These beams modify dielectric
constant of the medium as [19, 21, 22]:

(2)

(3)

where ε10 and ε20 are the dielectric constants at frequencies ω1 and ω2, respectively,
and ϕ1 and ϕ2 are the nonlinear dielectric constants. For the Kerr type nonlinear
medium, ϕ1 and ϕ2 may be expressed as:

(4)

(5)

In equations (4) and (5), α1 and α2 are nonlinear coefficients of the medium
at frequencies ω1 and ω2, respectively, κ  is the coupling coefficient of the two beams
that depends on the experimental conditions,  (for j = 1, 2) is the dimensionless
axial electric field intensity.
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In paraxial ray approximation, one can, ingeneral, expand ϕ1 and ϕ2 around their
value at r = 0. Employing Aj from Eq. (1), ϕ1 can be expanded by Taylor’s expansion
and terms except square ones can be neglected, so

Here , therefore, one can write:

where prime over ϕ1 denotes derivative with respect to the argument. On simplifying
the above equation, we get

(6)

since 

Similarly, one can obtain

(7)

2.3. Coupled propagation of beams

In a medium described by Eqs. (2) and (3), the electric vector of the waves are governed
by Maxwell’s equations, which in WKB approximation reduce to the wave equation

(8)

where D = εE is the electric displacement vector. For slowly converging or slowly
diverging beams, Eq. (8) can be satisfied by the following solutions
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where E1 and E2 are the space dependent complex amplitudes and  and
 are the propagation constants. 

Eikonals can be introduced to describe E1 and E2 as

(10)

(11)

Here, A1 and A2 are the space dependent real amplitudes. On substituting
Eqs. (9)–(11) in the wave equation, we get the following set of equations:

(12)

(13)

With subscript 1 or 2 in the above equations, we get the relevant equations for the first
or the second beam. To solve Eqs. (12) and (13) we assume that the nonlinear part of
the dielectric constant is much smaller than the linear part, and therefore, nonlinearity
may be treated as perturbation. One may, therefore, assume generalized spherical wave
solution for Eqs. (12) and (13):

(14)

(15)

(16)

It can be noted that βj represents the inverse of radius of curvature of the beams’
fronts, and rj fj stand for the widths of the beams. 

Using equations (14)–(16) in equation (12) and using paraxial ray approximation,
i.e., (r/rj fj)4 << 1, we obtain
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On substituting ϕ1(A1, A2) from equation (6), equation (17) takes the form (for
the first beam)

Equating the coefficients of r2 on both sides of the above equation, one obtains
the following propagation equation that governs the beam width parameter of the first
beam with the propagation distance

(18)

where:  and 
Similarly, the propagation equation for the second beam could be obtained as

(19)

The set of coupled Eqs. (18) and (19) governs the evolution of widths of the two
beams with the propagation distance. 

For self-trapped beams (spatial solitons), we must have ∂ fj /∂z = ∂2 fj /∂z2 = 0. One
can assume ∂ fj /∂z = 0 as the initial condition of the beams. To have ∂2 fj /∂z2 = 0,
we correspondingly need:

(20)

(21)

3. Numerical appreciation and discussion

It is worth mentioning here that coupling coefficient κ  depends on the experimental
conditions. In the present paper, we have investigated coupled beam propagation for
coupling coefficients used in earlier literature, i.e., κ  = 2, κ  = 2/3 (see, e.g., [14]) and
κ  = 1 [10–12].
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3.1. Coupled propagation when coupling coefficient κ = 2
3.1.1. Case I: beams of the same frequency and the same widths

For the purpose of numerical evaluation of Eqs. (18)–(21), we choose the following
set of parameters: ω1 = ω2 = 2.7148×1015 rad/s, ε10 = ε20 = (1.6276)2, and r1 = r2 =
= 10 µm. The approach given here is valid for any other set of parameters.

In Figure 1, we plot D with C using equations (20) and (21) for κ  = 2 and for
the above mentioned parameters. In the figure, the solid line represents the solution
of Eq. (20) while dashed line is the solution of Eq. (21). Point P1 is also a solution
of Eq. (20), which corresponds to D = 0 (zero power) of the second beam,
therefore, the power of the first beam corresponding to P1 is its self-traped power.
Similarly, the power corresponding to point P2 is the self-trapped power of the second
beam. The point of intersection S is the common solution of Eqs. (20) and (21).
Therefore, values of C and D at point S correspond to the powers of the two beams
for mutual self-trapping. In other words, if two beams are coaxially propagated
in the nonlinear medium with their power corresponding to point S, both will
simultaneously be self-trapped or they will form a spatial soliton pair. To verify
mutual trapping, we choose C and D from the point of intersection S, i.e., C =
= D = 4.0743×10–5 and obtain the evolution of the beams’ width with the propagation
distance using Eqs. (18) and (19), as shown in Fig. 2. We have plotted 0.9× f2 just to
resolve f1 and f2. It is clearly observable that both beams are mutually self-trapped or
they form a spatial soliton pair. It can be observed in Fig. 1 that the power of each
beam (corresponding to point S ) required for soliton pair is one third of the self-trapped
power (corresponding to points P1, P2). It is also obvious that there exists only one
solution for soliton pairing.

Same features have been revealed in investigation of co-propagating beams using
coupled nonlinear Schrödinger equations (NLSE) [14], however, one can note that

Fig. 1. Plot of D with C using Eqs. (20) and (21) for κ = 2, ω1 = ω2 = 2.7148×1015 rad/s, ε10 =
= ε20 = (1.6276)2, r1 = r2 = 10 µm.
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the present treatment is much simpler and provides an intuitive picture of solitonic
solution.

We go further and, to the best of our knowledge, we are the first to report conditions
for distinct types of coupled propagation. We intuitively draw an arc of the circle
that passes through P1, S and P2, as shown in Fig. 3. We have identified this arc as
the existence curve of rhythmic breather pair (out-of phase width oscillations of the
two beams). To confirm our claim, breather pairs are obtained in Figs. 4–6 using beam
powers corresponding to points u (C = 0.69×10–4, D = 0.2×10–4), v (C = 0.53×10–4,

Fig. 2. Evolution of the widths of beams with the propagation distance is obtained with the parameters
of Fig. 1, C = D = 4.0743×10–5 and using Eqs. (18) and (19). The chosen widths of beams are the same,
however, 0.9×f2 has been plotted just to resolve f1 and f2. The figure shows a soliton pair formation.

Fig. 3. An arc of the circle that passes through P1, S and P2 is drawn intuitively. This arc has been
identified as the existence curve of rhythmic breather pair.
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D = 0.3×10–4) and w (C = 3.7705×10–5, D = 4.3705×10–5), respectively. One can
notice an out-of-phase rhythm in beam width oscillations in all these figures. Similar
breather pairs could be obtained from the entire arc. It can be seen that amplitude of
width oscillations of the breather pair is smaller if chosen point on the arc is nearer
to S. In fact, at point S, the amplitude of width oscillation becomes zero and soliton
pair is formed.

On the basis of our investigations, we have divided Fig. 3 into two regions,
identifying them with two distinct types of coupled propagation: region I (below
the dashed arc) and region II (above the dashed arc). 

Fig. 4. Rhythmic breather pair is obtained using beam powers corresponding to point u (C = 0.755×10–5,
D = 1.0×10–4) of Fig. 3.

Fig. 5. Rhythmic breather pair is obtained using beam powers corresponding to point v (C = 2.111×10–5,
D = 6.9853×10–5) of Fig. 3.
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Breather pair obtained from region I (C = 0.47×10–4, D = 0.3×10–4) is shown in
Fig. 7 by dashed lines. One can notice that the pair first defocuses and then focuses
while breathing and widths of beams oscillate about a width larger than the initial one.
We confirmed that all breather pairs obtained from region I exhibit the same features.
Breather pair obtained from region II (C = 0.67×10–4, D = 0.3×10–4) is shown by solid
lines. One can notice that the pair first focuses and then defocuses while breathing and
widths of beams oscillate about a width smaller than the initial one.

One can notice a remarkable difference in the rhythmic breather pairs obtained
from the arc, breather pairs of region I and breather pairs of region II.

Fig. 6. Rhythmic breather pair is obtained using beam powers corresponding to point w (C = 3.7705×10–5,
D = 4.3705×10–5) of Fig. 3.

Fig. 7. Breather pair obtained from region I of Fig. 3 (C = 0.47×10–5, D = 0.3×10–5) is shown by dashed
line and the same obtained from region II (C = 0.67×10–5, D = 0.3×10–5) is shown by solid line. 
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3.1.2. Case II: beams of different frequencies but the same width

We choose different frequencies than in the earlier set of parameters, i.e., ω1 =
= 2.7148×1015 rad/s and ω2 = 2.5148×1015 rad/s, keeping the rest of the parameters
unchanged. For those parameters, Fig. 1 gets modified to Fig. 8. The solitonic solution
shifts towards the x-axis with C = 0.542×10–4, D = 0.339×10–4 (for ω1 < ω2,
solitonic solution shifts towards the y-axis). It can be easily seen from Eqs. (20)
and (21) that solitonic solution exists in the +x, +y quadrant only for the frequency

Fig. 8. With beams of the same width but different frequencies, i.e., ω1 = 2.7148×1015 rad/s,
ω2 = 2.5148×1015 rad/s, and r1 = r2 = 10 µm, Fig. 3 is modified as shown. The solitonic solution
shifts towards the x-axis with C = 0.542×10–4, D = 0.339×10–4. 

Fig. 9. With beams of different widths but the same frequency, i.e., ω1 = ω2 = 2.7148×1015 rad/s,
r1 = 10 µm and r2 = 9.5 µm, Fig. 3 is modified as shown. The solitonic solution shifts towards the x-axis
with C = 0.592×10–4, D = 0.284×10–4.
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ratio within the range . Beyond this range, solitonic solution goes
beyond the +x, +y quadrant. Physical interpretation of the above is that no soliton pair
of bright beams exists for the beam frequency ratio beyond the aforementioned
range. The same results have been obtained in [14] using comparatively complex
NLSE. Through numerical investigations, we confirmed here also that one can have
regions I and II by drawing an arc of the circle that passes through P1, S and P2 (see
Fig. 8). The behavior of coupled propagation in this case in different regions is similar
to that of the previous case.

3.1.3. Case III: beams of the same frequency but different widths

Before discussing this case it is worthwhile to mention here that in coupled NLSE
equations, the widths of two beams must be postulated to be identical to have solitonic
solution, whereas in reality, those are often far from being equal [18]. The present
theory provides solitonic solutions for coupled beams of unequal widths.

We choose the same frequency ω1 = ω 2 = 2.7148×1015 rad/s and different widths
r1 = 10 µm and r2 = 9.5 µm of the two beams, the other parameters being the same as
in of Section 3.1.1. For the parameters chosen, Fig. 1 gets modified to Fig. 9, i.e.,
solitonic solution shifts towards the x-axis with C = 0.592×10–4, D = 0.284×10–4.
For r2 > r1, solitonic solution shifts towards the y-axis. It could be easily shown using
Eqs. (20) and (21) that solitonic solution exists in the +x +y quadrant only if the beam
width ratio lies within the range (1/κ)1/4 < r2 /r1 < κ 1/4, in other words, no solitonic
pair of two bright beams exists for the beam width ratio beyond this range.

3.2. Coupled propagation when coupling coefficient κ = 2/3

We choose κ = 2/3 keeping other parameters the same as those of Section 3.1.1. For
the parameters chosen, Fig. 3 is modified to Fig. 10. In this case, the power of each
beam required for soliton pair is 60% of the self-trapped power of the individual beam,
moreover, only one solution exists for soliton pairing.

We have also confirmed here through numerical investigation that the existence
curve of rhythmic breather pair is the arc of the circle that passes through P1, S
and P2, as shown in Fig. 10, and no soliton pair of the same beam widths exists for
the frequency ratio beyond the range  Propagation characteristics
of the co-propagating beams in this case in regions I and II are the exactly the same
as in the case of κ  = 2.

3.3. Coupled propagation when coupling coefficient κ = 1

3.3.1. Case I: two beams of the same frequency

For the set of parameters used in Section 3.1.1, an interesting and important situation
arises when the coupling coefficient is unity, i.e., κ  = 1. The solutions of Eqs. (20) and

1κ⁄ ω1 ω2⁄ κ< <

1κ⁄ ω1 ω2⁄ κ .< <
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(21) merge and form a single line, as shown in Fig. 11. Every point of this line
corresponds to the powers of the two beams required to from one soliton pair as every
point is the common solution of Eqs. (20) and (21). One such soliton pair is shown by
solid lines in Fig. 12, where 0.95×f2 has been plotted just to resolve f1 and f2. If beam
powers are chosen from a point below the existence line of Fig. 11, both beams
mutually defocus and then focus as shown by dotted lines in Fig. 12, and if those are

Fig. 11. An interesting situation arises for κ  = 1. For the parameters of Fig. 3 and κ  = 1, solutions
of Eqs. (20) and (21) merge and form a single existence line of soliton pair as shown. Every point of this
line corresponds to the powers of beams of one soliton pair.

Fig. 10. For parameters of Fig. 3 and κ  = 2/3, Fig. 3 is modified as shown. In this case, the power
of each beam required for soliton pair is 60% of the power of the beam required to form a single soliton.
Only one solution exists for soliton pairing.
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chosen from a point above the existence line of Fig. 11, they mutually focus and then
defocus as shown by dashed lines in Fig. 12. 

3.3.2. Case II: two beams of different frequencies

We choose different frequencies of the two beams ω1 = 2.7148×1015 rad/s and
ω2 = 2.5148×1015 rad/s, the other parameters being the same as in Section 3.3.1.
For the parameters chosen, solutions of Eqs. (20) and (21) form two parallel lines, as
shown in Fig. 13, in other words, no solitonic pair exists of different frequencies and
the same width (when κ  = 1). However, if we equate Eqs. (20) and (21) with κ  = 1,
we get a condition for the beam widths to have soliton pairs, which is r2/r1 =
= (ω1/ω2)1/2. If we use this beam width ratio in Eqs. (20) and (21), both solutions
merge, as shown in Fig. 14. We have confirmed that every point of this line provides
powers of beams for one soliton pair. In summary, when the coupling coefficient is
equal to unity, soliton pairs of different frequencies and the same width do not exist.
Pair formation becomes possible only if the width ratio is chosen as mentioned above.

4. Conclusions
Using parabolic equation approach, we have developed a theory of coupled
propagation of two coaxially co-propagating and mutually incoherent bright 1-D
beams in Kerr media. Propagation behavior and condition for the spatial soliton pairs
to be formed have been investigated in detail for all possible situations and parameters,

Fig. 12. If the powers of beams are chosen from a point on the existence line (of Fig. 11), both beams
form a soliton pair as shown by solid lines. Here, 0.95×f2 has been plotted to resolve f1 and f2.
If those are chosen from a point below the existence line, both beams mutually defocus and then focus,
as shown by dotted lines, and if those are chosen from a point above the existence line, they mutually
focus and then defocus, as shown by dashed lines.
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and conditions for distinct types of coupled propagation have been identified. It is
shown that:

– only one solution exists for solitonic pairing when coupling coefficient is
different from unity;

– if coupling coefficient is different from unity, solitonic pairing is possible with
same/different beam widths and/or same/different frequency of the beams, while, in

Fig. 14. Soliton pairs can be formed by having the ratio of the widths of beams as per r2 = r1(ω1/ω2)1/2.
With this width ratio of beams and parameters of Fig. 13, solutions of Eqs. (20) and (21) merge and
every point of the merged line provides one soliton pair.

Fig. 13. For κ = 1 and the two beams of different frequencies and the same width, for example,
ω1 = 2.7148×1015 rad/s, ω2 = 2.5148×1015 rad/s, and r1 = r2 = 10 µm, the solutions of Eqs. (20) and (21)
form two parallel lines as shown, i.e., no solitonic pair exists of different frequency and the same width
when κ  = 1.
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case of coupling coefficient equal to unity, solitonic pairing with different frequencies
is only possible with different beams’ widths;

– infinite solutions for solitonic pairing exist when coupling coefficient is unity
and beam widths and frequencies are the same. 

Acknowledgments – S. Medhekar and P.P. Paltani acknowledge the Board of Research in Nuclear
Sciences (BRNS), Government of India, for financial assistance throughout the research project
no. 2003/34/19/BRNS. R.K. Sarkar thanks Birla Institute of Technology for being granted a fellowship.
Moral support and encouragement from H.C. Pande, S.K. Mukherjee and P.K. Barhai are gratefully
acknowledged. 

References
[1] SEGEV M., CROSIGNANI B., YARIV A., FISCHER B., Spatial solitons in photorefractive media, Physical

Review Letters 68(7), 1992, pp. 923–6.
[2] TORRUELLAS W.E., WANG Z., HAGAN D.J., VAN STRYLAND E.W., STEGEMAN G.I. , TORNER L.,

MENYUK C.R., Observation of two-dimensional spatial solitary waves in a quadratic medium,
Physical Review Letters 74(25), 1995, pp. 5036–9.

[3] TIKHONENKO V., CHRISTOU J., LUTHER-DAVIES B., Three dimensional bright spatial soliton collision
and fusion in a saturable nonlinear medium, Physical Review Letters 76(15), 1996, pp. 2698–701.

[4] STEGEMAN G.I., SEGEV M., Optical spatial solitons and their interactions: universality and diversity,
Science 286(5444), 1999, pp. 1518–23.

[5] SEGEV M., MING-FENG SHIH, VALLEY G.C., Photorefractive screening solitons of high and low
intensity, Journal of the Optical Society of America B: Optical Physics 13(4), 1996, pp. 706–18.

[6] KIVSHAR Y.S., Dark solitons in nonlinear optics, IEEE Journal of Quantum Electronics 29(1), 1993,
pp. 250–64.

[7] SNYDER A.W., MITCHELL D.J., KIVSHAR Y.S., Unification of linear and nonlinear wave optics,
Modern Physics Letters B 9(23), 1995, pp. 1479–506.

[8] SONG LAN, MING-FENG SHIH, MIZELL G., GIORDMAINE J.A., ZHIGANG CHEN, ANASTASSIOU C.,
MARTIN J., SEGEV M., Second-harmonic generation in waveguides induced by photorefractive
spatial solitons, Optics Letters 24(16), 1999, pp. 1145–7.

[9] KIVSHAR Y.S., AGRAWAL G., Optical Solitons: From Fibers to Photonic Crystals, Academic Press,
San Diego 2003.

[10] MEDHEKAR S., SARKAR R.K., All-optical passive transistor, Optics Letters 30(8), 2005, pp. 887–9.
[11] SCHEUER J., ORENSTEIN M., Interactions and switching of spatial soliton pairs in the vicinity of

a nonlinear interface, Optics Letters 24(23), 1999, pp. 1735–7.
[12] SCHEUER J., ORENSTEIN M., All-optical gates facilitated by soliton interactions in a multilayered Kerr

medium, Journal of the Optical Society of America B: Optical Physics 22(6), 2005, pp. 1260–7.
[13] MEDHEKAR S., PALTANI P.P., Proposal for optical switch using nonlinear refraction, IEEE

Photonics Technology Letters 18(15), 2006, pp. 1579–81. 
[14] DE LA FUENTE R., BARTHELEMY A., Spatial solitons pairing by cross phase modulation, Optics

Communications 88(4–6), 1992, pp. 419–23.
[15] ZHIGANG CHEN, SEGEV M., COSKUN T.H., CHRISTODOULIDES D.N., KIVSHAR Y., Coupled

photorefractive spatial-soliton pairs, Journal of the Optical Society of America B: Optical Physics
14(11), 1997, pp. 3066–77. 

[16] KANG J.U., STEGEMAN G.I., AITCHISON J.S., AKHMEDIEV N., Observation of Manakov spatial solitons
in AlGaAs planar waveguides, Physical Review Letters 76(20), 1996, pp. 3699–702. 



Soliton pairing of two coaxially co-propagating mutually incoherent 1-D beams ... 259

[17] MALOMED B.A., Polarization dynamics and interactions of solitons in a birefringent optical fiber,
Physical Review A: Atomic, Molecular, and Optical Physics 43(1), 1991, pp. 410–23.

[18] MALOMED B.A., TASGAL R.S., Internal vibrations of a vector soliton in the coupled nonlinear
Schrödinger equations, Physical Review E: Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics 58(2), 1998, pp. 2564–75.

[19] MEDHEKAR S., SARKAR R. K., PALTANI P.P., Coupled spatial-soliton pairs in saturable nonlinear
media, Optics Letters 31(1), 2006, pp. 77–9. 

[20] MUSSLIMANI Z.H., SEGEV M., CHRISTODOULIDES D.N., SOLJACIC M., Composite multihump vector
solitons carrying topological charge, Physical Review Letters 84(6), 2000, pp. 1164–7. 

[21] SODHA M.S., TEWARI D.P., KAMAL J., TRIPATHI V.K., Cross-focusing of two coaxial laser beams in
a dielectric, Radio Science 8(6), 1973, pp. 559–62.

[22] AKHMANOV S.A., SUKHORUKOV A.P., KHOKHLOV R.V., Self-focusing and diffraction of light in
a nonlinear medium, Soviet Physics Uspekhi 10(5), 1968, pp. 609–36 (original: Uspekhi Fizicheskii
Nauk 93(1–2), 1967, pp. 19–70).

Received April 15, 2007
in revised form June 29, 2007


