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Can a variational approach describe pulse splitting 
in a dispersion managed system?
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When looking for solitons in nonlinear systems, it is often useful to have a simplifying tool. One
such tool is the variational method. On the other hand, in the presence of fast oscillations, the
wavefunction of the system can split into two distinct parts. This is not describable by the classical
variational method. EDWARDS et al., (J. Phys. B 38(4), 2005, pp. 363–76), introduced a hybrid
variational analysis which can describe the dynamics in one selected direction more accurately.
However, it remained to be seen how well this method describes the dynamics of solitons, in
particular their splitting and subsequent recombining. Here we investigate an application of the
hybrid variational analysis to a two dimensional system with dispersion management, where such
splitting is known to occur. We conclude that indeed agreement is good. This could encourage
wider use of the hybrid method.
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1. Introduction
Recently quite a lot of interest has been focused on the propagation of
multidimensional solitons in both nonlinear optical systems and Bose–Einstein
condensates [1]. A simplified theoretical method to search for these solitons is the
variational approximation (VA) [2, 3]. This method reduces partial to ordinary
differential equations. When the phase space in question is large, this simplification
can save a lot of computational effort or may even be crucial, as we wish to find
regions of stability. The pure VA was used in the soliton context by KATYSHEV and
MAKHANKOV [4] and then to solitons in optical fibers, e.g., ANDERSON et al. [5, 6].
The variational approximation is presently widely applied to problems in nonlinear
optics [2, 3, 7], for example, in dispersion managed (DM) optical waveguides [8–15],
where it is a natural approach.

2. Illustration of the approach
We illustrate the variational approach using the case of dispersion management
following reference [15]. The model is based on the normalized equation describing
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the evolution of the local amplitude u of an electromagnetic wave propagating along
the z direction in a 2D slab:

(1)

where uz ≡ ∂u/∂z. The function D(z) is periodic

(2)

with k being zero or a natural number. Equation (2) can be derived from the Lagrangian
. The VA is introduced

upon using the Gaussian ansatz,

(3)

where A and θ  are the amplitude and phase of the soliton, W and T are its transverse
and temporal widths, and b and β are the spatial and temporal chirps. Substitution of
the ansatz (3) into the Lagrangian and integrating over x and t yields an effective
Lagrangian,

(4)

where the prime stands for d/dz. The variational equation δL/δθ = 0, applied to
expression (4), yields the energy conservation relation dε /dz = 0, where ε ≡ A2WT.
This relation can be used to eliminate A2 in favor of the constant ε. As a consequence,
the term of order θ'  in the Lagrangian may be dropped:

(5)

Varying the Lagrangian (5) with respect to the remaining independent variables
W, T, b, β, and substituting b = W'/W and β = D–1T' /T yields the following closed
system of equations:

(6)
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These ordinary differential equations can easily be solved numerically in search for
solitons or other regular structures.

In reference [15], a variational analysis based on the above equations led to the
conclusion that stable two dimensional solutions in the presence of a periodic
dispersion modulation exist, but in the three dimensional case (bulk medium), all
the spatiotemporal pulses will spread out or collapse. Later it was demonstrated that
three-dimensional spatiotemporal solitary waves can exist in self-focusing Kerr media
when a combination of dispersion management in the longitudinal direction, and
periodic modulation of the refractive index in one of the transverse directions, is
applied [16]. In most cases, the variational analysis gave accurate predictions of
the stability regions in parameter space. In some cases, however, we noticed pulse
splitting in the direction of the modulation. Surely, this kind of dynamics cannot be
described by the classical variational approximation, since this approach implicitly
assumes that the pulse (wavefunction) remains compact (single piece) and possibly
close to Gaussian in shape. In order to get an adequate description to include
phenomena like pulse splitting, one needs to treat the dimension in which it can occur
in a different way.

Recently, an opportunity to include the possibility of pulse splitting appeared
thanks to the method proposed by EDWARDS et al. [17]. They called it the hybrid
Lagrangian method (HLM). The main idea is to treat all directions except the
modulated one by a variational ansatz, but derive a one dimensional reduced partial
differential equation in the direction along which the modulation occurs. In this paper,
we apply the hybrid Lagrangian method to describe pulse splitting in two dimensional
dispersion management. Our system is described by Eqs. (1) and (2). We set
normalization such that , and introduce a hybrid trial
function in the form

(8)

and so,  We set the initial conditions

(9)

The variational parameters are: φ (z, t ), width W(z ) and chirp b (z). Since the
parameter φ  is a function of both z and t, we can only reduce the space of the Lagrange
density by integrating over x. We obtain

(10)
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The Euler–Lagrange equations lead to a more compact form if we substitute [17]

(11)

When this is done we obtain the closed system of equations

(12)

(13)

These equations, with λ defined in Eq. (11), describe the evolution of our pulse along
z. Note that the right hand side of Eq. (13) can describe a potential well, as λ < 0.
In contradistinction to a classical variational approximation, in which the temporal
variation would also be modeled by a Gaussian, the hybrid treatment can describe
soliton splitting, amalgamation, etc.

We looked at cases for which the full numerics gave soliton splitting-recombining
dynamics. Figure 1 shows a comparison of the splitting and recombining of the pulse
as described by two approaches; a full numerical approach and the hybrid method.
The phenomenon pictured in Fig. 1 occurs periodically (with the imposed period of
the dispersion management). As we see, the hybrid description provides an excellent
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Fig. 1. Example of a stable solution with pulse splitting as found from full two dimensional numerical
simulation (a–d) compared to those found by the hybrid variational approach (e–h). The subsequent
frames show pulse intensity as taken at the beginning, quarter period, half and three quarters of the
dispersion management period. The parameters are: T0 = 1, W0 = 1, E = 2π, and β0 = 0.
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fit. In Figure 2, a comparison of the stability regions in E – β0 parameter space is
presented. Figure 2a pictures the results obtained from the classical variational
method, and Fig. 2b those obtained from the hybrid variational approach. The stability
regions are very similar, but in the case of the hybrid method we get a much fuller
picture.

3. Conclusions

In conclusion, our analysis confirms that indeed the hybrid method provides a tool for
looking at pulse phenomena (e.g., pulse splitting) that are missed by the very nature
of the classical variational analysis.
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