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Abstract. In this paper, a new test of normality and independence is proposed. This test is 
designed through a multivariate empirical characteristic by considering a result form 
[Ejsmont 2016].  
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1. Introduction and preliminaries  

The original motivation for this paper comes from a desire to understand 
the results about the characterization of normal distribution which were 
shown in [Ejsmont 2016], where the author provides characterizations of the 
normal distribution by using a certain invariance of the noncentral chi-square 
distribution. Our construction of a new test of normality is based on the fol-
lowing characterization of normal distribution in terms of independent ran-
dom vectors; see [Ejsmont 2016]. 

Theorem 1. Let (X1, ..., Xm, Y ) and (Xm+1, ..., Xn, Z ) be independent 
random vectors with all moments, where  Xi  are nondegenerate, and let sta-
tistic ∑=
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where ai ∈ ℝ and 1 ≤ m < n. Then Xi  are independent and have the same 
normal distribution with zero means and cov(Xi, Y) = cov(Xi, Z) = 0 for 
i ∈{1,…, n}. 

In this paper we denote a probability measure of random variable X. If X 
is a random vector defined on a probability space (Ω, Σ, P), then the expected  
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value of X, denoted by E(X) is defined as the Lebesgue integral  

 )(X)X( ω∫
Ω

=E ℙ(dω). 

A characteristic function is simply the Fourier transform, in probabilistic 
language. The characteristic function of a probability measure µ on ℝn is the 
function ϕ:ℝn→ℂ 

( ) ( )[ ] ( ) )(XexpXXexp,...,1X xdititEtt
nR

n µϕ ∫== . 

When we speak of the characteristic function ϕX of a random vector X, 
we have the characteristic function 

Xµ
ϕ  of its distribution µX in mind. Appar-

ently, it is not accidental that the characteristic function encodes the most im-
portant information about the associated random variables. A random vector 
X = (X1, ..., Xk) is said to have the multivariate normal distribution if there is 
a n-vector ξ and a symmetric, positive semidefinite n × n matrix Σ, such that 
the characteristic function of X is  
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2. Test statistic 

In this section we will propose a new test statistic for independence and 
normality, which is a multidimensional analog of [Epps, Lawrence 1983]. We 
state this test formally without empirical verification of its critical value and 
power. The distance between the empirical and theoretical characteristic 
function provides a new approach to the problem of testing the joint inde-
pendence and normality of random vectors. Our approach is based on the fol-
lowing reasoning (the author believes that the proposition of the test below is 
unknown). Given an observed random matrix 
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for which we normalize its columns (because the test should be invariant un-
der changes in the location and scale of data):  
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where ∑ =
=

m

j iji m
1 , /XX  and ( ) ,X X

1

2∑ =
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m

j ij,iiS  we propose a hypothe-

sis in a form that can be applied both to independence and normality:  
H0: all columns of ( ) nm

ijj,i
,

1,
X~

=
 are independent and have a normal distributions 

vs. H1: H0 is not true.  
The test statistic proposed by [Epps, Lawrence 1983] is based on the 

weighted integral, i.e. the squared modulus of the difference between the 
characteristic functions of the sample and of the theoretical normal distribu-
tion. Now we use a similar construction, namely the squared modulus of the 
difference between the characteristic functions of the sample and the function 
form the proof of Corollary 3.3 from [Ejsmont 2016] i.e.  
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for all ai ∈ ℝ. We adopt this test because Theorem 1 states that the distribu-
tion is normal if the corresponding statistic has a constant distribution on the 
sphere. Building a test based on the above formula is some approximation of 
this condition.  

We define our proposed test of the composite hypothesis of normality 
and independence as the integral  

),()()( 2 tdGtt
nR

n,m∫ −φφ  

where 
• t = (t1, …, tn) ∈ ℝ, 
• φn, m(t) is the empirical multivariate characteristic function of the data 
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• ( )∑ =
−=

n

j itt
1

2 2/exp)(φ  is the multivariate theoretical characteristic 
function,  

• dG(t) is the weight ( )∑ =
−=

n

j ittdG
1

2 2/exp)( β  with β > 0. We apply 
this function because it is a multidimensional analog of weight suggested by 
[Epps, Lawrence 1983]. The amount of information provided by β is too great 
in the real applications and it is too hard to find the appropriateβ, so it should 
be selected through an empirical experiment as in [Epps, Lawrence 1983].  

By jX~  we denote the j-th row of the matrix ( ) nm
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Proposition. A statistic T has the form  
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where ||⋅|| is the Euclidean norm on ℝm. 

Proof. In the proof we use the well-known identity 
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By direct calculation we obtain a formula for T 
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