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Abstract. A golden ratio has been applied since ancient times in many areas, starting with 
architecture and art, and nowadays in modern financial markets and contemporary physics. 
This paper defines a golden rule in a set of preferences, generalizing the problem of group 
choice and the 2/3 rule of Łyko by means of a golden number corresponding to the ratio of 
lengths of sides in a golden rectangle. 
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1. Number 𝝌𝝌 

Mathematics and any science are aimed at getting to know the world, 
perfecting human kind, and achieving formal perfection. Isomorphism is an 
essential term in mathematics, preserving the structure and giving objects 
a new content. What is a rectangle? This paper defines a rectangle as an or-
dered pair of strongly positive numbers. If the first number is greater than the 
second one, then such a rectangle is said to be horizontal, and if the second 
number is greater than the first one, the rectangle is said to be vertical. Cer-
tainly, a rectangle with sides of equal lengths is a square. One can cut off the 
squares with sides equal to a shorter side of the rectangle. Such cutting can 
go on as long as a vertical rectangle becomes horizontal or, the other way 
around, a horizontal rectangle becomes vertical. A rectangle is called a golden 
rectangle if the ratio of its shorter side to its longer side is a golden number: 

𝜒𝜒 = √5−1
2

. 
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The golden number  𝜒𝜒 represents roughly 61.8 percent of a unity, i.e. less 
than 2

3
. Let (𝑏𝑏,𝑎𝑎) denote a golden rectangle whose shorter side is 𝑎𝑎, hence 

𝑎𝑎 = 𝜒𝜒𝑏𝑏. Rectangles are all points from the first quadrant of the plane ℝ2 ex-
cluding the border, i.e. the points (𝑥𝑥,𝑦𝑦), where 𝑥𝑥,𝑦𝑦 ∈ ℝ+

∗ . The latter symbol 
denotes a multiplicative group of strongly positive real numbers. The ele-
ments of this group are numbers, and each of them represents a class of equiv-
alent rectangles – as it is a ratio of the sides of the rectangle. The numbers 
smaller than 1 represent a class of horizontal rectangles, those greater than 1 
– a class of vertical rectangles, and the unity – a class of squares. Golden 
rectangles have the property that one can remove just one square section at 
each step to pass from a horizontal rectangle to a vertical one, or vice versa. 
Let 𝑥𝑥0 = 𝑏𝑏, 𝑦𝑦0 = 𝑎𝑎, 𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛, 𝑦𝑦𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛 where 𝑛𝑛 ∈ ℕ. A recursive 
sequence of subsequently removed squares defines a linear operator 𝐴𝐴 with 
matrix �0 1

1 −1�; it yields therefore �
𝑥𝑥𝑛𝑛
𝑥𝑥𝑛𝑛+1� = 𝐴𝐴 �

𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛�. The eigenvalues of the 

matrix 𝐴𝐴 are 𝜒𝜒 and −𝜒𝜒−1.  
A golden rectangle, or a golden ratio, has been present in art and science 

for 2,400 years. The flags of most countries, and a sheet of paper, have the 
shape of a golden rectangle. Such a ratio of sides in a rectangle can often be 
found in nature, both on the macro scale of galaxies as well as on the micro 
scale. For the human eye the shape is esthetic and natural. For centuries it has 
been fascinating and inspiring scores of outstanding people, and today science 
keeps on developing its abundant applications [see: Omotehinwa, Ramon 
2013] in such diverse areas as neurobiology [Weiss, Weiss 2003; Carracedo 
et al. 2008], physics [Coldea et al. 2010; Sigalotti, Mejias 2006], and the fi-
nancial markets [Boroden 2008]. The ratio of sides in a golden rectangle was 
denoted in ancient Greece by the letter 𝜒𝜒, where 𝜒𝜒 = √5−1

2
, and such notation 

is adopted in this paper. This notation is different from the one currently used 
in the English-language literature following the important contribution of 
Mark Barr who introduced the first letter of the Greek sculptor Phidias’s name 
𝜑𝜑 as the symbol for the golden ratio, where 𝜑𝜑 = 1+√5

2
, and 𝜒𝜒 itself is written 

as 1
𝜑𝜑

= Φ. 
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2. A continued fraction and the Euclidean sequence 

A process of removing squares from a rectangle defines a continued frac-
tion. If at the first step 𝑛𝑛0squares are removed from the rectangle, 𝑛𝑛1 squares 
at the second step, and so on, then a sequence {𝑛𝑛𝑘𝑘} of natural numbers is 
obtained. If the process of removing squares does not terminate, we obtain 
a proper continued fraction, otherwise we obtain a rational number, a finite 
fraction. When does the process of removals terminate? It does when the last 
removed section is also a square. The remaining numbers in the sequence 
{𝑛𝑛𝑘𝑘} are then zeroes. Each sequence of such natural numbers defines a con-
tinued fraction. A continued fraction is a sequence of rational functions {𝑓𝑓𝑘𝑘} 
of the form 𝑓𝑓𝑘𝑘(𝑥𝑥) = 1

𝑛𝑛𝑘𝑘+𝑥𝑥
, when 𝑛𝑛𝑘𝑘 is not equal to zero; whereas if 𝑛𝑛𝑘𝑘+1 is 

zero, then 𝑓𝑓𝑘𝑘 is identically zero. A continued fraction is typically identified 
with the sequence of numbers �𝑓𝑓0(0),𝑓𝑓0�𝑓𝑓1(0)�,𝑓𝑓0 �𝑓𝑓1�𝑓𝑓2(0)�� , … �. A con-

tinued fraction is symbolically written as an expression of the form 1
𝑛𝑛0+

1

𝑛𝑛1+
1

1+⋯

. 

The value of a continued fraction is the limit of a given sequence of real num-
bers, if it exists. A continued fraction obtained from a golden rectangle is 
made of a sequence of numbers 1, because at each step only one square is 
removed from this rectangle. The limit of its corresponding continued fraction 
is a golden number. Since this fraction is of the form 1

1+ 1

1+ 1
1+⋯

, therefore if 𝑥𝑥 

denotes the value of this fraction, then we get the equality 1 = 1
1+𝑥𝑥

. The solu-
tion to this equation is given by the eigenvalues of operator 𝐴𝐴, hence one of 
the solutions is a golden number. Each square corresponds with the sequence 
(1,0,0, … ), hence the value of this fraction is always 1, regardless of the 
lengths of the sides of the squares. The two rectangles (𝑏𝑏,𝑎𝑎)and (𝑏𝑏1,𝑎𝑎1) are 
equivalent with respect to the operation of removing the squares, if (𝑏𝑏, 𝑎𝑎) =
𝑝𝑝(𝑏𝑏1,𝑎𝑎1), i.e. when the sides of those rectangles are proportional. Each pair 
of equivalent rectangles determines the same continued fraction. The limit of 
such a fraction is the ratio of the shorter side to the longer side. When the 
process of removing the squares is terminated, then the sides of the rectangle 
are commensurable. Such a rectangle can be divided into a finite number of 
squares. If a rectangle cannot be divided into a finite number of squares, then 
the ratio of its sides is an irrational number. 
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Definition. Euclid’s sequence is a sequence of natural numbers all of 
whose terms are nonzero or a sequence whose first term is a natural nonzero 
number, and if any term is zero, then each following term of this sequence is 
also zero. 

The sequences of natural numbers generated by cutting rectangles are 
certainly Euclid’s sequences. An essential question concerns the existence of 
Euclid’s sequences which cannot be obtained by removing squares from 
a rectangle. 

A continued fraction can also be seen in a more general way; it is a pair 
of two Euclid’s sequences, where the first one can be finite and with zero 
terms, and the second one has all nonzero terms. If 𝑎𝑎 = (𝑎𝑎𝑛𝑛) = (𝑎𝑎0,𝑎𝑎1, … ) 
is the first sequence, and 𝑏𝑏 = (𝑏𝑏𝑛𝑛) the second one, then a continued fraction 
defined by these sequences is of the form: 

𝑎𝑎0
𝑏𝑏0+

𝑎𝑎1
𝑏𝑏1+

𝑎𝑎2
𝑏𝑏2+⋯

. 

If 𝑔𝑔𝑘𝑘(𝑥𝑥) = 𝑎𝑎𝑘𝑘
𝑏𝑏𝑘𝑘+𝑥𝑥

, this continued fraction can be written as follows: 

�𝑔𝑔0(0),𝑔𝑔0�𝑔𝑔1(0)�,𝑔𝑔0 �𝑔𝑔1�𝑔𝑔2(0)�� , … �. The terms of this sequence are 
called convergent of a continued fraction. Let 𝑟𝑟𝑘𝑘 denote the k-th convergent. 
It is a rational number of the form 𝑝𝑝𝑘𝑘

𝑞𝑞𝑘𝑘
. We provide recursive formulas for a nu-

merator and a denominator of the fraction 𝑟𝑟𝑘𝑘 = 𝑝𝑝𝑘𝑘
𝑞𝑞𝑘𝑘

, where 𝑘𝑘 ∈ ℕ. Let  

𝑝𝑝0 = 𝑎𝑎0, 𝑞𝑞0 = 𝑏𝑏0,𝑝𝑝1 = 𝑎𝑎0𝑏𝑏1, 𝑞𝑞1 = 𝑎𝑎1 + 𝑏𝑏0 𝑏𝑏1; 
then 

 𝑝𝑝𝑘𝑘+2 = 𝑏𝑏𝑘𝑘+2𝑝𝑝𝑘𝑘+1 + 𝑎𝑎𝑘𝑘+2𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘+2 = 𝑏𝑏𝑘𝑘+2𝑞𝑞𝑘𝑘+1 + 𝑎𝑎𝑘𝑘+2𝑞𝑞𝑘𝑘. 

The proof of these equalities is by induction. We verify them for 𝑘𝑘 = 0. We 
have 

𝑟𝑟2 = 𝑝𝑝2
𝑞𝑞2

= 𝑎𝑎0
𝑏𝑏0+

𝑎𝑎1
𝑏𝑏1+

𝑎𝑎2
𝑏𝑏2

= 𝑎𝑎0𝑏𝑏1𝑏𝑏2+𝑎𝑎0𝑎𝑎2
𝑎𝑎2𝑏𝑏0+𝑏𝑏2(𝑎𝑎1+𝑏𝑏0𝑏𝑏1) = 𝑏𝑏2𝑝𝑝1+𝑎𝑎2𝑝𝑝0

𝑏𝑏2𝑞𝑞1+𝑎𝑎2𝑞𝑞0
. 

Likewise, we have 𝑝𝑝2 = 𝑏𝑏2𝑝𝑝1 + 𝑎𝑎2𝑝𝑝0 and 𝑞𝑞2 = 𝑏𝑏2𝑞𝑞1 + 𝑎𝑎2𝑞𝑞0. After simple 
transforming, we demonstrate the truth. Let us now assume the truth for 
𝑘𝑘 + 2, to demonstrate the truth for 𝑘𝑘 + 3. By definition we have 

𝑟𝑟𝑘𝑘+3 =
�𝑏𝑏𝑘𝑘+2+

𝑎𝑎𝑘𝑘+3
𝑏𝑏𝑘𝑘+3

�𝑝𝑝𝑘𝑘+1+𝑎𝑎𝑘𝑘+2𝑝𝑝𝑘𝑘

�𝑏𝑏𝑘𝑘+2+
𝑎𝑎𝑘𝑘+3
𝑏𝑏𝑘𝑘+3

�𝑞𝑞𝑘𝑘+1+𝑎𝑎𝑘𝑘+2𝑞𝑞𝑘𝑘
. 
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After rewriting we have 

(𝑏𝑏𝑘𝑘+2𝑏𝑏𝑘𝑘+3+𝑎𝑎𝑘𝑘+3)𝑝𝑝𝑘𝑘+1+𝑏𝑏𝑘𝑘+3𝑎𝑎𝑘𝑘+2𝑝𝑝𝑘𝑘
(𝑏𝑏𝑘𝑘+2𝑏𝑏𝑘𝑘+3+𝑎𝑎𝑘𝑘+3)𝑞𝑞𝑘𝑘+1+𝑏𝑏𝑘𝑘+3𝑎𝑎𝑘𝑘+2𝑞𝑞𝑘𝑘

= 𝑏𝑏𝑘𝑘+3(𝑏𝑏𝑘𝑘+2𝑝𝑝𝑘𝑘+1+𝑎𝑎𝑘𝑘+2𝑝𝑝𝑘𝑘)+𝑎𝑎(𝑘𝑘+3)𝑝𝑝𝑘𝑘+1
𝑏𝑏𝑘𝑘+3(𝑏𝑏𝑘𝑘+2𝑞𝑞𝑘𝑘+1+𝑎𝑎𝑘𝑘+2𝑞𝑞𝑘𝑘)+𝑎𝑎(𝑘𝑘+3)𝑞𝑞𝑘𝑘+1

, i.e. 

𝑟𝑟𝑘𝑘+3 = 𝑏𝑏𝑘𝑘+3𝑝𝑝𝑘𝑘+2+𝑎𝑎𝑘𝑘+3𝑝𝑝𝑘𝑘+1
𝑏𝑏𝑘𝑘+3𝑞𝑞𝑘𝑘+2+𝑎𝑎𝑘𝑘+3𝑞𝑞𝑘𝑘+1

,  

and this proves the truth of formulas for 𝑝𝑝𝑘𝑘 and 𝑞𝑞𝑘𝑘. Given the golden number, 
the terms of both sequences 𝑎𝑎 and 𝑏𝑏 are all number 1. It yields therefore 𝑟𝑟0 = 1,
𝑟𝑟1 = 1

2
, 𝑟𝑟2 = 2

3
, 𝑟𝑟3 = 3

5
, and generally, 𝑟𝑟𝑘𝑘 = 𝜙𝜙𝑘𝑘+1

𝜙𝜙𝑘𝑘+2
, where 𝜙𝜙𝑘𝑘 denotes a Fibo-

nacci sequence defined by induction: 𝜙𝜙0 = 0, 𝜙𝜙1 = 1, 𝜙𝜙𝑘𝑘+2 = 𝜙𝜙𝑘𝑘 + 𝜙𝜙𝑘𝑘+1, 
where 𝑘𝑘 ∈ ℕ. Thus, the formula lim 𝜙𝜙𝑘𝑘

𝜙𝜙𝑘𝑘+1
= 𝜒𝜒 results directly. 

3. The 2/3 rule and a golden rule 

A preference is a reflexive and transitive relation, while a preference that 
is also weakly asymmetric represents an order. The 2/3 rule proposed by Łyko 
[2000] and Łyko, Misztal, Smoluk [2000] specifies when a maximal relation 
established from a finite set of preferences is a preference. All preferences 
relate to the same set of elements that can be called commodities. Given  
a finite population and its members with their own preferences, how to create 
a reasonable group preference? One of the methods to solve this task is to 
create a maximal preference. There is a maximal relation between commodity 
x and commodity y when the majority of population prefer y to x. A maximal 
relation is not always a preference. The 2/3 rule provides a sufficient condi-
tion for this relation to be a preference. The pair (𝑥𝑥,𝑦𝑦) is called a decision. If 
each decision in a maximal relation is taken with a frequency strongly greater 
than 2

3
, then the maximal relation is a preference.  

Łyko’s proof contains a slight inaccuracy. The statement implies such 
preferences that are orders, hence it is not generally true as claimed in the 
article. This paper aims at providing a more general rule, called a golden rule, 
with number 𝜒𝜒 playing an essential role. We go on assuming that all prefer-
ences are orders. What condition must be satisfied by a maximal relation to 
be a group order? This relation is certainly reflexive and weakly asymmetric, 
but it can be intransitive. Transitivity implies that if most people prefer y to 
x, and z to y, then they should also prefer z to x. For this to be really the case, 
the frequencies of decisions (𝑥𝑥,𝑦𝑦) and (𝑦𝑦, 𝑧𝑧) must be greater than the golden 
number 𝜒𝜒, and furthermore, the probability of the product of both decisions 
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should equal the product of individual probabilities, i.e. these decisions 
should be independent events. If they are, then 𝑃𝑃(𝑥𝑥, 𝑦𝑦) > 𝜒𝜒, 𝑃𝑃(𝑦𝑦, 𝑧𝑧) > 𝜒𝜒 and 
𝑃𝑃�(𝑥𝑥,𝑦𝑦), (𝑦𝑦, 𝑧𝑧)� = 𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑃𝑃(𝑦𝑦, 𝑧𝑧) > 𝜒𝜒2, but 𝜒𝜒2 = 1 − 𝜒𝜒. Thus, the probabil-
ity of the decision ‘I prefer x to z’ is smaller than 1 − 𝜒𝜒. Therefore, decision 
(𝑥𝑥, 𝑧𝑧) must be an element of the maximal relation. The golden rule means that 
when the frequencies of maximal decisions are greater than the golden num-
ber, and when individual decisions regarded as events are independent, the 
maximal relation is an order. The golden rule extends the 2/3 rule of Łyko. 
We also fix an error regarding preferences, since the 2/3 rule is valid for or-
ders only, not for preferences.  
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