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Abstract: Semivariance is an intuitive risk measure because it concentrates on the shortfall 
below a target and not on total variation. To successfully use semivariance in practice, 
however, a statistical estimator of semivariance is needed; Josephy and Aczel provide such an 
estimator. Unfortunately, they have not correctly proven asymptotic unbiasedness and mean 
squared error consistency of their estimator since their proof contains a mistake. This paper 
corrects the computational mistake in Josephy-Aczel’s original proof and, that way, allows 
researchers and practitioners in the field of downside portfolio selection, hedging, downside 
asset pricing, risk measurement in a regulatory context, and performance measurement to work 
with a meaningfully specified downside measure. 
Keywords: risk analysis, semivariance, statistical estimation. 

1. Introduction to the problem 

On the one hand, semivariance – lower partial moment 2 – is an intuitive 
risk measure because it concentrates on the shortfall below a target and 
not on total variation. Therefore it is used in downside portfolio selection 
(pioneered by [Markowitz 1959; Jin, Markowitz, Zhou 2006]) for an 
overview of and further developments in downside portfolio selections, 
hedging [Demirer, Lien 2003; Cotter, Hanly 2006], downside asset 
pricing (pioneered by [Bawa, Lindenberg 1977; Ang, Chen, Xing 2006] 
for an overview of and further developments in downside betas), risk 
measurement in a regulatory context [Brooks, Persand 2003], and 
performance measurement (for stocks, e.g. [Hoechner, Reichling Schulze 
2017], for the effects of environmental, social, and governance issues 
[Hoepner et al. 2018], and for hedging [Lee, Chien 2010]. On the other 
hand, the formalism behind lower partial moments is identical to the 
computation of Conditional Value at Risk [Demirer, Lien, Shaffer 2005, 
p. 56] were the first to emphasize this connection – and stochastic 
dominance [Davidson, Duclas 2000, p. 1444]. 
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To successfully use semivariance and its formal companion in practice, 
a statistical estimator of semivariance is needed. In this connection, two 
aspects must be addressed: first, it must be determined when 
semivariance is triggered; second, the target must be estimated, for 
example, if mean is used as target. In the latter case, both aspects will be 
interrelated since the estimator of semivariance is triggered based on the 
sample average instead of the unknown true mean. In that case, only the 
trigger problem exists, Davidson and Duclas [2000] derive a rather 
general estimator where observations just have to be independent, but not 
identically distributed, but are less successful for the interrelated case: 
they determine an estimator for lower partial moment 1 for identically 
distributed and independent observations, but not an estimator for 
semivariance. Unfortunately, this interrelated case is the economically 
relevant one. For example, Lewis [1990] recommends the mean as target 
for lower partial moment based performance measurement. Barrett and 
Donald [2003, p. 71] stress that it is important to compare more than one 
point when ranking alternatives based on stochastic dominance – using 
the mean as target might mitigate this problem. 

Only the vastly underappreciated paper by Josephy and Aczel [1993] 
provides a statistical estimator for semivariance where target equals mean 
and observations are independent and identically distributed. Even though 
independent and identically distributed observations are rather mundane 
and do not seem to be representative of modern-day econometrics 
[Josephy, Aczel 1993] is still the most advanced paper in the field of 
estimating semivariance with mean as target. 

Unfortunately, Josephy and Aczel [1993] have not correctly proven 
the asymptotic unbiasedness and mean squared error consistency of their 
estimator. In their proof, they mistakenly assume terms to be 0 that are in 
fact unequal to 0. 

Given this setting, the goal of this paper is to identify and correct the 
mistake in Josephy-Aczel’s [1993] derivation. In this connection, we 
deviate from their (1993) original proof of asymptotic unbiasedness and 
mean squared error consistency. Their computational mistake results in 
several missing terms which can be handled more easily if a modified, 
and in our opinion faster, line of reasoning is used. 

We show that the terms overlooked by Josephy and Aczel [1993] 
approach zero as the number of observations approaches infinity. 
Therefore, we can prove that Josephy-Aczel’s [1993] estimator is indeed 
asymptotically unbiased and mean squared error consistent. 

Compared to the literature we can make two contributions. First and 
obviously, we identify and correct the mistake in [Josephy, Aczel 
1993]. Second, in that way we allow researchers and practitioners in the 
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field of downside portfolio selection, hedging, downside asset pricing, 
risk measurement in a regulatory context, and performance 
measurement to work with a meaningfully specified downside measure, 
i.e. semivariance with mean as target, instead of making unfortunate 
compromises, i.e. using a constant as target when applying lower partial 
moment 2 or falling back to lower partial moment 1 when mean is used 
as target. 

The remainder of the paper is organized as follows. In Section 2 the 
computational mistake in Josephy-Aczel’s [1993] derivation is identified 
and in Section 3 it is corrected. The paper ends with a summary (Section 
4) and a mathematical appendix. 

2. Notations and identification of the computational mistake 

Notations 

Since an immediate comparison to [Josephy, Aczel 1993] is essential for 
our paper, we use their notation: 

Let 𝑥1, … , 𝑥𝑛, … denote a sequence of independent and identically 
distributed random variables with a finite fourth moment. 

We define for 𝑖 =  1, … ,𝑛: 
 𝑦𝑖 ≔ 𝑥𝑖 − 𝜇, (1) 
where 𝜇 ≔ 𝐸{𝑥1}. 

When referring to aspects that hold for all 𝑥𝑖 (𝑦𝑖), like the expected value 
or the variance, 𝑥1 (𝑦1) is taken to represent all 𝑥𝑖 (𝑦𝑖) because 𝑥𝑖 (and hence 
𝑦𝑖) are independent and identically distributed random variables. 

Given the definition of 𝑦1, it is true 

 𝐸{𝑦1} = 0     𝜎2 ≔ 𝐸{𝑦12} = 𝑣𝑎𝑟(𝑦1) = 𝑣𝑎𝑟(𝑥1) (2) 

 𝑦� = 1
𝑛
∙ ∑ 𝑦𝑖𝑛

𝑖=1 = 1
𝑛
∙ ∑ (𝑥𝑖𝑛

𝑖=1 − 𝜇) = �̅� − 𝜇, (3) 

with  �̅�: = 1
𝑛
∙ ∑ 𝑥𝑖𝑛

𝑖=1 . 

Furthermore, we define 

𝑚𝑖 ≔ 1(−∞,0](𝑦𝑖) = 1(−∞,0](𝑥𝑖 − 𝜇)    𝑙𝑖 ≔ 1(0,𝑦�](𝑦𝑖) − 1(𝑦� ,0](𝑦𝑖),  (4) 

where 1𝐴(𝑧) denotes the value of the indicator function on a set 𝐴 for 
variable 𝑧. 

The value 𝑚𝑖 indicates when semivariance is “triggered” and 𝑙𝑖 
captures “triggering errors”. The estimator of semivariance is triggered 
based on the sample average 𝑦� instead on the true mean 𝜇. 
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Semivariance reads 

𝜎−2 ≔ 𝐸�1(−∞,0](𝑥1 − 𝜇) ∙ (𝑥1 − 𝜇)2� = 𝐸�1(−∞,0](𝑦1) ∙ 𝑦12�
= 𝐸{𝑚1 ∙ 𝑦12} 

(5) 

which suggests as reasonable estimator 𝑡𝑛 

𝑡𝑛 ≔ 𝑐𝑛 ∙�1(−∞,0](𝑥𝑖 − �̅�) ∙ (𝑥𝑖 − �̅�)2 =
𝑛

𝑖=1

𝑐𝑛 ∙ 

�1(−∞,0](𝑦𝑖 − 𝑦�) ∙ (𝑦𝑖 − 𝑦�)2
𝑛

𝑖=1

 

(6) 

where the multiplier 𝑐𝑛 ∈ ℝ is yet to be determined. 

Using the definitions of 𝑚𝑖 and 𝑙𝑖, Equation (6) simplifies to 

 𝑡𝑛 = 𝑐𝑛 ∙ ∑ [𝑚𝑖 + 𝑙𝑖] ∙ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1 . (7) 

Furthermore, set for 𝜏 = 0, 1, 2, … 

 𝑣𝜏 ≔ 𝐸{𝑚1 ∙ (𝑥1 − 𝜇)𝜏} = 𝐸{𝑚1 ∙ 𝑦1𝜏}, (8) 

where it obviously holds: 𝑣2 = 𝐸{𝑚1 ∙ 𝑦12} = 𝜎−2 and 𝑣0 can be 
interpreted as probability of 𝑦1 ≤ 0, which corresponds to the probability 
of 𝑥1 ≤ 𝜇. 

2.1. Identification of the computational mistake in Josephy-Aczel’s proof 

To distinguish subsequently between “our” and “Josephy-Aczel’s” 
formulas, we put JA in front of their formula numbers. 

Josephy and Aczel claim 

 𝐸�𝑚𝑖 ∙ 𝑦𝑗 ∙ 𝑦𝑘� = �𝐸�𝑚𝑖 ∙ 𝑦𝑖2� = 𝜎−2 𝑖 = 𝑗 = 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (JA14) 

While it is true, as Josephy and Aczel state, that 𝐸�𝑚𝑖 ∙ 𝑦𝑗 ∙ 𝑦𝑘� = 0 
for 𝑗 ≠ 𝑘 due to the independence of 𝑦𝑗 and 𝑦𝑘 and the fact that 𝐸�𝑦𝑗� =
𝐸{𝑦𝑘} = 0, this is not true for 𝑗 =  𝑘 ≠  𝑖. For 𝑗 =  𝑘 ≠  𝑖 it holds 

 𝐸�𝑚𝑖 ∙ 𝑦𝑗 ∙ 𝑦𝑘� = 𝐸�𝑚𝑖 ∙ 𝑦𝑗2� = 𝑣0 ∙ 𝐸�𝑦𝑗2� = 𝑣0 ∙ 𝜎2. (9) 

Term (9) is missing in Josephy-Aczel’s [1993] proof of asymptotic 
unbiasedness and mean squared error consistency of their estimator, one 
mistake that leads subsequently to several wrong formulas. 

Josephy-Aczel’s [1993] proof of asymptotic unbiasedness is based on 
Formula (JA17). Since (JA17) rests upon (JA14), the term discovered in 
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Formula (9) is missing causing a follow-up error. The corrected formula 
(the notation “corr” is added to the numbering of the formulas) reads: 

   E �𝑡𝑛
𝑐𝑛
� = (𝑛−1)2

𝑛
∙ 𝜎−2 + ∑ 𝐸{𝑙𝑖 ∙ (𝑦𝑖 − 𝑦�)2}𝑛

𝑖=1�����������������������
(𝐽𝐴17)

+ 𝑛−1
𝑛
∙ 𝜎2 ∙ 𝑣0. (corrJA17) 

Josephy-Aczel’s [1993] proof of mean squared error consistency is 
based on their Formulas (JA20a) through (JA21f), which ultimately 
partially rely on (JA14). For that reason, only (JA20b), (JA21a), and 
(JA21b) are correct. 
• Formula (corrJA20a) 

(JA20a) contains a typo and reads corrected (Josephy and Aczel 
[1993] obtain 𝑣22): 

 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗� = 𝑣12 for 𝑖 ≠ 𝑗. (corrJA20a) 

All other formulas are subject to the follow-up error as the term 
discovered in Formula (9) is missing. The corrected formulas read (where 
𝑖 ≠ 𝑗): 
• Formula (corrJA20c) 

𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗 ∙ 𝑦�2� = 

 2
𝑛2
∙ (𝑣1 ∙ 𝑣3 + 𝑣22)�����������

(𝐽𝐴20𝑐)

+ 𝑛−2
𝑛2

∙ 𝑣12 ∙ 𝜎2. (corrJA20c) 

• Formula (corrJA20d) 

 𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ �𝑦𝑖 + 𝑦𝑗�
2 ∙ 𝑦�2�= 

2
𝑛2
∙ (𝑣0 ∙ 𝑣4 + 4 ∙ 𝑣1 ∙ 𝑣3 + 3 ∙ 𝑣22)���������������������

(𝐽𝐴20𝑑)

+ 

2 ∙ 𝑛−2
𝑛2

∙ [𝑣0 ∙ 𝑣2 ∙ 𝜎2 + 𝑣12 ∙ 𝜎2]. 

(corrJA20d) 

− Formula (corrJA20e) 

𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ �𝑦𝑖 + 𝑦𝑗� ∙ 𝑦�3� = 
2
𝑛3
∙ (𝑣0 ∙ 𝑣4 + 4 ∙ 𝑣1 ∙ 𝑣3 + 3 ∙ 𝑣22)���������������������

(𝐽𝐴20𝑒)

+ 

2 ∙ 𝑛−2
𝑛3

∙ [3 ∙ 𝑣0 ∙ 𝑣2 ∙ 𝜎2 + 3 ∙ 𝑣12 ∙ 𝜎2 + 𝑣0 ∙ 𝑣1 ∙ 𝐸{𝑦13}]. 

(corrJA20e) 
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− Formula (corrJA20f) 

𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦�4� = 2
𝑛4
∙ (𝑣0 ∙ 𝑣4 + 4 ∙ 𝑣1 ∙ 𝑣3 + 3 ∙ 𝑣22)���������������������

(𝐽𝐴20𝑓)

+ 

2 ∙
𝑛 − 2
𝑛4

∙ �
1
2
∙ 𝑣02 ∙ 𝐸{𝑦14} + 4 ∙ 𝑣0 ∙ 𝑣1 ∙ 𝐸{𝑦13} 

+6 ∙ 𝑣2 ∙ 𝜎2 + 3
2
∙ (𝑛 − 3) ∙ 𝑣02 ∙ 𝜎4 + 6 ∙ 𝑣12 ∙ 𝜎2�. 

(corrJA20f) 

− Formula (corrJA21c) 

𝐸�𝑚𝑖 ∙ 𝑦𝑖2 ∙ 𝑦�2� = 𝑣4
𝑛2⏟

(𝐽𝐴21𝑐)

+ (𝑛−1)∙𝑣2∙𝜎2

𝑛2
. (corrJA21c) 

− Formula (corrJA21d) 

𝐸{𝑚𝑖 ∙ 𝑦𝑖 ∙ 𝑦�3} = 𝑣4
𝑛3⏟

(𝐽𝐴21𝑑)

+ 𝑛−1
𝑛3

∙ [𝑣1 ∙ 𝐸{𝑦13} +

3 ∙ 𝑣2 ∙ 𝜎2]. 
(corrJA21d) 

− Formula (corrJA21e) 

𝐸{𝑚𝑖 ∙ 𝑦�4} = 𝑣4
𝑛4⏟

(𝐽𝐴21𝑒)

+ 𝑛−1
𝑛4

∙ [𝑣0 ∙ 𝐸{𝑦14} + 4 ∙

𝑣1 ∙ 𝐸{𝑦13}+6 ∙ 𝑣2 ∙ 𝜎2 + 3 ∙ (𝑛 − 2) ∙ 𝑣0 ∙ 𝜎4]. 
(corrJA21e) 

• Formula (corrJA21f) 

𝐸{𝑚𝑖 ∙ (𝑦𝑖 − 𝑦�)2} = (𝑛−1)2

𝑛2
∙ 𝑣2�������

(𝐽𝐴21𝑓)

+ 𝑛−1
𝑛2

∙ 𝑣0 ∙ 𝜎2. (corrJA21f) 

One exemplary proof, namely the derivation of Formula (corrJA20e), 
can be found in Appendix 1. The other corrected formulas can be derived 
in a similar way. 

3. Correction of the proof 
To compute asymptotic unbiasedness and mean squared error 
consistency, we deviate from Josephy-Aczel’s [1993] original proof. The 
missing term (9) can be handled easier if a modified and in our opinion 
faster line of reasoning is used. 

3.1. Useful relations, lemmas, and a corollary 

This subsection contains one relation, two lemmas, and one corollary that 
will help simplify the proofs in Subsections 3.2 and 3.3.  



ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr  17(23) 

 

 

 

  

 

Statistically (optimal) estimators of semivariance… 15 

Relation 

For 𝑖 = 1,⋯ ,𝑛 it holds 

 𝑚𝑖
2 = 𝑚𝑖  and  (𝑚𝑖 + 𝑙𝑖)2 = 𝑚𝑖 + 𝑙𝑖 (10) 

since 𝑚𝑖 and 𝑚𝑖 + 𝑙𝑖 = 1(−∞,𝑦�](𝑦𝑖) are indicator functions. 
 
Lemma 1 

For 𝑘 ∈ ℕ and 𝑖 = 1,⋯ ,𝑛 it holds 

|𝑙𝑖| ∙ |𝑦𝑖 − 𝑦�|𝑘 = �1(0,𝑦�](𝑦𝑖) − 1(𝑦� ,0](𝑦𝑖)� ∙ |𝑦𝑖 − 𝑦�|𝑘 ≤

|𝑦�|𝑘 = |�̅� − 𝜇|𝑘. 
(11) 

For the proof of (11) observe: |𝑙𝑖| = 1 if 𝑦𝑖 lies between 0 and 𝑦� 
irrespective of which of either value is less. In this case, the distance 
between 𝑦𝑖 and 𝑦� is not greater than |0 − 𝑦�| = |𝑦�| since |0 − 𝑦�| is the 
maximum possible distance. If otherwise 𝑦𝑖 does not lie between 0 and 𝑦�, 
1(0,𝑦�](𝑦𝑖) − 1(𝑦� ,0](𝑦𝑖) will be zero and so will |𝑙𝑖|. 
 
Lemma 2 (see Appendix 2.1 for a proof) 

Let 𝑦1, … ,𝑦𝑛, … denote a sequence of independent and identically 
distributed random variables with existing mean 𝐸{𝑦1} = 0 and with 
finite 𝑘th moment 𝐸{𝑦1𝑘} for some 𝑘 ∈ ℕ. 

Then for all 𝜅 = 1, . . ,𝑘 the expected value 𝐸{𝑦�𝜅} exists and it holds 

𝐸{𝑦�𝜅} → 0 for 𝑛 → ∞. (12) 

Corollary (see Appendix 2.2 for a proof) 
Let 𝑦1, … ,𝑦𝑛, … denote a sequence of independent and identically 
distributed random variables with existing mean 𝐸{𝑦1} = 0. If for 𝑘 ∈ ℕ 
the expected value 𝐸{𝑦1𝑘} exists for 𝑘 even and 𝐸{𝑦1𝑘+1} exists for 𝑘 
odd, 𝐸{|𝑦�|𝑘} exists as well and it holds 

𝐸��𝑦�𝑘�� → 0 for 𝑛 → ∞. (13) 

Note that the existence of 𝐸{𝑦1𝑘+1} for 𝑘 odd is required only for the 
proof of convergence, but not for the proof of existence of 𝐸{𝑦1𝑘}. 

3.2. Proof of asymptotic unbiasedness 

𝐸{𝑡𝑛} = 𝑐𝑛 ∙ 𝐸 ��[𝑚𝑖 + 𝑙𝑖] ∙ (𝑦𝑖 − 𝑦�)2
𝑛

𝑖=1

� 
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can be re-written as 

𝐸{𝑡𝑛} = 𝑐𝑛 ∙ 𝐸�∑ �𝑚𝑖 ∙ 𝑦𝑖2 − 2 ∙ 𝑚𝑖 ∙ 𝑦𝑖 ∙ 𝑦� + 𝑚𝑖 ∙ 𝑦�2 + 𝑙𝑖 ∙𝑛
𝑖=1

(𝑦𝑖 − 𝑦�)2�� = 𝑛 ∙ 𝑐𝑛 ∙ �𝜎−2 − 2 ∙ 𝐸{𝑚1 ∙ 𝑦1 ∙ 𝑦�}���������
=:𝐴𝑛

+ 𝐸{𝑚1 ∙ 𝑦�2}�������
=:𝐵𝑛

+

𝐸{𝑙1 ∙ (𝑦1 − 𝑦�)2}�����������
=:𝐶𝑛

�, 

because 𝑦1, … ,𝑦𝑛 are independent and identically distributed and 
𝐸{𝑚1 ∙ 𝑦12} =⏟

(5)
𝜎−2. 

To prove asymptotic unbiasedness, we will show that 𝐴𝑛, 𝐵𝑛, and 𝐶𝑛 
converge to 0 for 𝑛 → ∞. Since null sequences are considered, it suffices 
to show that |𝐴𝑛|, |𝐵𝑛| = 𝐵𝑛, and |𝐶𝑛| converge to 0 for 𝑛 → ∞. 

Then asymptotic unbiasedness will hold if 𝑐𝑛 is chosen in a way such 
that 𝑛 ∙ 𝑐𝑛 converges to 1 for 𝑛 → ∞: 
• 𝐴𝑛 

0 ≤ |𝐴𝑛| =  |𝐸{𝑚1 ∙ 𝑦1 ∙ 𝑦�}| = �𝐸 �
1
𝑛
∙ 𝑚1 ∙ 𝑦1 ∙ �𝑦1 + �𝑦𝑖

𝑛

𝑖=2

��� = 

1
𝑛
∙ �𝐸{𝑚1 ∙ 𝑦12} + ∑ 𝐸{𝑚1 ∙ 𝑦1 ∙ 𝑦𝑖}𝑛

𝑖=2 � =⏟
(2)

1
𝑛
∙ 𝐸{𝑚1 ∙ 𝑦12} =⏟

(5)

𝜎−2

𝑛
→ 0  

for 𝑛 → ∞. 

• 𝐵𝑛 

0 ≤ |𝐵𝑛| = 𝐵𝑛 = 𝐸{𝑚1 ∙ 𝑦�2} ≤ 𝐸{𝑦�2} → 0�
𝐿𝑒𝑚𝑚𝑎 2

for 𝑛 → ∞. 

• 𝐶𝑛 
0 ≤ |𝐶𝑛| =

|𝐸{𝑙1 ∙ (𝑦1 − 𝑦�)2}| ≤⏟
(#)
𝐸{|𝑙1| ∙ |𝑦1 − 𝑦�|2} ≤⏟

𝐿𝑒𝑚𝑚𝑎 1
𝐸{|𝑦�|2} → 0�

𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦
for 

𝑛 → ∞ 

Inequality (#) rests upon the well-known relation |𝐸{𝑋}| ≤ 𝐸{|𝑋|}. 

• 𝑛 ∙ 𝑐𝑛 
Asymptotic unbiasedness is obtained if 𝑐𝑛 is selected in a way such that 
𝑛 ∙ 𝑐𝑛 converges to 1 for 𝑛 → ∞. This means, a multiplier 𝑐𝑛 = 1

𝑛
∙ 𝑎𝑛 can 

be chosen for any 𝑎𝑛 with 𝑎𝑛 → 1 for 𝑛 → ∞. Special cases for 𝑐𝑛(𝑎𝑛) 
include 𝑐𝑛 = 1

𝑛
 (𝑎𝑛 = 1), 𝑐𝑛 = 1

𝑛−1
 (𝑎𝑛 = 𝑛

𝑛−1
), Josephy-Aczel’s [1993] 
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recommendation 𝑐𝑛 = 𝑛
(𝑛−1)2 (𝑎𝑛 = 𝑛2

(𝑛−1)2) or 𝑐𝑛 = 1
𝑛−𝑘

 for any 𝑘 ∈ ℤ 

and 𝑛 > 𝑘 (𝑎𝑛 = 𝑛
𝑛−𝑘

). 
Observe that 𝑐𝑛 → 0 for 𝑛 → ∞ if 𝑛 ∙ 𝑐𝑛 → 1. 

3.3. Proof of mean squared error consistency 

Since the fourth moment 𝐸{𝑦14} was assumed to exist, the mean squared 
error of 𝑡𝑛 exists and can be written: 

𝑚𝑠𝑒(𝑡𝑛) = 𝑣𝑎𝑟(𝑡𝑛) + �𝑏𝑖𝑎𝑠(𝑡𝑛)�2 = 𝐸{𝑡𝑛2} − (𝐸{𝑡𝑛})2 + �𝑏𝑖𝑎𝑠(𝑡𝑛)�2. 

However, it is already known that the estimator is asymptotically 
unbiased so that it holds 

𝐸{𝑡𝑛} → 𝜎−2 for 𝑛 → ∞ 

(𝐸{𝑡𝑛})2 → 𝜎−4 for 𝑛 → ∞ 

𝑏𝑖𝑎𝑠(𝑡𝑛) → 0 for 𝑛 → ∞ 

�𝑏𝑖𝑎𝑠(𝑡𝑛)�2 → 0 for 𝑛 → ∞ 

hence it remains to show that 𝐸{𝑡𝑛2} → 𝜎−4 for 𝑛 → ∞. 

To that end, we consider 
 

𝐸{𝑡𝑛2} = 𝐸 ��𝑐𝑛 ∙�(𝑚𝑖 + 𝑙𝑖) ∙ (𝑦𝑖 − 𝑦�)2
𝑛

𝑖=1

�
2

� = 

𝑐𝑛2 ∙ 𝐸 ���(𝑚𝑖 + 𝑙𝑖) ∙ �𝑚𝑗 + 𝑙𝑗� ∙ (𝑦𝑖 − 𝑦�)2 ∙ �𝑦𝑗 − 𝑦��2
𝑛

𝑗=1

𝑛

𝑖=1

� = 

𝑐𝑛2 ∙ 𝐸 ��(𝑚𝑖 + 𝑙𝑖)2 ∙ (𝑦𝑖 − 𝑦�)4
𝑛

𝑖=1

� + 

𝑐𝑛2 ∙ 𝐸

⎩
⎨

⎧
��(𝑚𝑖 + 𝑙𝑖) ∙ �𝑚𝑗 + 𝑙𝑗� ∙ (𝑦𝑖 − 𝑦�)2 ∙ �𝑦𝑗 − 𝑦��2

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1
⎭
⎬

⎫
=⏟

𝑖𝑖𝑑,(10)
 

𝑛 ∙ 𝑐𝑛2 ∙ 𝐸{(𝑚1 + 𝑙1) ∙ (𝑦1 − 𝑦�)4}�����������������
=:𝐷𝑛

+ 

𝑛 ∙ (𝑛 − 1) ∙ 𝑐𝑛
2 ∙ 𝐸{(𝑚1 + 𝑙1) ∙ (𝑚2 + 𝑙2) ∙ (𝑦1 − 𝑦�)2 ∙ (𝑦2 − 𝑦�)2}�������������������������������

=:𝐹𝑛

. 

(14) 
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It is shown in Appendix 3.1 that 𝑛 ∙ 𝑐𝑛2 ∙ 𝐷𝑛 converges to 0 for 𝑛 → ∞ 
and 𝑛 ∙ (𝑛 − 1) ∙ 𝑐𝑛

2 ∙ 𝐹𝑛 converges to 𝜎−4 (see Appendix 3.2) why  

𝐸{𝑡𝑛2} → 𝜎−4 for 𝑛 → ∞ 

holds and mean squared error consistency of the estimator 𝑡𝑛 is proven. 

4. Summary 

The starting point for our paper is the observation that semivariance is 
applied in downside portfolio selection, hedging, downside asset pricing, 
risk measurement in a regulatory context, and performance measurement. 
To successfully use semivariance in practice, a statistical estimator of 
semivariance is needed.  

If mean is used as target for semivariance, only the vastly 
underappreciated paper by Josephy and Aczel [1993] provides  
a statistical estimator for semivariance. Unfortunately, Josephy and Aczel 
[1993] have not correctly proven asymptotic unbiasedness and mean 
squared error consistency of their estimator. In their proof, they 
mistakenly assume terms to be 0 that are in fact unequal to 0. 

This paper corrects the computational mistake in Josephy and Aczel’s 
[1993 original proof of asymptotic unbiasedness and mean squared error 
consistency. It shows that the terms overlooked by Josephy and Aczel 
[1993] approach zero as the number of observations approaches infinity. 
Therefore, we prove that Josephy and Aczel’s [1993] estimator is indeed 
asymptotically unbiased and mean squared error consistent. 

In that way, the paper allows researchers and practitioners in the field 
of downside portfolio selection, hedging, downside asset pricing, risk 
measurement in a regulatory context, and performance measurement to 
work with a meaningfully specified downside measure, i.e. semivariance 
with mean as target, instead of making unfortunate compromises, i.e. 
using a constant as target when applying lower partial moment 2 or 
falling back to lower partial moment 1 when mean is used as target. 
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Appendix 1. Proof of formula (corrJA20e) 
𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ �𝑦𝑖 + 𝑦𝑗� ∙ 𝑦�3� = 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦�3�+ 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑗 ∙ 𝑦�3� = 

2 ∙ 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦�3� 

Since 

𝑦�3 =
1
𝑛3

∙���𝑦𝑟 ∙ 𝑦𝑠

𝑛

𝑡=1

𝑛

𝑠=1

𝑛

𝑟=1

∙ 𝑦𝑡 = 

1
𝑛3

∙ ��𝑦𝑟3
𝑛

𝑟=1

+ 3 ∙��𝑦𝑟2 ∙ 𝑦𝑠

𝑛

𝑠=1
𝑠≠𝑟

+ �� � 𝑦𝑟 ∙ 𝑦𝑠 ∙ 𝑦𝑡

𝑛

𝑡=1
𝑡≠𝑟,𝑠

𝑛

𝑠=1
𝑠≠𝑟

𝑛

𝑟=1

𝑛

𝑟=1

� 

it is obtained for 

𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦�3� =
1
𝑛3

∙ 

𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙�𝑦𝑟3
𝑛

𝑟=1

+ 𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 3 ∙��𝑦𝑟2 ∙ 𝑦𝑠

𝑛

𝑠=1
𝑠≠𝑟

𝑛

𝑟=1

+ 𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖

∙�� � 𝑦𝑟 ∙ 𝑦𝑠 ∙ 𝑦𝑡

𝑛

𝑡=1
𝑡≠𝑟,𝑠

𝑛

𝑠=1
𝑠≠𝑟

𝑛

𝑟=1

� = 

1
𝑛3

∙ �𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖4� + 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗3�+ 𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ � 𝑦𝑟3
𝑛

𝑟=1
𝑟≠𝑖,𝑗

�+ 

3 ∙ 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖3 ∙ 𝑦𝑗�+ 3 ∙ 𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖3 ∙ � 𝑦𝑠

𝑛

𝑠=1
𝑠≠𝑖,𝑗

� + 

3 ∙ 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖2 ∙ 𝑦𝑗2�+ 

3 ∙ 𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗2 ∙ � 𝑦𝑠

𝑛

𝑠=1
𝑠≠𝑖,𝑗

� + 3 ∙ 𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖2 ∙ � 𝑦𝑟2
𝑛

𝑟=1
𝑟≠𝑖,𝑗

�+ 

3 ∙ 𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗 ∙ � 𝑦𝑟2
𝑛

𝑟=1
𝑟≠𝑖,𝑗

�+ 3 ∙ 𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ � � 𝑦𝑟2 ∙ 𝑦𝑠

𝑛

𝑠=1
𝑠≠𝑟,𝑖,𝑗

𝑛

𝑟=1
𝑟≠𝑖,𝑗

� + 
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𝐸 �𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙�� � 𝑦𝑟 ∙ 𝑦𝑠 ∙ 𝑦𝑡

𝑛

𝑡=1
𝑡≠𝑟,𝑠

𝑛

𝑠=1
𝑠≠𝑟

𝑛

𝑟=1

�� 

=⏟
𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒

1
𝑛3

∙ �𝐸{𝑚𝑖 ∙ 𝑦𝑖4} ∙ 𝐸�𝑚𝑗�+ 𝐸{𝑚𝑖 ∙ 𝑦𝑖} ∙ 𝐸�𝑚𝑗 ∙ 𝑦𝑗3�+ 

𝐸{𝑚𝑖 ∙ 𝑦𝑖} ∙ 𝐸�𝑚𝑗� ∙ 𝐸 � {𝑦𝑟3}
𝑛

𝑟=1
𝑟≠𝑖,𝑗

+ 

3 ∙ 𝐸�𝑚𝑖 ∙ 𝑦𝑖3� ∙ 𝐸�𝑚𝑗 ∙ 𝑦𝑗�+ 3 ∙ 𝐸�𝑚𝑖 ∙ 𝑦𝑖3� ∙ 𝐸�𝑚𝑗� ∙ � 𝐸{𝑦𝑠}
𝑛

𝑠=1
𝑠≠𝑖,𝑗

+ 

3 ∙ 𝐸{𝑚𝑖 ∙ 𝑦𝑖2} ∙ 𝐸�𝑚𝑗 ∙ 𝑦𝑗2�+ 

3 ∙ 𝐸{𝑚𝑖 ∙ 𝑦𝑖} ∙ 𝐸�𝑚𝑗 ∙ 𝑦𝑗2� ∙ � 𝐸{𝑦𝑠}
𝑛

𝑠=1
𝑠≠𝑖,𝑗

+ 3 ∙ 𝐸{𝑚𝑖 ∙ 𝑦𝑖2} ∙ 𝐸�𝑚𝑗� ∙ � 𝐸{𝑦𝑟2}
𝑛

𝑟=1
𝑟≠𝑖,𝑗

+ 3 ∙ 𝐸{𝑚𝑖 ∙ 𝑦𝑖} ∙ 𝐸�𝑚𝑗 ∙ 𝑦𝑗� ∙ � 𝐸{𝑦𝑟2}
𝑛

𝑟=1
𝑟≠𝑖,𝑗

 

+3 ∙ 𝐸{𝑚𝑖 ∙ 𝑦𝑖} ∙ 𝐸�𝑚𝑗� ∙ � 𝐸{𝑦𝑟2}
𝑛

𝑟=1
𝑟≠𝑖,𝑗

∙ � 𝐸{𝑦𝑠}
𝑛

𝑠=1
𝑠≠𝑟,𝑖,𝑗

 

+�� � 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑟 ∙ 𝑦𝑠 ∙ 𝑦𝑡�
𝑛

𝑡=1
𝑡≠𝑟,𝑠

𝑛

𝑠=1
𝑠≠𝑟

𝑛

𝑟=1

. 

Given the definition of 𝑣𝜏 in (8), the fact that 𝑦1, … , 𝑦𝑛,… are 
independent and identically distributed , and 𝐸{𝑦1} = 0 (see (2)), it is 
gained for 

𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦�3� =
1
𝑛3

∙ [𝑣4 ∙ 𝑣0 + 𝑣1 ∙ 𝑣3 + 𝑣1 ∙ 𝑣0 ∙ (𝑛 − 2) ∙ 𝐸{𝑦13} + 
3 ∙ 𝑣3 ∙ 𝑣1 + 3 ∙ 𝑣3 ∙ 𝑣0 ∙ 0 + 

3 ∙ 𝑣2 ∙ 𝑣2 + 3 ∙ 𝑣1 ∙ 𝑣2 ∙ 0 + 3 ∙ 𝑣2 ∙ 𝑣0 ∙ (𝑛 − 2) ∙ 𝜎2 + 
3 ∙ 𝑣12 ∙ (𝑛 − 2) ∙ 𝜎2 + 3 ∙ 𝑣1 ∙ 𝑣0 ∙ (𝑛 − 2) ∙ 𝜎2 ∙ 0+0]. 

To understand the zero in the last term of the above formula, note that by 
construction, 𝑟, 𝑠, and 𝑡 never possess identical values. Moreover, at least 
one of these subscripts is in addition different from 𝑖 and 𝑗. Hence, 
𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑟 ∙ 𝑦𝑠 ∙ 𝑦𝑡� is a linear function of 𝐸{𝑦1}. 
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This finally yields 

𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦�3� =
1
𝑛3

∙ [𝑣4 ∙ 𝑣0 + 4 ∙ 𝑣1 ∙ 𝑣3 + 3 ∙ 𝑣22] 
𝑛−2
𝑛3

∙ [3 ∙ 𝑣2 ∙ 𝑣0 ∙ 𝜎2 + 3 ∙ 𝑣12 ∙ 𝜎2 + 𝑣1 ∙ 𝑣0 ∙ 𝐸{𝑦13}]. 

Note that 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ �𝑦𝑖 + 𝑦𝑗� ∙ 𝑦�3� = 2 ∙ 𝐸�𝑚𝑖 ∙ 𝑚𝑗 ∙ 𝑦𝑖 ∙ 𝑦�3� to see the 
equivalence to (corrJA20e). 

Appendix 2. Proof of lemma 2 and the corollary 

Appendix 2.1. Proof of lemma 2 

Lemma 2 
Let 𝑦1, … ,𝑦𝑛, … denote a sequence of independent and identically 
distributed random variables with existing mean 𝐸{𝑦1} = 0 and with 
finite 𝑘th moment 𝐸{𝑦1𝑘} for some 𝑘 ∈ ℕ. 

Then for all 𝜅 = 1, . . ,𝑘 the expected value 𝐸{𝑦�𝜅} exists and it holds 
𝐸{𝑦�𝜅} → 0 for 𝑛 → ∞. (12) 

Proof 
First step: existence of 𝐸{𝑦�𝜅} 
Note that an existing 𝑘th moment 𝐸{𝑦1𝑘} implies that the 1st, 2nd, …, 
𝑘 − 1th moments exist as well. Using the multinomial theorem (see e.g. 
[Kotz, Johnson 1985]), 𝑦�𝜅 can be written as 

𝑦�𝜅 = �
𝑦1 + ⋯+ 𝑦𝑛

𝑛
�
𝜅

=
1
𝑛𝜅

∙ � �
𝜅

𝑘1,𝑘2, … ,𝑘𝑛�
𝑘1+𝑘2+..+𝑘𝑛=𝜅

�𝑦𝑖
𝑘𝑖

𝑛

𝑖=1

, 

where �
𝜅

𝑘1,𝑘2, … ,𝑘𝑛� = 𝜅!
∏ 𝑘𝑖!𝑛
𝑖=1

 denotes the multinomial coefficient. 

Since all expected values 𝐸�𝑦𝑖
𝑘𝑖� on the right hand side exist, the 

expected value of 𝑦�𝜅exists as well. 
Second step: proving (12) by induction 
Base case: 𝜅 =  1 
𝐸{𝑦�} = 1

𝑛
∙ 𝐸{∑ 𝑦𝑖𝑛

𝑖=1 } = 1
𝑛
∙ ∑ 𝐸{𝑦𝑖}𝑛

𝑖=1 =⏟
𝑖𝑖𝑑

1
𝑛
∙ 𝑛 ∙ 0 = 0 → 0 for 𝑛 → ∞ 

Inductive step: We assume 𝐸�𝑦�𝜗� → 0 for 𝑛 → ∞ for all 𝜗 = 1, … , 𝜅 −
1 < 𝑘. We have to show that 

𝐸{𝑦�𝜅} → 0 for 𝑛 → ∞ 
is also true. 
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𝐸{𝑦�𝜅} reads 

𝐸{𝑦�𝜅} =
1
𝑛𝜅

∙ 𝐸 ���𝑦𝑖

𝑛

𝑖=1

� ∙ ��𝑦𝑗

𝑛

𝑗=1

�

𝜅−1

� =⏟
𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒

 

1
𝑛𝜅

∙�𝐸�𝑦𝑖 ∙ ��𝑦𝑗

𝑛

𝑗=1

�

𝜅−1

� =
1
𝑛𝜅

∙�𝐸

⎩
⎪
⎨

⎪
⎧

𝑦𝑖 ∙

⎝

⎜
⎛
𝑦𝑖 + �𝑦𝑗

𝑛

𝑗=1
𝑗≠𝑖 ⎠

⎟
⎞

𝜅−1

⎭
⎪
⎬

⎪
⎫𝑛

𝑖=1

𝑛

𝑖=1

 

=⏟
𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑡ℎ𝑒𝑜𝑟𝑒𝑚

1
𝑛𝜅

∙�

⎝

⎜
⎛
��𝜅 − 1

𝑙 � ∙ 𝐸

⎩
⎪
⎨

⎪
⎧

𝑦𝑖𝑙+1 ∙

⎝

⎜
⎛
�𝑦𝑗

𝑛

𝑗=1
𝑗≠𝑖 ⎠

⎟
⎞

𝜅−1−𝑙

⎭
⎪
⎬

⎪
⎫𝜅−1

𝑙=0

⎠

⎟
⎞

𝑛

𝑖=1

 

=⏟
𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒

1
𝑛𝜅

∙ 𝑛 ∙��𝜅 − 1
𝑙 � ∙ 𝐸{𝑦1𝑙+1} ∙ 𝐸

⎩
⎪
⎨

⎪
⎧

⎝

⎜
⎛
�𝑦𝑗

𝑛

𝑗=1
𝑗≠1 ⎠

⎟
⎞

𝜅−1−𝑙

⎭
⎪
⎬

⎪
⎫𝜅−1

𝑙=0

 

=⏟
𝐸{𝑦1}=0

(𝑛 − 1)𝜅−1

𝑛𝜅−1

∙��𝜅 − 1
𝑙 � ∙ 𝐸{𝑦1𝑙+1} ∙

1
(𝑛 − 1)𝑙 ∙ 𝐸 ��

1
𝑛 − 1

∙�𝑦𝑗

𝑛

𝑗=2

�

𝜅−1−𝑙

�
𝜅−1

𝑙=1

 

It holds for 𝑛 → ∞: (𝑛−1)𝜅−1

𝑛𝜅−1
= �1 − 1

𝑛
�
𝜅−1

→ 1, 𝐸�𝑦1𝑙+1� is by 

assumption finite, and 1
(𝑛−1)𝑙 → 0 for 𝑙 ≥ 1. Moreover, 𝐸 �� 1

𝑛−1
∙

∑ 𝑦𝑗𝑛
𝑗=2 �

𝜅−1−𝑙
� exhibits the same convergence behavior as 𝐸{𝑦�𝜅−1−𝑙} =

𝐸 ��1
𝑛
∙ ∑ 𝑦𝑗𝑛

𝑗=1 �
𝜅−1−𝑙

�. The term 𝐸 ��1
𝑛
∙ ∑ 𝑦𝑗𝑛

𝑗=1 �
𝜅−1−𝑙

�, however, 
converges to 0 for 𝑛 → ∞ and 𝑙 < 𝜅 − 1 due to the inductive assumption; 

for 𝑙 = 𝜅 − 1 this term reads 𝐸 ��1
𝑛
∙ ∑ 𝑦𝑗𝑛

𝑗=1 �
0
� = 1. Putting all the 

above statements together, it leads to: 𝐸{𝑦�𝜅} converges to 0 for 𝑛 → ∞. 
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Appendix 2.2. Proof of the corollary 

Corollary 
Let 𝑦1, … ,𝑦𝑛, … denote a sequence of independent and identically 
distributed random variables with existing mean 𝐸{𝑦1} = 0. If for 𝑘 ∈ ℕ 
the expected value 𝐸{𝑦1𝑘} exists for 𝑘 even and 𝐸{𝑦1𝑘+1} exists for 𝑘 
odd, 𝐸{|𝑦�|𝑘} exists as well and it holds 

𝐸��𝑦�𝑘�� → 0 for 𝑛 → ∞. (13) 

Proof 

First case: 𝑘 is even, i.e. 𝑘 = 2 ∙ 𝜑 for some 𝜑 ∈ ℕ. 

Then it holds 

𝐸��𝑦�𝑘�� = 𝐸{𝑦�𝑘} →⏟
𝐿𝑒𝑚𝑚𝑎 2

0 for 𝑛 → ∞. 

Second case: 𝑘 is odd, i.e. 𝑘 = 2 ∙ 𝜑 + 1 = 𝜑 + 𝜑 + 1 for some 𝜑 ∈ ℕ0. 

Then it is true for 𝑘 = 1 (which means 𝜑 = 0) 

0 ≤ 𝐸{1 ∙ |𝑦�1|} ≤⏟
𝐶𝑎𝑢𝑐ℎ𝑦−𝑆𝑐ℎ𝑤𝑎𝑟𝑧

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

�𝐸{12} ∙ 𝐸{𝑦�2} =
�
𝐸{𝑦�2}���
→ 0

𝐿𝑒𝑚𝑚𝑎 2

 → 0 for 𝑛 → ∞ 

For 𝑘 > 1, i.e. 𝜑 ∈ ℕ, it is obtained 

0 ≤ 𝐸��𝑦�𝑘�� = 𝐸{|𝑦�|𝜑 ∙ |𝑦�|𝜑+1} ≤⏟
𝐶𝑎𝑢𝑐ℎ𝑦−𝑆𝑐ℎ𝑤𝑎𝑟𝑧

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

�𝐸{𝑦�2∙𝜑} ∙ 𝐸{𝑦�2∙𝜑+2} 

=
�
𝐸{𝑦�𝑘−1}�����

→ 0
𝐿𝑒𝑚𝑚𝑎 2

∙ 𝐸{𝑦�𝑘+1}�����
→ 0

𝐿𝑒𝑚𝑚𝑎 2

→ 0 for 𝑛 → ∞. 

 
 

Appendix 3. Proofs in the context of mean squared error 
consistency 
Appendix 3.1. Analysis of 𝒏 ∙ 𝒄𝒏𝟐 ∙ 𝑫𝒏 from Formula (14)  

𝐷𝑛 = 𝐸{(𝑚1 + 𝑙1) ∙ (𝑦1 − 𝑦�)4} = 𝐸{𝑚1 ∙ (𝑦1 − 𝑦�)4} + 𝐸{𝑙1 ∙ (𝑦1 − 𝑦�)4}. 
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Applying the binomial theorem to (𝑦1 − 𝑦�)4 leads to 

𝐷𝑛 = ��4
𝑖 � ∙ 𝐸�𝑚1 ∙ 𝑦1𝑖 ∙ 𝑦�4−𝑖������������

=:𝐺𝑖,𝑛

4

𝑖=0

+ 𝐸{𝑙1 ∙ (𝑦1 − 𝑦�)4}�����������
=:𝐻𝑛

 

Terms 𝐺𝑖,𝑛 

• 𝐺4,𝑛: 

0 ≤ �𝐺4,𝑛� =  𝐺4,𝑛 = 𝐸{𝑚1 ∙ 𝑦14} ≤ 𝐸{𝑦14} 

Hence, 𝐺4,𝑛 is bounded since 𝐸{𝑦14} is, by assumption, finite. 
• 𝐺0,𝑛: 

0 ≤ �𝐺0,𝑛� = 𝐺0,𝑛 = 𝐸{𝑚1 ∙ 𝑦�4} ≤ 𝐸{𝑦�4} →⏟
𝐿𝑒𝑚𝑚𝑎 2

0 for 𝑛 → ∞ 

• 𝐺2,𝑛: 

0 ≤ �𝐺2,𝑛� = 𝐺2,𝑛 = 

𝐸{𝑚1 ∙ 𝑦12 ∙ 𝑦�2} ≤⏟
𝐶𝑎𝑢𝑐ℎ𝑦−𝑆𝑐ℎ𝑤𝑎𝑟𝑧

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦
�

𝐸{𝑚1
2 ∙ 𝑦14}�������

 =𝐸�𝑚1∙𝑦14�=𝐺4,𝑛

∙ 𝐸{𝑦�4}���
→ 0

𝐿𝑒𝑚𝑚𝑎 2

→ 0 

for 𝑛 → ∞ 

• 𝐺1,𝑛: 

0 ≤ �𝐺1,𝑛� =

|𝐸{𝑚1 ∙ 𝑦1 ∙ 𝑦�3}| ≤⏟
𝐶𝑎𝑢𝑐ℎ𝑦−𝑆𝑐ℎ𝑤𝑎𝑟𝑧

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦
�

𝐸{𝑚1
2 ∙ 𝑦12 ∙ 𝑦�2}�����������

=𝐸�𝑚1∙𝑦12∙𝑦�2�=𝐺2,𝑛→0

∙ 𝐸{𝑦�4}���
→ 0

𝐿𝑒𝑚𝑚𝑎 2

→ 0  

 

for 𝑛 → ∞ 

• 𝐺3,𝑛: 

0 ≤ �𝐺3,𝑛� = �𝐸{𝑚1 ∙ 𝑦13 ∙ 𝑦�}� =
1
𝑛
∙ �𝐸{𝑚1 ∙ 𝑦14} + �𝐸{𝑚1 ∙ 𝑦13 ∙ 𝑦𝑖}

𝑛

𝑖=2

� 

=⏟
(2)

1
𝑛
∙ 𝐸{𝑚1 ∙ 𝑦14} = 𝑣4

𝑛
→ 0 for 𝑛 → ∞ 
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Term 𝐻𝑛 

For term 𝐻𝑛 it is obtained: 

0 ≤ |𝐻𝑛| =
|𝐸{𝑙1 ∙ (𝑦1 − 𝑦�)4}| ≤⏟

(∗)
𝐸{|𝑙1| ∙ |𝑦1 − 𝑦�|4} ≤⏟

𝐿𝑒𝑚𝑚𝑎 1
E{|𝑦�|4} → 0�

𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦
 for 

𝑛 → ∞. 

Inequality (*) rests upon the well-known relation |𝐸{𝑋}| ≤ 𝐸{|𝑋|}. 

Term 𝑛 ∙ 𝑐𝑛2 

Since 𝑛 ∙ 𝑐𝑛 converges to 1, 𝑛 ∙ 𝑐𝑛2 converges to 0 for 𝑛 → ∞. 

Summary 
Putting together all the intermediate results, 𝑛 ∙ 𝑐𝑛2 ∙ 𝐷𝑛 converges to 0 
for 𝑛 → ∞. 
 
 
Appendix 3.2. Analysis of 𝒏 ∙ (𝒏 − 𝟏) ∙ 𝒄𝒏

𝟐 ∙ 𝑭𝒏 from Formula (14)  

𝐹𝑛 = 𝐸{(𝑚1 + 𝑙1) ∙ (𝑚2 + 𝑙2) ∙ (𝑦1 − 𝑦�)2 ∙ (𝑦2 − 𝑦�)2}

= 𝐸{𝑚1 ∙ 𝑚2 ∙ (𝑦1 − 𝑦�)2 ∙ (𝑦2 − 𝑦�)2}�����������������������
=:𝐹1,𝑛

+ 2

∙ 𝐸{𝑚1 ∙ 𝑙2 ∙ (𝑦1 − 𝑦�)2 ∙ (𝑦2 − 𝑦�)2}���������������������
=:𝐹2,𝑛

+ 𝐸{𝑙1 ∙ (𝑦1 − 𝑦�)2 ∙ 𝑙2 ∙ (𝑦2 − 𝑦�)2}���������������������
=:𝐹3,𝑛

 

Term 𝐹2,𝑛 

It holds 

0 ≤ �𝐹2,𝑛� = |𝐸{𝑚1 ∙ 𝑙2 ∙ (𝑦1 − 𝑦�)2 ∙ (𝑦2 − 𝑦�)2}| 
≤⏟
(∗)
𝐸{|𝑚1 ∙ 𝑙2 ∙ (𝑦1 − 𝑦�)2 ∙ (𝑦2 − 𝑦�)2|} =⏟

𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦
𝑜𝑓 𝑎𝑙𝑙

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝐸{𝑚1 ∙ (𝑦1 − 𝑦�)2

∙ |𝑙2| ∙ |(𝑦2 − 𝑦�)2|} 

≤⏟
𝐿𝑒𝑚𝑚𝑎 1

𝐸{𝑚1 ∙ (𝑦1 − 𝑦�)2 ∙ |𝑦�|2} = 𝐸{𝑚1 ∙ (𝑦1 − 𝑦�)2 ∙ 𝑦�2} 

= 𝐸{𝑚1 ∙ 𝑦12 ∙ 𝑦�2}�����������
=𝐺2,𝑛

− 2 ∙ 𝐸{𝑚1 ∙ 𝑦1 ∙ 𝑦�3}���������
=𝐺1,𝑛

+ 𝐸{𝑚1 ∙ 𝑦�4}�������
=𝐺0,𝑛

. 
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Inequality (*) rests upon the well-known relation |𝐸{𝑋}| ≤ 𝐸{|𝑋|}. 
Since 𝐺0,𝑛 → 0,𝐺1,𝑛 → 0, and 𝐺2,𝑛 → 0 for 𝑛 → ∞, �𝐹2,𝑛� and, thus, 𝐹2,𝑛 
converges to 0 for 𝑛 → ∞. 

Term 𝐹3,𝑛 

0 ≤ �𝐹3,𝑛� = |𝐸{𝑙1 ∙ (𝑦1 − 𝑦�)2 ∙ 𝑙2 ∙ (𝑦2 − 𝑦�)2}| 

≤⏟
(∗)
𝐸{|𝑙1| ∙ |𝑦1 − 𝑦�|2 ∙ |𝑙2| ∙ |𝑦2 − 𝑦�|2} ≤⏟

𝐿𝑒𝑚𝑚𝑎 1
E{|𝑦�|2 ∙ |𝑦�|2} =

E{|𝑦�|4} → 0�  
𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦

 for 𝑛 → ∞. 

Inequality (*) rests upon the well-known relation |𝐸{𝑋}| ≤ 𝐸{|𝑋|}. 
Since �𝐹3,𝑛� → 0 for 𝑛 → ∞, 𝐹3,𝑛 converges to 0 for 𝑛 → ∞. 

Term 𝐹1,𝑛 

𝐹1,𝑛

= 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦22} − 𝐸{𝑚1 ∙ 𝑚2 ∙ [𝑦12 ∙ 2 ∙ 𝑦2 ∙ 𝑦� + 𝑦22 ∙ 2 ∙ 𝑦1 ∙ 𝑦�]} 

+𝐸{𝑚1 ∙ 𝑚2 ∙ [𝑦12 ∙ 𝑦�2 + 𝑦22 ∙ 𝑦�2]} + 4 ∙ 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦1 ∙ 𝑦2 ∙ 𝑦�2} 

−2 ∙ 𝐸{𝑚1 ∙ 𝑚2 ∙ [𝑦1 ∙ 𝑦�3 + 𝑦2 ∙ 𝑦�3]} + 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦�4}. 

Since 𝑦1, … ,𝑦𝑛 are independent and identically distributed and  
𝐸{𝑚1 ∙ 𝑦12} =⏟

(5)
𝜎−2, it is obtained 

𝐹1,𝑛 = 𝜎−4 − 2 ∙ 2 ∙ 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦2 ∙ 𝑦�}���������������
=:𝐽1,𝑛

 

+2 ∙ 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦�2}�������������
=:𝐽2,𝑛

+ 4 ∙ 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦1 ∙ 𝑦2 ∙ 𝑦�2}���������������
=:𝐽3,𝑛

 

−2 ∙ 2 ∙ 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦1 ∙ 𝑦�3}�������������
=:𝐽4,𝑛

+ 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦�4}�����������
=:𝐽5,𝑛

. 

It suffices to show that the terms 𝐽1,𝑛, … , 𝐽5,𝑛 converge to 0, to prove 
𝐹1,𝑛 → 𝜎−4. 

• 𝐽1,𝑛: 

0 ≤ �𝐽1,𝑛� = �𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦2 ∙ 𝑦�}� = 

�𝐸 �
1
𝑛
∙ 𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦2 ∙ �𝑦1 + 𝑦2 + �𝑦𝑖

𝑛

𝑖=3

��� = 
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1
𝑛
∙ �𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦13 ∙ 𝑦2} + 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦22} + �𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦2 ∙ 𝑦𝑖}

𝑛

𝑖=3

� 

=⏟
(2)

1
𝑛
∙ �𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦13 ∙ 𝑦2} + 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦22}� 

=⏟
(2)

1
𝑛
∙ �𝐸{𝑚1 ∙ 𝑦13 ∙ 𝑚2 ∙ 𝑦2} + 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦22}�������������

(5)
� =

1
𝑛
∙ |𝑣3 ∙ 𝑣1 + 𝜎−4| → 0 

for 𝑛 → ∞. 

• 𝐽2,𝑛: 

0 ≤ �𝐽2,𝑛�
= |𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦12 ∙ 𝑦�2}| ≤⏟

𝐶𝑎𝑢𝑐ℎ𝑦−𝑆𝑐ℎ𝑤𝑎𝑟𝑧
𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

�
𝐸{𝑚1

2 ∙ 𝑦14}�������
=𝐸{𝑚1∙𝑦14}=𝐺4,𝑛

𝑏𝑜𝑢𝑛𝑑𝑒𝑑

∙ 𝐸{𝑚2
2 ∙ 𝑦�4}�������

=𝐸{𝑚2∙𝑦�4}=𝐺0,𝑛→0

→ 0 

for 𝑛 → ∞. 

• 𝐽3,𝑛: 

0 ≤ �𝐽3,𝑛�

= |𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦1 ∙ 𝑦2 ∙ 𝑦�2}| ≤⏟
𝐶𝑎𝑢𝑐ℎ𝑦−𝑆𝑐ℎ𝑤𝑎𝑟𝑧

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦
�
𝐸{𝑚1

2 ∙ 𝑚2
2 ∙ 𝑦12 ∙ 𝑦22}�������������

=𝐸�𝑚1∙𝑚2∙𝑦12∙𝑦22�=𝜎−4
∙ 𝐸{𝑦�4}���

→ 0
𝐿𝑒𝑚𝑚𝑎 2

→ 0 

for 𝑛 → ∞. 

• 𝐽4,𝑛: 

0 ≤ �𝐽4,𝑛�
= |𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦1
∙ 𝑦�3}| ≤⏟

𝐶𝑎𝑢𝑐ℎ𝑦−𝑆𝑐ℎ𝑤𝑎𝑟𝑧
𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

� 𝐸{𝑚1
2 ∙ 𝑦12 ∙ 𝑦�2}�����������

=𝐸�𝑚1∙𝑦12∙𝑦�2�=𝐺2,𝑛→0

∙ 𝐸{𝑚2
2 ∙ 𝑦�4}�������

=𝐸{𝑚2∙𝑦�4}=𝐺0,𝑛→0

→ 0 

for 𝑛 → ∞ 

• 𝐽5,𝑛: 

0 ≤ 𝐽5,𝑛 = 𝐸{𝑚1 ∙ 𝑚2 ∙ 𝑦�4} ≤ 𝐸{𝑦�4}���
→ 0

𝐿𝑒𝑚𝑚𝑎 2

→ 0 for 𝑛 → ∞. 

 



ŚLĄSKI 
PRZEGLĄD 

STATYSTYCZNY 

Nr  17(23) 

28 Karlheinz Fleischer, Bernhard Nietert 

Term 𝑛 ∙ (𝑛 − 1) ∙ 𝑐𝑛
2 

𝑛 ∙ (𝑛 − 1) ∙ 𝑐𝑛2 → 1 for 𝑛 → ∞. 

Summary 

It is obtained: 

𝐹1,𝑛 → 𝜎−4, 𝐹𝑛 → 𝜎−4 and 𝑛 ∙ (𝑛 − 1) ∙ 𝑐𝑛2 → 1. 

These three results in combination lead to 𝐸{𝑡𝑛2} → 𝜎−4 (in Equation 
(14)). 
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OPTYMALNE ESTYMATORY SEMIWARIANCJI:  
KOREKTA DOWODU JOSEPHY’EGO-ACZELA 

Streszczenie: Semiwariancja jest intuicyjną miarą ryzyka, ponieważ koncentruje się na 
wartościach osiąganych poniżej celu, a nie na całkowitej zmienności. Aby z powo-
dzeniem stosować semiwariancję w praktyce, potrzebny jest estymator semiwariancji; 
Josephy i Aczel podają takie oszacowanie. Niestety wspomniani autorzy nie udowodnili 
poprawnie asymptotycznej spójności i średniej kwadratowej błędów estymatora. Ich 
dowód zawiera bowiem błąd. Prezentowany artykuł koryguje błąd obliczeniowy w ory-
ginalnym dowodzie Josephyʼego i Aczela i w ten sposób dostarcza badaczom i praktykom 
narzędzie m.in. do wyboru efektywnego portfela oraz pomiaru ryzyka. 

Słowa kluczowe: analiza ryzyka, semiwariancja, estymacja statystyczna. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




