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In this paper, we present an analysis of the accuracy and efficiency of different approaches for the
simulation of photonic crystals using the transmission line matrix method. The approaches that we
present can be divided into two categories: complex- and real-valued algorithms using a uniform
mesh, and complex- and real-valued algorithms using a multigrid mesh. The advantages and
disadvantages of each approach are discussed and a brief comparison between these methods is
made from the points of view of computational expense and accuracy. It is found that a combination
of a real-valued method in a multigrid mesh results in the most efficient algorithm. However, while
the complex-valued formulation is valid for the analysis of any photonic crystal, the applicability
of the real-valued formulation is limited by structural constraints requiring cell symmetries. It is
also found that a multigrid approach can considerably reduce the computational cost required for
simulating photonic crystals and our results indicate that a good compromise between accuracy
and computational cost can be found. Various photonic crystals are simulated by applying these
approaches, and the results are validated using alternative methods.
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1. Introduction 

The unique property of photonic crystals (PCs) to inhibit the propagation of radiation
of certain frequencies, has driven the interest of many researchers worldwide. Thus,
a great deal of effort has been set upon the characterization of these structures, as
knowledge of the frequencies that will and will not propagate, is indispensable for their
practical applications. There exist several methods to obtain this information, and they
generally involve the computation of the photonic band structure (or dispersion
relation) of the periodic structure.

One of the most widely used methods to compute the photonic band structure of
PCs, is the plane wave expansion (PWE) method. This method takes advantage of the
fact that both, the solution (electromagnetic fields) and dielectric structure are periodic
by expanding them with a Fourier series [1]. This allows Maxwell’s equations to be
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recast as an eigenvalue problem which is then solved by using standard techniques.
Among the advantages of the PWE method are its relative simplicity, accuracy and
efficient implementation using fast algorithms [2]. The main disadvantages of this
method are that it scales as O(N3) where N is proportional to the size of the problem,
and that it cannot deal with lossy dielectric materials.

Another alternative for the computation of the photonic band structure of PCs is
to use time domain methods such as finite differences time domain (FDTD) and the
transmission line matrix (TLM) method. Unlike the PWE method, time domain
methods allow for the straightforward incorporation of material losses into the
simulations. In addition, unit cells of arbitrary shapes can be simulated without
additional computational effort. In a time domain method, the time required for
a calculation scales linearly O(N) with the number of points used in the discretization
[3, 4]. Despite of this, the main drawback of these methods is their long execution
time, since very little optimization can be done to reduce the number of operations
inherent to the method. Among the time domain methods, the FDTD method is by far
the most widely used and has extensively been applied for the analysis and computation
of the photonic band structure of PCs [3–9]. The TLM method, on the other hand, has
been given very little attention in this respect, despite its increasing popularity for the
simulation of general electromagnetic problems [10, 11].

In this paper, we present a number of different approaches for the computation of
the photonic band structure of PCs using the TLM method. First, the complex- and
real-valued formulations of the TLM method are applied for simulating PCs using
a uniform mesh. These formulations are briefly described and their basic advantages
and limitations discussed. Next, the complex- and real-valued formulations are
revisited using a non-uniform mesh, and the new trade-offs that come into play are
also discussed. Thus, the rest of this paper is organized as follows: in Sec. 2, the
complex- and real-valued formulations are briefly presented and the limitations of
the real-valued formulation are described in detail. In Sec. 3, the procedure for using
the non-uniform or multi-grid mesh used in this paper is presented. In Sec. 4, the results
of the simulations of various PCs using these different approaches are presented and
discussed. Finally, Section 5 presents some conclusions.

2. Problem formulation

In this section we describe the basic mathematical concepts governing the simulation
of PCs within the formulation of a time method such as TLM. Rather than attempting
a rigorous mathematical derivation, the equations are reproduced here only for the sake
of completeness. For more details see, for example [12].

From basic solid state physics theory we know that periodic problems have
solutions of the form

(1)ψ r( ) uk i k r⋅–( )exp=
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where the function uk is periodic in space and k is a propagation vector. Equation (1)
is known as Bloch’s theorem, although it is usually referred to as Floquet’s theorem
in one-dimensional problems. If T describes the spatial period of the structure, that is,
if it represents a lattice constant vector, then

(2)

Note that Eqs. (1) and (2) imply that

(3)

thus, the points r and r + T have the same physical properties and the functions differ
from each other only by a phase factor. The application of Eq. (3) to the modelling of
PCs within the formulation of the TLM method leads to equations of the form [13]

(4)

relating the incident and reflected pulses from the boundaries of the simulation domain.
In Equation (4) V i and V r represent the incident and reflected voltage pulses of the
nodes on the edge of the simulation domain, respectively. Note that in this equation,
the time dependency is not shown, but implicit.

2.1. Formulation of a complex-valued TLM algorithm

From Equation (3) we can see that enforcement of the periodicity condition of the
fields across the boundaries of the unit cell requires a complex-valued network. In the
TLM method, this issue can be dealt with by breaking the periodicity condition into
real and imaginary voltage pulses. These voltage pulses are then treated separately
throughout the simulation domain and coupled only at the boundaries [14].

When this approach is taken, the periodic boundary conditions in Eq. (4) can be
written in terms of the real Vreal and imaginary components Vima of the voltage
pulses as: 

(5)

uk r T+( ) uk r( ).=
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In these equations, the superscripts i and r stand for incident and reflected voltage
pulses of nodes adjacent to the cell boundaries, respectively. Also note that Eqs. (5)
are neither subject to approximations nor simplifications, thus its validity holds for
unit cells of arbitrary shape and spatial periodicity. 

2.2. Formulation of a real-valued TLM algorithm

In a real-valued TLM algorithm, the computational effort is reduced by half by
restricting the computations to either the real or imaginary part of the complex-valued
algorithm. The derivation of a real-valued TLM algorithm was presented in detail in
[15] and [16] and, therefore, only the relevant equations will be reproduced here.
Within this formulation, the periodicity condition (Eq. (4)) is replaced by:

(6)

(7)

Note that in these equations, the underscripts corresponding to the voltage pulses have
been dropped, since all the pulses are known to be real. In addition, v1 is a phase factor
previously introduced in [16]. 

Although it is not the intention of this paper to compare the performance of
the FDTD and TLM methods, it should be noticed at this point that the complex-valued
formulation of both methods has a very close resemblance. As a matter of fact, the
FDTD counterpart of Eq. (5) can be obtained simply by replacing voltage pulses by
electric and magnetic fields in those equations. However, the real-valued TLM
algorithm presented in this section proves advantageous, since, to the best of the
authors knowledge, it has no straightforward unconditionally stable counterpart in
the FDTD method. This is the subject of ongoing research.

In principle, the recursive application of Eqs. (6) and (7) at every time step is
sufficient to single out the frequency modes that satisfy the Bloch condition out of
a general excitation. However, the use of the real-valued formulation must be done
with care due to inherent assumptions.

2.3. Limitations of the real-valued algorithm

As it was previously indicated, by using the real-valued TLM algorithm presented in
the previous section to calculate the photonic band structure of PCs, the computational
effort is reduced by half. However, this advantage is achieved at the expense of
introducing some limitations in the definition of the unit cell under simulation.

Consider the one dimensional form of the phase factor presented in [16] such that
r =(x1, y1, z1) and r + T =(x1 + tx, y1, z1). If the spatial period of the structure is
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normalized to one (tx = a = 1) and the phase factor vx, 1 is graphed as a function of the
wave vector value kx, the plot shown in Fig. 1 is obtained. Note that the normalization
condition of the unit cell implies that the propagation vector numerically equals the
phase difference between symmetry planes and can only take values between 0 and π.

Now consider what happens when  is substituted in Eqs. (6) and (7) for
three different phase values. For a phase difference of zero, Fig. 1 indicates that v1 = 1.
Thus Eqs. (6) and (7) reduce to V i(r) = V r(r + T) and V i(r + T) = V r(r) so that the
voltage pulses are just wrapped around the cell without any alterations. Similarly, when
the phase difference is equal to π, Fig. 1 indicates that v1 = –1 and Eqs. (6) and (7)
reduce to V i(r) = –V r(r + T) and V i(r + T) = –V r(r) such that the voltage pulses are
now wrapped around but with opposite signs. These results are somewhat intuitive and
pose no difficulty to our simulation method. Consider however what happens when
the phase difference varies between these two extreme values. Take for example
a phase difference of π/2; for this case, v1 = 0 and Eqs. (6) and (7) reduce to
V i(r) = V r(r) and V i(r + T) = –V r(r + T). The fact that the reflected and incident
voltage pulses at one end of the simulation domain become equal, implies a mirror
symmetry plane (or magnetic wall) at that end. Note that this condition holds true
regardless of how the unit cell has been defined. In other words, for the results of the
simulation to be valid, the unit cell cannot be defined arbitrarily, but it has to be defined
such that it is bounded by planes of mirror symmetry. This was made explicitly in [15]
where the real-valued formulation was implemented with a magnetic wall on the side
of the unit cell.

To illustrate these ideas, consider for example the two-dimensional chessboard PC
shown in Fig. 2. Note that for this structure the unit cell can be defined in different,
but equivalent ways. For example, the dashed lines in the figure show two possible
ways of defining the unit cell. 

v1 vx 1,≡

Fig. 1. Phase factor as a function of the normalized propagation vector (phase difference between
symmetry planes).
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Based on the previous analysis, the flexibility of defining the unit cell in different
ways is only true for the complex-valued formulation. In the real-valued formulation,
different unit cell definitions are, in general, not equivalent. This is illustrated in Fig. 3.
The fact that the equations imposing the periodicity condition intrinsically contain the
assumption that a perfectly symmetric scattering problem (with respect to the edge
of the simulation domain) is taking place on “adjacent” cells, is in agreement only with
the unit cell definition shown on the right hand side of Fig. 3. Note that this constraint
makes the real-valued TLM algorithm not applicable to some PCs because some unit
cells do not posses mirror symmetry in all directions (i.e., triangular lattice). However,
there is a wide number of PCs and microwave waveguides structures which satisfy the
symmetry conditions to be well posed within its formulation.

Fig. 2. Simulated two-dimensional chessboard structure. The dashed lines illustrate two possible ways of
defining the unit cell.

y
a

a

x

Fig. 3. Unit cell definitions in the complex and real-valued formulations; a – alternative definitions are
equivalent in a complex-valued formulation; b – the definition of the unit cell is restricted to be bounded
by mirror symmetry planes in the real-valued formulation.

Wrong definition Correct definition

Mirror symmetry
planes

a

b
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3. Multi-grid approach

In the previous section, the real-valued TLM method was presented as an alternative
for reducing the computational effort when computing the photonic band structure of
PCs. However, the analysis of the equations enforcing the periodicity condition
showed that such an approach can only be applied to unit cells satisfying certain
symmetry conditions. Thus, a more general way to proceed toward an efficient
computation of the photonic band structure of PCs, is to reduce the number of blocks
used for the discretization of the simulation domain. There are two basic ways of
accomplishing this: i) to increase the discretization step while maintaining a uniform
mesh, and ii) to combine regions with different discretization steps in a multi-grid
fashion.

The choice of i) or ii) depends on several factors. While increasing the
discretization step results in fewer blocks and therefore faster simulations, it decreases
the cut-off frequency of the mesh and increases node dispersion. In addition, the
resolution of the mesh is decreased and fine structural details of the cell, cannot be
properly represented. In a multigrid mesh, the cut-off frequency is still limited by the
biggest block present in the simulation domain, however, it provides the flexibility to
properly represent localized structural details where required. This approach is
particularly important for the simulation of three-dimensional unit cells of arbitrary
shape and large complex structures, where the use of a uniform mesh is computationally
prohibited. 

The multigrid mesh for the simulation of PCs was implemented using an in-house
computer program (Atar). The basic idea behind the model building is to create a complex
mesh geometry using rectangular blocks of varying sizes. The model is created such
that a block and its neighbors form a relatively simple topology. Each block in the
mesh can have either two or four blocks on any side in what is called a quad tree mesh.
The mesh is automatically generated based on a set of input parameters such as the
minimum and maximum block size, number of levels and location of refinements, etc.
A constraint that is imposed during the building process for a periodic structure, is that
there is a one-to-one correspondence between blocks on opposite sides of the
simulation domain. This facilitates the connection of these blocks when enforcing
the periodicity condition.

In terms of the TLM method, the small and big internal faces of the blocks are
connected using a similar procedure to that described in [17]. The connection
procedure is based on ideal matching transformers which preserve the unconditional
stability of the TLM method. The basic difference between that formulation and ours,
is that in the aforementioned reference, the incident and reflected pulses at the interface
are related by circuit-type equations. In our implementation, we relate the pulses by
means of a scattering matrix instead. This allows to reduce the number of operations
involved in the connection procedure.
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4. Simulations and evaluation

In this section, we validate the previously described approaches by simulating various
PCs. For obtaining the photonic band structures, we used the general procedure
described in [16] and more details about the actual implementation can be found in
this reference. In all cases, our results were compared with those predicted by the PWE
method to verify their validity. Two- and three-dimensional structures were analyzed.
For the case of a uniform mesh, the unit cell was discretized into 32×32(×32) uniformly
spaced mesh points. In all cases, the lattice constant a was normalized such that a = 1.
In addition, only TM modes were considered in the two-dimensional structures. That
is, the only non-zero field components were the electric field along the infinite
dimension and the two magnetic field components transverse to it.

4.1. Complex- and real-valued simulations using a uniform mesh

The complex- and real-valued formulations of the TLM method using a uniform mesh
were previously presented and validated in [14] and [16], so only the relevant features
will be emphasized here.

The first simulated PC was the chessboard structure shown in Fig. 2. This structure
has the same symmetry properties as a conventional square lattice. The chessboard
structure consisted of an air-dielectric composite and the value of the dielectric material
was set to εr = 11.7 which corresponds to square pillars of Si connected by the corners
and embedded in air. This PC has previously been simulated using the complex-valued
TLM method and will be used here, to illustrate the limitations of the real-valued
formulation.

Fig. 4. Dispersion relation of the PC shown in Fig. 3. Circles (filled-squares): simulation results using
the real-valued formulation and the unit cell definition shown on the right (left) hand side of Fig. 3. Solid
line: PWE method. The inset shows the first Brillouin zone and the symmetry points used for the
calculation.
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Figure 4 shows a comparison of the dispersion relations of the chessboard structure
shown in Fig. 2 obtained by applying the real-valued formulation. The unit cell was
defined in two different ways as shown in Fig. 3. The circles correspond to the points
predicted by the real-valued formulation using the correct cell definition as shown on
the right hand side of Fig. 3, whereas the filled-squares correspond to the points
predicted by the same formulation using the incorrect cell definition presented on the
left hand side of Fig. 3. In addition, the solid lines show the predictions of the PWE
method. As the figure shows, the TLM real-valued formulation and the PWE methods
are in good agreement provided that the unit cell is defined such that it is bound by
mirror symmetry planes. In the figure, the frequency has been normalized with respect
to 2πc/a and the inset to it, shows the first Brillouin zone of the chessboard lattice and
the symmetry points used for the calculation of the dispersion relation. 

It should be emphasized at this point that when the appropriate cell definition is
used, the results predicted by the real- and complex-valued formulations are practically
indistinguishable from each other. Obviously, this also requires that the two methods
be used under the same circumstances (time and discretization steps, number of
iterations, TLM-node, etc.). Thus, there is a factor of two in the computational effort
required by the real and complex-valued formulations when computing the photonic
band structure of PCs.

4.2. Complex- and real-valued simulations using a multigrid mesh

In previous sections, it was mentioned that another way to proceed toward a
computationally efficient simulation of PCs, is to reduce the number of blocks used
for discretizing the simulation domain using a multigrid mesh. In principle, both the
complex and real-valued formulations of the TLM method can be applied in a multigrid
mesh. However, given that the complex-valued formulation represents the most
general scenario, such is the case considered in this section. It should be bear in mind,
however, that the results can be extended to the real-valued formulation in the same
way as it was done for the case of a uniform mesh.

To illustrate the advantages and disadvantages of a multigrid approach for
simulating PCs, we used as a first example, a square lattice of circular rods embedded
in air. The dielectric constant of the cylinders was set to εr = 9.0 which corresponds
to alumina rods embedded in air. The radius of the rods was set to 0.38a, with a
representing the lattice constant. The corresponding unit cell and first Brillouin zone
are shown in Fig. 5. In addition, the multi-grid mesh utilized for discretizing the unit
cell is shown in Fig. 6. Note that an averaging procedure was applied at the interface
between the air and dielectric rods to smooth the transition between the two media.
The criterion applied for the discretization of the simulation domain was to limit the
refinement to no more than two levels. That is, the multigrid mesh consisted of
rectangular blocks formed by the combination of three basic lengths: ∆L, 2∆L, and
4∆L (where ∆L is the step size used for the discretization of the cell using a uniform
mesh).
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Figure 7 shows a comparison of the dispersion relations of the square lattice of
circular pillars obtained by applying three different methods. The dots correspond to
the frequency points predicted by the complex-valued formulation using a uniform
mesh. In addition, the filled-squares represent the frequency points predicted by the
complex-valued formulation using the multigrid mesh of Fig. 6. In the figure,
the frequency has been normalized as before. As a way of comparison, the solid lines
show the results predicted by the PWE. 

As Fig. 7 shows, the overall agreement between the three different approaches is
fairly good. However, the introduction of a coarser mesh has slightly degraded the
accuracy of the TLM method as expected. The accuracy of the results were mainly
affected by two sources of error: node dispersion and meshing error. Node dispersion
relates to the fact that short wavelengths (compared with the block size) are not
properly represented by the mesh. As a result, the wave velocity becomes dispersive
and dependent on the direction of the propagation vector. Meshing error refers to the
degree of accuracy with which structural details of the unit cell and dense fields are
represented in the mesh. Naturally, the multigrid mesh can be devised so that the

Fig. 5. Unit cell definition (a) and first Brillouin zone (b) of the two-dimensional PC.
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Fig. 6. Multi-grid mesh used for the discretization of the unit cell.
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structural details of the cell are properly represented in the mesh. However, there is
no guarantee that the resulting mesh will properly represent the field modes in all
regions. As a consequence, field meshing error is still present in the multigrid mesh. 

Note that, while it is generally true that in a multigrid mesh the maximum error
occurs at higher frequencies, our present example shows that this is not necessarily
the case. For the present photonic band structure, the worst discrepancy between
frequency modes predicted by the uniform and multigrid meshes occurred near the
ends of the sixth band, with an error of approximately 2.7%. Also note that
the predictions of the multigrid mesh are in good agreement for frequencies well above
the theoretical cut-off frequency of the mesh (~0.26 units of normalized frequency).
For this example, the discretized structure consisted of 220 blocks. Thus, when
compared with a 32×32 uniform mesh, the computational efficiency is increased by
a factor of 4.65.

The efficiency of time-domain methods is directly related to the number of blocks
used to build the model. Thus, a multigrid mesh is a natural approach to reduce the
number of blocks and hence the computational effort. However, there is a large number
of ways in which a multigrid mesh can be defined to discretize a given PC. Thus, while
it is not possible to characterize all the different multigrid meshes individually, they
can be characterized collectively by the minimum and maximum block size present in
the mesh. The minimum block size determines the spatial resolution and the maximum
block size, the cut-off frequency of the mesh.

The real advantage of a multigrid mesh is better appreciated in larger problems.
To illustrate this point, the next simulated example is a three-dimensional one. For this
case, we chose a structure consisting of dielectric spheres embedded in air. The
dielectric constant of the spheres was set to 12.0 and their radius to 0.3125a. To also
illustrate the trade-offs that come into play when multi-griding is used, two different

Fig. 7. Dispersion relation of the PC shown in Fig. 3. Dots: simulation results using the R-V formulation
in a uniform mesh. Filled-squares: simulation results using a C-V formulation in a multi-grid mesh. Solid
line: PWE method.
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meshes are looked at. Figure 8 shows the multigrid meshes that were used for the
discretization of the unit cell. In Figs. 8a and 8b, one and two levels of refinement
were allowed respectively during the generation of the mesh. Thus, while the spatial
resolution is the same for both meshes (equal to 1/32), the cut-off frequency of the
mesh in Fig. 8b is half that of the mesh in Fig. 8a. In what follows, we will denote
these meshes as Multigrid-(1/16) and Multigrid-(1/8), respectively, where the number
in parentheses denotes the maximum block size (remember that the lattice constant
has been normalized to a = 1). Similarly to the previous example, an averaging
procedure was applied to smooth the transition between the dielectric spheres and
the air. In addition, Figs. 8a and b show that three-dimensional structures favor the
formation of cubic, rather than rectangular blocks during the building process. 

Figure 9a shows the photonic band structure of the cubic lattice of dielectric
spheres. The corresponding first Brillouin zone and symmetry points used as a reference
for the computation of the band structure are shown in Fig. 9b. The solid lines were
obtained by using a computer program based on the PWE method in a uniform mesh [2].
The open circles represent the frequency points predicted by the complex-valued TLM
formulation using the Multigrid-(1/16) for discretizing the unit cell. Similarly, the
filled-squares represent the frequency points predicted by the complex -valued TLM
formulation when the Multigrid-(1/8) is used. For the Multigrid-(1/16), the simulation
domain consisted of 5776 blocks. This indicates that the computational efficiency is
increased by a factor of 5.7 when compared with a 32×32×32 uniform mesh.

In terms of accuracy, Fig. 9a shows that the agreement between the uniform and
multigrid meshes is fairly good up to the frequency shown in the figure. This is true
despite the fact that, strictly speaking, the cut-off frequency of the Multigrid-(1/16) is
only ~0.46 units of normalized frequency. In calculating this frequency, a minimum
of ten nodes per wavelength has been used as a reference. In addition, it has been

Fig. 8. Multigrid meshes used for the discretization of the unit cell. The maximum block has been limited
to: a – 1/16 and b – 1/8. 

a b
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calculated with respect to the dielectric sphere, where the shorter wavelengths (for
a fixed frequency) are expected. 

When the Multigrid-(1/8) was used to discretize the unit cell, the resulting structure
consisted of 3928 blocks. In this case, the computational efficiency is increased by
a factor of 8.3 when compared with a 32×32×32 uniform mesh. As expected, the
addition of bigger blocks in the simulation domain has further degraded the accuracy
of the results. However, we can see from Fig. 9a that although the cut-off frequency
of this mesh is only ~0.23 units of normalized frequency, the results are in good
agreement up to at least two times this value. We can also see that the worst discrepancy
between the uniform and multigrid methods occurred near the ends of the upper most
bands. That is, when one (or more) of the components of the propagation vector is
equal to zero. This is again, an expected result, since it is known that block dispersion
is worst under this scenario [18]. It should be pointed out that these results were
obtained by using a stub-loaded node and are expected to improve, due to superior
node dispersion properties, by using hybrid or super condense nodes [19].

Figure 10 shows the computational time associated with the various methods
presented in this paper as a function of the spatial resolution of the mesh (minimum
block size). In the figure, the computational time has been normalized with respect to
the complex-valued TLM method applied in a uniform mesh, which is the slowest, but
most accurate scenario. This method is indicated by the dashed line in the figure.
Similarly, the dot-dashed line represents the computational time of the real-valued
TLM method also applied in a uniform mesh. As it was explained before, this method
reduces the computational effort by half as compared with the complex-valued
formulation while retaining the same accuracy. The two remaining lines in the figure
show the results of the multigrid approach. As the figure indicates, two cases were
considered. The solid and dotted lines correspond to multigrid meshes where the

Fig. 9. Dispersion relation of the simple cubic lattice; filled-squares: Multigrid-(1/16) mesh; open circles:
Multigrid-(1/8); solid lines: PWE method using a uniform mesh (a) and first Brillouin zone of the simple
cubic lattice (b). 

a

b
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resolution is varied while the maximum block size is limited to 1/16 and 1/8,
respectively. In the figure, the corresponding locations of the multigrid meshes shown
in Fig. 8 are also indicated.

Figure 10 shows that the computational efficiency of a multigrid approach is
enhanced toward higher resolutions (smaller block size). This is particularly important
for the simulation of PCs because it is in this region where the cut-off frequency of
a uniform mesh is unnecessarily high (>1 unit of normalized frequency). This translates
into the possibility of finding a good compromise between computational time and
accuracy. It should be noted that the computational time associated with the multigrid
method could further be reduced by half, if the geometry of the unit cell allowed for
the real-valued formulation to be used.

The results presented in this section indicate that a multigrid approach can
considerably reduce the simulation time that is required for computing the photonic
band structure of PCs while maintaining a good accuracy.

5. Conclusions

In this paper, different approaches for the simulation of PCs using the TLM method
were presented. These approaches were divided into complex- and real-valued
algorithms using a uniform mesh, and complex- and real-valued algorithms using
a multigrid mesh. The advantages and disadvantages of each approach were discussed
and a comparison between these methods was made from the points of view of
computational expense and accuracy.

Fig. 10. Computational time as a function of minimum block size for the various methods. Dashed
(dot-dashed) line: complex (real)-valued formulation in a uniform mesh; solid and dashed lines: complex
-valued formulation in a multigrid mesh, the maximum block size is limited to 1/16 and 1/8, respectively.
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It was found that a combination of a real-valued method in a multigrid mesh results
in the most efficient algorithm. However, unlike the complex-valued formulation, its
applicability is limited to unit cells satisfying certain geometrical details. It was also
found that while a multigrid approach can considerably reduce the computational effort
required for simulating PCs, it also reduces the accuracy of the results. In this respect,
our results indicate that a good compromise between execution time and accuracy can
be found when using the multigrid approach. In addition, it was observed that
the multigrid meshes presented in this paper had a good performance, well above the
typical theoretical cut-off frequency of the mesh.
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