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Abstract: In the process of sample selection, an important issue is the relationship between sample 

size and the type and complexity of the statistical model, which is the basis for testing research 

hypotheses. The paper presents methodological aspects of sample size determination in multilevel 

structural equation modelling (SEM) in the analysis of satisfaction with the banking products in 

Poland. The multilevel SEM results from the necessity to take into account both the sample size at the 

level of individual respondents, as well as at the higher level of analysis and the intraclass correlation 

coefficient. A comparison of factor loading bias based on the Monte Carlo simulation is made for 

different cluster sizes and the number of clusters.   
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1. Introduction 

The construction of multilevel models is especially related to cluster and area 

sampling. However, their application is dependent on the nature of the research 

question and type of variables used in the modelling process.  

Two general approaches are used for SEM modelling based on cluster sampling. 

First, sample may be selected using cluster sampling method, but the analysis of data 

includes variables from an individual level only, and it is conducted at that level. In 

such a situation, the correction of standard errors for parameter estimates is only 

applied and thus a low intraclass correlations (ICC) are desirable to ensure adequate 

effective sample size.1 The second approach involves a multilevel framework for 

clustered data analysis and the SEM model is developed on both “within” and 

                      
1 In the Mplus program, for single-level models with standard errors corrections for complex 

samples, the required option of model is: TYPE=COMPLEX. 
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“between” levels. Therefore, high ICC’s are desirable. In general, factors influencing 

the sample size in scientific studies using SEM modelling are [Muthen,  Muthen 2002]: 

− Model complexity (number of degrees of freedom) – the more complex the 

model, the bigger the sample needed. 

− Distribution of manifest variables – the stronger the deviations from the normal 

distribution, the bigger the sample size due to weight matrix size for 

WLS/DWLS estimation methods. 

− The structure and type of missing data – the stronger the deviation from MAR, 

the bigger the sample size needed. 

− Reliability of the measurement scales – the higher the measurement error, the 

larger the sample size. 

− Effect size – the smaller the diagnosed effect size, the larger the sample size 

required. 

− The power of the test – the stronger the power of the test needed, the larger the 

sample size.  

Usually the sample size has a relatively smaller effect on model parameters 

bias, but it has an higher impact on standard errors of the parameters.  

Random sampling is related to the possibility of assessment of the quality of the 

given complex sample. The quality of the sample is measured on the basis of two 

factors: 1) accuracy and 2) precision of estimation of the unknown population 

characteristics. The accuracy of an estimate is related to the assessment of the extent 

to which the value calculated from the sample reflects the true value in the general 

population. The precision of estimation concerns the reproducibility of the results 

obtained from the sample and is measured by the variance of estimates in repeated 

random samples – the smaller the variance of estimates, the more precise the 

measurement of an unknown characteristic in the population. Usually the criterion of 

comparison of accuracy and precision of the estimation in a given sampling scheme 

is simple random sampling.  It is rarely used in practice, but it is a reference for the 

evaluation of complex sampling (strata or cluster).  

The precision of estimation of an unknown population characteristic depends on the 

size of the random sample and the way it is selected. A measure of the precision of 

estimating an unknown parameter in the population depending on the type of random 

sample is the so-called design effect (deff), which is the ratio of variance of an estimator 

in a cluster (or stratified) sample to variance of an estimator in a simple random sample 

(srs) of the same size [Lehtonen, Pahkinen 2004, p. 15; Kish 2004, p. 33]: 

 
( )

.
( )srs

V x
deff

V x
=  (1) 

In general, stratified samples give more precise estimates in relation to simple 

random samples (deff < 1), and cluster/multistage samples give less precise estimates 

in relation to simple random samples (deff > 1).  
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In cluster samples the effect of a sampling scheme is a function of the group 

size (nc) and the intraclass correlation coefficient (ICC) [Lehtonen, Pahkinen 2004, 

p. 45]: 

 𝑑𝑒𝑓𝑓 = 1 + (𝑛𝑐 − 1)𝐼𝐶𝐶. (2) 

In some analyses it is more convenient to use the square of deff, which 

determines the increase (inflation) of standard error for a parameter caused by 

correlated measurement errors of variables: 

 𝑑𝑒𝑓𝑓𝑡 = √1 + (𝑛𝑐 − 1)𝐼𝐶𝐶. (3) 

From this point of view, the sample size for multilevel analysis must be higher 

than for single-level analysis, because the effective sample size is lower in the cluster 

sample compared to the corresponding simple random sample, given the same level 

of precision for parameter estimation (these samples therefore require a higher 

sample size than simple random samples to achieve the same level of precision).  

The effective sample size is the size of the simple random sample that gives the 

same precision of estimation as the complex sample used in the study. It is thus a 

measure of the degree of loss of estimates’ precision in cluster samples. Effective 

cluster sample size is a function of sample size (n), average group size (nc), and 

intraclass correlation coefficient (ICC): 

 .
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The effective sample size can be expressed as the ratio of the sample size to 

deff  [Valiant, Dever, Kreuter 2013, p. 100]:  

 .ef

n
n

deff
=  (5) 

Hence the deff is also the ratio of the actual sample size to the effective sample 

size. The intraclass correlation coefficient has a significant influence on the size of 

the cluster sample. In an extreme case, if ICC = 0, and each group has the same 

size, it is enough to draw one group (cluster of respondents) to estimate an 

unknown parameter in the population (all groups are identical).  

On the other hand, if ICC = 1, then there is a maximum similarity among units 

in each group. In the process of sample selection, the relationship between sample 

size and the type and complexity of model is an important issue. The choice of the 

sampling method and sample size is largely dependent on the type of data analysis 

method, and complexity of the model. The problem of required sample size is 

especially important for structural equation models (SEM) and specifically, for the 

more general version of SEM that are multilevel structural equation models with 

latent variables.  



66 Adam Sagan  

2. Sample size in structural equation models 

The relation of theoretical and statistical assumptions of the model and sample size 

is particularly important for structural equation modelling. This is related to the 

nature of the global test of exact fit and the domination of accept-support approach 

to the hypothesis testing in SEM. In the process of model testing, the investigator 

seeks not to reject the null hypothesis, which states that the standardized residuals 

of empirical covariance matrix S and the theoretical implied covariance matrix 

reproduced by the model parameters (()) are equal  0, so S = ().   

The role of random sample size in the process of testing a structural model is 

particularly important because the test statistic, which is the basis for assessing the 

goodness-of-fit, is the product of the minimum value of the discrepancy function 

(F) and the random sample size (N). If the sample is “large enough” and the model 

is correctly specified , then the T statistic has a  distribution and is given by the 

formula:   = F(N–1).  

Given the number of degrees of freedom, the higher the sample size, the higher 

  statistic and therefore, the higher the probability of rejecting H0. In the case of 

"too large" samples, the correct model may be rejected due to small differences 

between S and () and in the case of "too small" samples, even large 

discrepancies between S and () will not be recognized and the wrong model will 

not be rejected [Davey, Savla 2010].   

Therefore the power of the  test and the specification of the SEM model are 

crucial factors in determining the sample size in testing the research hypotheses. 

There are several “rules of thumb” in sample size specification in SEM models, 

including the minimum sample size rule (e.g. N > 200), the minimum number of  

cases per parameter (10:1 rule), and the minimum number of cases per indicator 

(manifest variable) in the model (10:1 rule) [Bentler, Chou 1987]. All of the rules 

are usually selected in day-to-day research with SEM without any statistical or 

substantial justification.  

The model-based approach to determining sample size is related to three basic 

approaches: a) the Satorra and Saris method [1985] related to the evaluation of the 

power of test on the basis of  non-centrality parameter for a given structural model 

( =  – df) that determines the model specification error, b) the MacCallum, 

Browne and Sugawara method [1996] based on the evaluation of the power of test at 

which the RMSEA value allowing for the model not to be rejected is achieved and  

c/ the Monte Carlo simulation method [Muthén, Muthén 2002].   

The power-based methods are commonly used in SEM modelling. This is a 

function of a) given significance level (α), b) type II error level (β), c) the expected 

strength of the effect size, d) the standard error for the parameter (σ) and e) the 

sample size (n). In general the power of test is assumed to be on the level of β/α = 4, 

hence for α = 0.05, the desired power is 1 – β = 0.8 [Cohen 1992]. The necessary 
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random sample size for SEM can be determined on the basis of the power of the test 

and significance level. In the assessment of a simple random sample size for a SEM 

model, the evaluation of the model fit is made on the basis of the value of  statistics 

and the root mean square error of approximation (RMSEA). Due to the specificity of 

exact test of the H0 hypothesis, the "close fit" is tested in which the null hypothesis 

assumes that the RMSEA = 0.05 (and not 0.00) and the alternative hypothesis (H1) 

that RMSEA is = 0.08 (this is the upper limit of the "badness-of-fit" of the SEM 

model). Statistical programs, like GPower and Statistica, allow to assess the power of 

test at a given sample size, significance level and the hypotheses H0 and H1 or to 

determine the random sample size at a given power of test.   

Figure 1 shows the relationship between sample size and effect size, given the 

number of manifest and latent variables (model complexity), the power of test and 

significance level. In simulations depicted in Figure 1, the sample sizes for SEM 

models (N) depend on effect sizes (ES) of 0.05 (very small), 0,1 (small), 0.3 ) (mode- 

 

 

Fig. 1. Sample sizes in SEM  

Source: own elaboration based on https://www.danielsoper.com/statcalc. 

https://www.danielsoper.com/statcalc
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rate), 0.5 (strong), 0.9 (very strong) [Cohen 1988]. In the given effect size range, five 

models with different complexity are introduced (with the “three-indicators rule” 

for model identification): a) one latent and three manifest, b) two latent and six 

manifest, c) three latent and nine manifest, d) four latent and twelve manifest and 

e) five latent and fifteen manifest variables. The power of test = 0.8 and 

significance level = 0.05.  

The simulations show that models with 0.05 ES need a sample size of between 

348 and 6494. The sample size depends on the model complexity. Models with 

small ES (0.1) require N between 87 and 1599. However, for the models with 

moderate and strong ES (> 0.3) sufficient sample sizes are between 10 and 150 (for 

empirical identification of the model and avoiding Heywood cases in numeric 

estimation process, the minimum sample size is 200).  

To sum up, for practical purposes, in scientific research using the SEM model, 

the minimum sample size for diagnosing the small effect size is around 1400, and 

where ES is moderate or strong, the required sample size is 200 observations.  

3. Sample size in multilevel SEM models 

The multilevel sample size should take into account the size of the primary (PSU) 

and secondary sampling units (SSU). The most stable solutions are obtained if the 

number of level II units is not too small and numbers about 50-100 groups [Eliason 

1993], and the sample size at level I (individual) should be between 30 and  

50 respondents in each group [Maas, Hox 2005]. This number is not strictly required, 

many studies (especially in family research) are conducted on groups of 1-3 persons.  

The Bayesian estimation is often used for small sample sizes [Stegmueller, 

2011; Hox, Van de Schoot 2013]. 

Usually the general rule of a multilevel sample size is 50 groups and 30 units in 

a group, which gives the sample size in multilevel analysis of about  

1500 respondents.2 However, the samples in multilevel SEM are more numerous 

and number from 12,000 to 17,000 respondents (in multilevel educational 

research). In the evaluation of the size of cluster samples, the power of statistical 

tests and sample weights, the appropriate computer programs are used such as 

sample size calculators (MaCorr, Raosoft, Statistica, macros etc.), power test 

calculation programs (GPower, SPSS, STATA, Statistica), programs for evaluation 

and weighing of random samples (SPSS, WeSVAR, SurveyGizmo, Zoho, 

QuestionPro, Typeform, Survey Anyplace, Wufoo, SurveyMoz, RationalSurvey, 

SoGoSurvey), and packages for multilevel sampling and data analysis (Mplus, 

LISREL, GLLAMM (Stata), MLWIN, NLMIXED (SAS)). 

                      
2 In the Mplus program, the required option for the multilevel model is: TYPE=MULTILEVEL. 
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4. The Monte Carlo approach in sample size determination 

The application of the Monte Carlo method results from the limitations of the 

power of the test to determine the sample size. The determination of the sample 

size based on power, significance level, H0 and H1 hypotheses, assumes the 

correct model specification and the lack of model parameters and standard errors 

biases. The parameter bias refers to the factors that cause the estimated parameter 

values in the sample to be different from the "true" values of parameters in the 

population.  

The Monte Carlo approach enables the evaluation of model parameter bias and 

the power of test with the use of the generated "population" data on the basis of  

1) prior parameter values determined in previous research, 2) meta-analysis or  

3) estimated sample parameters. Once the population data is generated, the samples 

of a specific size are randomly selected.  

On each of these sub-samples, the model parameters and their standard errors 

are estimated. Having the empirical distribution of the model parameters and the 

standard errors parameters and the standard errors bias, the coverage is also 

determined. The parameters’ bias is related to the deviation of the "population" 

value estimate from its mean value from the replicated estimates: 

 
1
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where: ˆb

R – parameter bias in replications , 

R – number of replications, 
ˆ r

x – mean parameter value in replications, 

βx – population value of parameter. 

The coverage specifies the quality of parameter estimates and represents the fraction 

of parameter estimates in replications not exceeding a 95% confidence interval. 
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where: I – a binary indicator indicating the truthfulness (1) or falsity (0) of the 

inequality, 

( )ˆ r

xse   – standard error of “population” value of parameter.  

The use of the Monte Carlo method to determine the sample size required, 

takes into account the maximum acceptable bias of model parameters. L. Muthén 

and B. Muthén [2002] propose a set of criteria to assess the required sample size in 

the Monte Carlo simulations: a) the bias of parameters and standard errors should 
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not exceed 10%, b) the bias of standard error for the parameter for which the power 

of test is calculated should not exceed 5%, c) the coverage should be between 0.91 

and 0.98. If these assumptions are met, the final sample size should be at the level 

at which the power of test is equal to 0.80.  

5. Sample size in the multilevel SEM model in banking  

product research 

The research of the image of banking products was conducted on the basis of a two-

stage cluster sampling, where PSU are bank outlets located in specific geographical 

areas and SSU are the clients of the selected outlet. The total sample consisted  

of 1335 respondents nested in 258 bank outlets.3 The two-level SEM model  

of perceived bank image is presented in Figure 1.  

 

 

Manifest variables: KP – employer competence, IDPK – individualized approach to the customer, 

REKL – advertising, LOGO – visual corporate identity, BBAN – ATM security, BBE – electronic 

banking security. 

Latent variables: ZS/BZS – operant resources, FPK/BFPK – formal communication, OEIP/BOEIP – 

electronic banking services. 

Fig. 1. Two-level CFA model of banking products 

Source: own elaboration on the basis of the Mplus results.  

                      
3 The author expresses the gratitude for the raw data file to Dr. Izabela Szlis. The data are gathered for 

the research grant “Rzeczywisty a pożądany wizerunek banku na rynku usług detalicznych” (Umowa  

nr 0435/B/H03/2009/37) [Szlis 2012]. The data is used with permission of the author. 
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All of the manifest variables were measured on 5-point Likert scales. The latent 

variable “operant resources” was measured by the KP and IDPK indicators, while the 

latent variable “formal communication” was measured by the REKL and LOGO 

indicators; the latent variable “electronic banking services“ was measured by the 

BBAN and BBE indicators.  

 On the left-hand side, the “within” model, and on the right-hand side the 

“between” model is presented. The intraclass correlation coefficients (ICC) for the 

indicators are as follows: KP = 0.03, IDPK = 0.04, REKL = 0.09, BBANK = 0.06, 

BBE = 0.02. ICC for the latent variables are: ZS = 0.05, FPK = 0.10, OEIP = 0.07. 

The average cluster size = 5.4.  

The measurement model has an appropriate fit. The global 2 fit statistic, with 

the Satorra-Bentler correction with a scaling factor of 0.82, is 51.73 with 15 degrees 

of freedom (p-level = 0.00). The root mean square error of approximation (RMSEA) 

is 0.04 and the CFI and TLI incremental fit indices are respectively 0.977 and 0.953. 

The standardized mean square residuals (SMSR) for the “within” model is 0.03 and 

for the “between” model is 0.04. 

The measurement model, both at the “within” and “between” levels, reflects the 

structure of the bank’s image. The dimensions of the bank’s image on the “within” 

level (ZS, FPK, OEIP), are significantly correlated, whereas the correlation on the 

“between” level are insignificant (BZS, BFPK, BOEIP).  

The Monte Carlo analysis of the model presented in Figure 1 was performed on 

the basis of the parameters of the model (shown in Figure 1). The aim of the analysis 

is to assess the level of model parameters bias and the power of the  test for the 

existing sample size and to simulate the hypothetical sample size for the specific 

level of power.  

In the first stage of the analysis, the model was estimated on the basis of empirical 

data from the sample (no theoretical assumptions related to the "real" values of the 

parameters in the general population and the results of previous studies). The values 

of the parameters were used to build a “population” model for the Monte Carlo 

simulations. The number of replications was 400.  

 

 

The  values are given below:  

 

Chi-Square Test of Model Fit 

    Degrees of freedom     15 

    Mean                12.798 

    Std Dev               4.604 

    Number of successful computations   400 
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       Proportions               Percentiles 

    Expected  Observed     Expected    Observed 

      0.990    0.975       5.229      4.117 

      0.980    0.968       5.985      4.740 

      0.950    0.915       7.261      6.733 

      0.900    0.843       8.547      7.535 

      0.800    0.695      10.307     9.124 

      0.700    0.532      11.721     10.251 

      0.500    0.295      14.339     12.072 

      0.300    0.152      17.322     14.234 

      0.200    0.090      19.311     16.105 

      0.100    0.045      22.307     18.759 

      0.050    0.020      24.996     21.627 

      0.020    0.003      28.259     24.981 

      0.010    0.000      30.578     26.865 

Source: own elaboration on the basis of the Mplus results.  

 

 

The means and standard deviations of the chi-square test statistic over the 

replications in the Monte Carlo analysis are given above. In the column labelled 

“Proportions expected” there are the probabilities of observing a chi-square value 

greater than the corresponding value in percentiles expected of the  value 

determined from the  distribution (column 3). In this output, the value of 0.05 in 

column 1 gives the probability that the chi-square value exceeds the percentile value 

(the critical value of the chi-square distribution) of 24.996 in column 3. The columns 

“Proportions observed” and “Percentiles observed” give the corresponding values 

observed in the Monte Carlo replications. Column 2 gives the proportion of 

replications for which the critical value is exceeded (in this example it is 0.02), close 

to the expected value of 0.05 which indicates that the chi-square distribution is well 

approximated in this case. The value of 21.627 in column 4 is the chi-square value at 

this percentile from the Monte Carlo analysis that has 5% of the values in the 

replications above it. The fact that it deviates only slightly from the theoretical value 

of 24.994 is an indication that the chi-square distribution is well approximated in this 

case. 

The analysis of bias and coverage for the parameters involves the “within” and 

“between” model parameters. The parameter values (factor loadings) in the “within” 

model are given below.  
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MODEL RESULTS 

 

               ESTIMATES       S. E.   M. S. E. 95% % Sig 

               Population  Average  Std. Dev.  Average Cover Coeff 

Within Level 

 

 ZS    BY 

 KP        0.918   0.9207   0.0390   0.0506   0.0015 0.985 1.000 

 IPDK         0.943   0.9424   0.0430   0.0533   0.0018 0.985 1.000 

 

 FPK   BY 

 REKL         0.949   0.9452   0.1242   0.1505   0.0154 0.983 0.998 

 LOGO         1.792   1.8354   0.2375   0.2928   0.0582 0.967 0.998 

 

 OEIP   BY 

 BBANK         1.069   1.0695   0.0491   0.0586   0.0024 0.980 1.000 

 BBE         1.067   1.0652   0.0519   0.0663   0.0027 0.988 1.000 

 

 FPK   WITH 

 ZS          0.216   0.2104   0.0410   0.0531   0.0017 0.988 0.993 

 

 OEIP   WITH 

 ZS          0.777   0.7746   0.0301   0.0394   0.0009 0.990 1.000 

 FPK          0.217   0.2133   0.0428   0.0532   0.0018 0.985 0.990 

 

 Variances 

 ZS          1.000   1.0000   0.0000   0.0000   0.0000 1.000 0.000 

 FPK          1.000   1.0000   0.0000   0.0000   0.0000 1.000 0.000 

 OEIP         1.000   1.0000   0.0000   0.0000   0.0000 1.000 0.000 

 

 Residual Variances 

 KP          0.816   0.8039   0.0566   0.0696   0.0033 0.980 1.000 

 IPDK         0.960   0.9555   0.0617   0.0790   0.0038 0.985 1.000 

 REKL         2.361   2.3579   0.2294   0.2823   0.0525 0.983 1.000 

 LOGO         0.091  -0.1181   0.9301   1.1262   0.9067 0.942 0.070 

 BBANK         0.889   0.8845   0.0785   0.0961   0.0062 0.990 1.000 

 BBE          1.730   1.7242   0.0901   0.1161   0.0081 0.985 1.000 

 

Source: own elaboration on the basis of the Mplus results.  
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In the first column (Population), the "population" model-based values of the 

estimated parameters are presented. The second column (Average) shows the average 

values of the parameters in the Monte Carlo simulation. These columns are the basis 

for determining the level of parameter bias. The following two columns show the 

standard deviations of the parameters in the replications, and the average of the 

standard error in the replications. Based on these values the standard errors bias can 

be calculated. The M.S.E. column gives the mean square error for each parameter, 

and it is calculated as the sum of the variance of the parameter in replications and the 

parameter bias.  

The penultimate column (Cover) shows the coverage that is the proportion of 

replications for which the 95% confidence interval contains the “true” population 

value of a parameter. All parameter values, with the exception of the residual 

variance for the Logo variable, are above 0.95, which indicates the good quality of 

the estimates. The last column gives the replication ratios for which the null 

hypothesis for the parameter was rejected at the significance level of  = 0.05, which 

indicates the power of test. All the parameter estimates indicate the appropriate 

power of the t-test. Only the test for the residual variance of the Logo variable is 

characterized by a very low power (very high probability of type II error). The values 

of the parameter and standard error bias are shown in Table 1.  

Table 1. Parameters and standard errors bias in the “within” model  

Path Population Average 
Parameter 

bias 

Population 

s.e. 

Average 

s.e. 

Standard 

error bias 

ZS-KP 0.918 0.9207 -0.0029 0.0390 0.0506 -0.2974 

ZS-IPDK 0.943 0.9424 0.0006 0.0430 0.0533 -0.2395 

FPK-REKL 0.949 0.9452 0.0040 0.1242 0.1505 -0.2117 

FPK-LOGO 1.792 1.8354 -0.0242 0.2375 0.2928 -0.2328 

OEIP-BBANK 1.069 1.0695 -0.0004 0.0491 0.0586 -0.1934 

OEIP-BBE 1.067 1.0652 0.0017 0.0519 0.0663 -0.2774 

ZS-FPK 0.216 0.2104 0.0259 0.0410 0.0531 -0.2951 

ZS-OEIP 0.777 0.7746 0.0031 0.0301 0.0394 -0.3090 

FPK-OEIP 0.217 0.2133 0.0170 0.0428 0.0531 -0.2406 

Source: own elaboration on the basis of the Mplus results.  

The parameter bias does not exceed 0.1, and one can conclude that the sample 

size of 1335 is sufficient to obtain unbiased parameters of the “within” model. On the 

other hand, the standard errors are downwardly biased and exceed the acceptable 

level of 0.05. The parameter values in the “between” model are given below.  
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      ESTIMATES       S. E.   M. S. E. 95% % Sig 

         Population  Average  Std. Dev.  Average       Cover Coeff 

 

Between Level 

 

 BZS   BY 

 KP      0.244   0.2408   0.0533   0.0833   0.0028 0.995 0.880 

 IPDK    0.275   0.2484   0.0675   0.0979   0.0053 0.985 0.780 

 

 BFPK   BY 

 REKL     0.548   0.5354   0.0816   0.1175   0.0068 0.995 0.998 

 LOGO    0.497   0.4928   0.0755   0.1044   0.0057 0.998 0.998 

 

 BOEIP  BY 

 BBANK   0.383   0.3703   0.0765   0.1082   0.0060 0.998 0.935 

 BBE     0.344   0.3411   0.0725   0.1056   0.0053 0.993 0.933 

 

 BFPK   WITH 

 BZS     -0.111  -0.0993   0.2895   0.3393   0.0838 0.967 0.032 

 

 BOEIP  WITH 

 BZS    0.556   0.5647   0.2167   0.2832   0.0469 0.970 0.592 

 BFPK   0.161   0.1745   0.2358   0.2771   0.0557 0.967 0.100 

 

 Intercepts 

 KP    5.991   5.9915   0.0406   0.0496   0.0016 0.985 1.000 

 IPDK    5.831   5.8321   0.0462   0.0530   0.0021 0.975 1.000 

 REKL  3.782   3.7803   0.0703   0.0798   0.0049 0.970 1.000 

 LOGO   3.934   3.9331   0.0641   0.0762   0.0041 0.985 1.000 

 BBANK      5.968   5.9704   0.0509   0.0609   0.0026 0.985 1.000 

 BBE      5.718   5.7196   0.0555   0.0660   0.0031 0.985 1.000 

 

 Variances 

 BZS     1.000   1.0000   0.0000   0.0000   0.0000 1.000 0.000 

 BFPK      1.000   1.0000   0.0000   0.0000   0.0000 1.000 0.000 

 BOEIP   1.000   1.0000   0.0000   0.0000   0.0000 1.000 0.000 

 

 Residual Variances 

 KP      0.000   0.0001   0.0000   0.0000   0.0000 1.000 0.000 

 IPDK  0.006   0.0126   0.0107   0.0317   0.0002 0.998 0.005 

 REKL      0.030   0.0345   0.0281   0.0650   0.0008 1.000 0.015 

 LOGO    0.000   0.0001   0.0000   0.0000   0.0000 1.000 0.000 

 BBANK   0.023   0.0250   0.0183   0.0497   0.0003 1.000 0.005 

 BBE      0.000   0.0001   0.0000   0.0000   0.0000 1.000 0.000 

Source: own elaboration on the basis of the Mplus results.  
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In the “between” model (on the level of bank outlets) a too low power for a) the 

measurement model of operant resources (ZS), b) covariances between latent 

variables and c) residual variances are observed (very high probability of type II 

error). Therefore this suggests a too small sample size on the “between” level of the 

analysis. The values of the parameter and standard error bias are shown in Table 2.  

Table 2. Parameters and standard errors bias in the “between” model  

Path Population Average 
Parameter 

bias 

Population 

s.e. 

Average 

s.e. 

Standard 

error bias 

ZS-KP 0.244 0.2408 0.0131 0.0533 0.0833 -0.5628 

ZS-IPDK 0.275 0.2484 0.0967 0.0675 0.0975 -0.4444 

FPK-REKL 0.548 0.5354 0.0229 0.0816 0.1175 -0.4399 

FPK-LOGO 0.970 0.4928 0.0084 0.0755 0.1044 -0.3828 

OEIP-BBANK 0.383 0.3703 0.0331 0.0765 0.1082 -0.4145 

OEIP-BBE 0.344 0.3411 0.0084 0.0725 0.1056 -0.4565 

BZS-BFPK -0.111 -0.0993 0.1054 0.2895 0.3393 -0.1720 

BZS-BOEIP 0.556 0.5647 -0.0156 0.2167 0.2832 -0.3069 

BFPK-BOEIP 0.161 0.1745 -0.0838 0.2358 0.2771 -0.1751 

Source: own elaboration on the basis of the Mplus results.  

The parameter bias in the “between” model does not exceed 0.1. This means that 

the sample size at the II level allows for the estimation of the unbiased model 

parameters. In the case of standard errors, the systematic negative bias of standard 

errors is also observed, which exceeds the acceptable level of 0.05. 

To sum up, based on a sample of 1335 respondents and 258 bank outlets, the 

parameter estimates correctly reflect their population values. The estimates of 

standard errors are biased which increases the probability of type II error.  

The final analysis was based on simulations of parameter (factor loadings) bias in 

the “within” and “between” models. In the simulations two factors are taken into 

account: 1) sample size and 2) relations between the number of cluster and the cluster 

size. The sample sizes range from between 500 and 3000 respondents. Two sets of 

cluster sizes are recommended. The first assumes C/Nc = 60, which means that the ratio 

between the number of clusters (C) to the number of respondents (Nc) within clusters, is 

60 for the given sample size (e.g. 300 clusters and five respondents within each cluster = 

1500 in total). The second option is C/Nc = 0.6, which means that the relation between 

the number of clusters and the number of respondents within the cluster is 0.6 (e.g. 30 

clusters and 50 respondents in each cluster = 1500 in total). The first solution is used in 

multilevel modelling of small groups (families, small task-groups etc.). The second 

solution is more frequent in multilevel models in organizational B2B marketing, brand 

societies, public institution marketing (schools, hospitals etc.).  

Figure 2 depicts the results of the Monte Carlo simulations of factor loadings 

bias.  
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The results of the simulations show that the larger the sample size, the smaller 

the bias of the parameters for the “between” models, especially when C/Nc = 60, 

which means the large number of clusters and the small number of observations 

within the clusters. In the case of the “within” models, the discrepancy of the 

parameter bias is much larger, nevertheless the C/Nc = 60 performs much better than 

the C/Nc = 0.6 rule (for the total sample of 500, the multilevel models cannot be even 

estimated). Taking into account both the “within” and “between” models, the 

optimum sample size for this multilevel model that minimizes the parameter bias for 

the C/Nc = 60 rule is 2000 respondents, and for the C/Nc = 0.60 rule it is around 

2500. The existing sample size of 1335 respondents generates a downward bias of 

factor loadings and for measurement models of image of banking products.  

6. Conclusion 

The Monte Carlo simulation is a modern technique for the determination of sample 

size in structural equation modelling. The specificity of the accept-support 

approach in SEM model-building deserves special attention paid to the question of 

the sample size requirements. The commonly used rule of thumb (e.g. the 10:1 

rule) that seems to persist in the used research literature, is replaced by approaches 

that involve model specification and complexity in determining the sample sizes.  

In the development of contemporary SEM models, the single-level analysis is 

regarded only as a special case of more general multilevel framework of model 

building. The Monte Carlo simulations show that the standard errors bias is much 

higher than the parameters bias. Coverage values are in the range of 0.942 to 1.00 for 

the “within” model, and 0.967 to 1.00 for the “between” model. The power of the  

t-tests is between 0.993 and 1.00 for the “within” model, and between 0.032 and  

1.00 for the “between” model. The optimal number of the multilevel sample is 

about 2000 respondents at N/C = 60 (that is maximizing the number of classes and 

minimizing the number of units in a given class). This research confirms the results of 

simulation studies that in multilevel multiple regression modelling, the number of groups 

is more important than the large number of individuals per group [Maas, Hox 2005; 

Snijders 2005]. However, this research is based on the real data and the more 

complicated multilevel CFA model. On the other hand, the general 0.6 rule (i.e. 30x50), 

seems to be not valid and depends on the type of the SEM model and its complexity.  
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LICZEBNOŚĆ PRÓBY W WIELOPOZIOMOWYM  

MODELOWANIU STRUKTURALNYM – PODEJŚCIE MONTE CARLO 

Streszczenie: W procesie doboru i ocenie liczebności próby ważną kwestią jest ocena zależności 

między liczebnością próby, rodzajem i poziomem złożoności modelu empirycznego, który jest 

podstawą testowania stawianych hipotez. Założenia teoretyczne i statystyczne są szczególnie ważne 

w ocenie rozmiaru próby losowej w modelowaniu strukturalnym (SEM). Jest to związane z naturą 

globalnego testu dokładnego dopasowania modelu i potwierdzająco-akceptującego podejścia  

do testowania hipotez badawczych. Artykuł przedstawia metodologiczne problemy doboru próby  

w wielopoziomowym modelowaniu strukturalnym mającym zastosowanie w badaniach wizerunku 

produktów bankowych w Polsce. Został ukazany wpływ liczebności próby na I i II poziomie analizy 

w modelach wewnątrz- i zewnątrzgrupowym na poziom obciążenia parametrów modelu.  

Słowa kluczowe: dobór próby, wielopoziomowe modelowania strukturalne, symulacja Monte Carlo. 

 


