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Abstract: The paper presents a method of detecting atypical observations in time series with or without 
seasonal fluctuations. Unlike classical methods of identifying outliers and influential observations, its 
essence consists in examining the impact of individual observations both on the fitted values of the 
model and the forecasts. The exemplification of theoretical considerations is the empirical example 
of modelling and forecasting daily sales of liquid fuels at X gas station in the period 2012-2014. As 
a predictor, a classic time series model was used, in which 7-day and 12-month cycle seasonality was 
described using dummy variables. The data for the period from 01.01.2012 to 30.06.2014 were for 
the estimation period and the second half of 2014 which was the period of empirical verification of 
forecasts. The obtained results were compared with other classical methods used to identify influential 
observations and outliers, i.e. standardized residuals, Cook distances and DFFIT. The calculations were 
carried out in the R environment and the Statistica package.
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1. Introduction

In the process of modelling economic phenomena, on the basis of data in the form 
of time series showing both seasonal fluctuations and without such fluctuations, the 
observations with values much lower or significantly higher than the others become 
a serious problem. These observations are called atypical observations. Their 
occurrence affects the properties of estimators, which as a consequence, distorts the 
description of the phenomenon expressed by the overstatement or undervaluation of 
both parameter assessments and theoretical values and forecasts.

Among atypical observations, the outliers and influential observations are 
distinguished (Dittmann, Dittman, Szabela-Pasierbińska, and Szpulak, 2009, p. 46). 
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An outlier is an observation whose value clearly differs from the others 
(Anderson, Sweeney, and Williams, 2011, p. 678; Cook, 1980, p. 1). Due to the 
type of impact i-th observation on the series, one can additionally distinguish (Tsay, 
1988; Watson, Tight, Clark, and Redfern, 1991; Zahari, Zainol, Sopian, Zaharim, 
and Ibrahim, 2010):
• additive outliers,
• innovative outliers,
• level changes,
• permanent level changes,
• transient level changes,
• variance changes.

Influential observations, in turn, can be defined as observations that individually 
or in combination with other observations have a greater impact on estimated values 
(coefficients) than other ones (Belsley, Kuh, and Welsch, 2004). 

In the paper by Chatterjee and Hadi (1986), a comprehensive description of 
detection methods for outliers and influential observations was made. The authors 
classified them into methods of:
• residuals,
• projection matrix ,
• volume of confidence,
• influence functions,
• partial influence.

The purpose of the work is to present an iterative method of the detection of 
atypical observations (influential observations, outliers) by analysing the strength 
and a direction of impact of individual observations in the estimation and the forecast 
period, as well as comparing its accuracy with the classic methods of outliers detection. 
As the main research hypothesis, it was assumed that atypical observations affect the 
descriptive properties of the model and the accuracy of forecasts differently.

The following parts present: classic methods for detecting unusual observations 
(Chapter 2), proposed procedure (Chapter 3), empirical example regarding the 
application of presented methods (Chapter 4) and analysis of the impact of the 
effects of unusual observations on prognostic properties (Chapter 5). The paper ends 
with a summary.

2. Methods of detection of influential observations and outliers

A synthetic description of the most commonly used classic methods of detecting 
atypical observations:

2.1. Projection matrix

Projection matrix (PM) is determined according to the following formula (Dittmann, 
et al., 2009, p. 48):
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𝐻𝐻 = 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇  , (1)

where: X – the matrix of explanatory variables.
The elements of the H matrix lying on the main diagonal are called influential 
observations (hi). They fulfill the following properties:

1
𝑁𝑁 ≤ ℎ𝑖𝑖 ≤ 1 , (2)

where: N – the number of observations of the estimation period.

The authors consider as influential observations those for which hi values meet 
the condition (Hoaglin and Welsch, 1978):

ℎ𝑖𝑖 ≥
2𝑝𝑝
𝑁𝑁  , (3)

where:

𝑝𝑝 =∑ℎ𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 . (4)

Observations which exceed (3) are called leverage points.

2.2. Standardized residuals

Standardized residuals of the model (SR) are determined as:

𝑆𝑆𝑆𝑆𝑖𝑖 =
𝑒𝑒𝑖𝑖
𝑆𝑆𝑒𝑒

 , (5)

where: ei – the i-th residue of the model, Se – the standard deviation of a component 
of the random model.

The outliers are those observations for which the following relation (Dittmann et 
al., 2009, p. 49) occurs:

|𝑆𝑆𝑆𝑆𝑖𝑖| > 3 . (6)

The selected limit level for standardized residues should not be less than 2.

2.3. Cook distances

Cook distances (CD) are determined according to the formula (Cook, 1977; Kannan 
Senthamarai and Manoj, 2015):

𝐶𝐶𝐶𝐶𝑖𝑖 =
𝑒𝑒𝑖𝑖2ℎ𝑖𝑖

(𝑚𝑚 + 1)𝑆𝑆𝑒𝑒2(1− ℎ𝑖𝑖)2
 , (7)
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where: hi  – the i-th element of the main diagonal of the projection matrix, ei
2
  – the 

i-th residue of the model, 2
eS  – the variance of a random component of the 

model, m – the number of explanatory variables.

The atypical observations are those ones that meet the following relation (Algur 
and Biradar, 2017):

𝐶𝐶𝐶𝐶𝑖𝑖 ≥
4
𝑁𝑁 . (8)

High values of CDi indicate observations that have impact on parameters of the 
constructed model.

2.4. DFFIT

DFFIT values are determined according to the following formula (Cousineau and 
Chartier, 2010; Paul, 2018):

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =
ℎ𝑖𝑖𝑒𝑒𝑖𝑖
1− ℎ𝑖𝑖

 , (9)

where: hi – the i-th element of the main diagonal of the projection matrix, ei  – the i-th 
residue of the model. 

The outliers are those observations for which the DFFITS values meet the 
following condition (Belsely, Huh and Welsch, 2004, p. 28):

|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖| ≥ 2√𝑚𝑚𝑁𝑁  , (10)

where: m – the number of independent variables.

The basic drawback of methods based on the values of the main diagonal of 
the projection matrix, as well as standardized residuals, is the fact that they only 
take into account the impact of observations from the estimation period on the 
theoretical values of the model, completely ignoring the fact of their impact on the 
forecast values. This means that the effect of removing atypical observations from 
the estimation period may improve the descriptive properties of the model, while 
reducing the accuracy of forecasts (cf. Oesterreich, 2017; Zawadzki, 1999, pp. 42- 
-43; Zawadzki, 2003, pp. 29-30). 

3. The description of the method

The essence of the proposed procedure of detecting atypical observations is based on 
examining the impact of individual observations of the series on the fitted values of 
the model and forecast. The method consists of three stages:



On the method of identification of atypical observations in time series 5

• Stage 1: the estimation of the model for the full series (without gaps) and the 
calculation on its basis fitted values (�̂�𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  and the of forecasts (�̂�𝑌𝑓𝑓𝑓𝑓𝑡𝑡)  for the 
previously set horizon (h = 1, ..., r).

• Stage 2: the construction of N models for the series, from which one observation 
(i) was successively eliminated and the calculation, on their basis, N series of: 
fitted values (�̂�𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖∗ )  and forecasts (�̂�𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

∗ )  (i = 1, ..., N, N – number of observations 
in the estimation period).

• Stage 3: the comparison of fitted values for estimation and forecasts intervals, 
calculated on the basis of the full series and the series from which individual 
observations were eliminated: 

𝐶𝐶𝐶𝐶𝑖𝑖 =
1
𝑁𝑁∑(�̂�𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − �̂�𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡∗ )

𝑁𝑁

𝑡𝑡=1
 (11)

𝐶𝐶𝐶𝐶𝑖𝑖 =
1
ℎ ∑ (�̂�𝑌𝑓𝑓𝑓𝑓𝑡𝑡 − �̂�𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑡𝑡

∗ )
𝑁𝑁+ℎ

𝑡𝑡=𝑁𝑁+1
 , (12)

where: (�̂�𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  – the fitted value for t-th observation calculated on the basis of a model 
built on the basis of the full series, (�̂�𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖∗ )  – the fitted value for t-th observation 
calculated on the basis of the model built after removing i-th observation for 
the estimation period, (�̂�𝑌𝑓𝑓𝑓𝑓𝑡𝑡)  – the t-th forecast based on a model built on the 
basis of a full series, (�̂�𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

∗ )  – the t-th forecast based on the model built after 
the removal i-th observation for the estimation period, N – the number of 
observations of the estimation period, h – the forecast horizon.

Equation (11) describes the average differences of the fitted values of the model 
caused by the removal of i-th observation in the test period (CT), while formula (12) 
the average differences in forecast values caused by the removal of i-th observation 
in the sample time interval (CF). CTi = 0; CFi = 0 when deleting the i-th observation 
does not affect the fitted value or forecast.
• Stage 4. Checking whether there are observations in the CT and CF series that 

meet the following properties:

|𝐶𝐶𝐶𝐶𝑖𝑖| > �̅�𝑥𝐶𝐶𝐶𝐶 + 𝑝𝑝 ∙ 𝑆𝑆𝐶𝐶𝐶𝐶 (13)

|𝐶𝐶𝐶𝐶𝑖𝑖| > �̅�𝑥𝐶𝐶𝐶𝐶 + 𝑝𝑝 ∙ 𝑆𝑆𝐶𝐶𝐶𝐶 , (14)

where: �̅�𝑥𝐶𝐶𝐶𝐶   – the average for the CT series, �̅�𝑥𝐶𝐶𝐶𝐶  – the average for the CF series 
SCT  – a standard deviation for the CT series, SCF – a standard deviation for 
the CF series, p – the value adopted in advance. In the paper it was set at 3  
(see Osborne and Overbay, 2004).

The observations satisfying the inequality (13) should be considered as atypical 
observations (outliers) of the first order. They will affect the descriptive properties of 
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the model. When the observations meet inequality (14), they will be called atypical 
observations (outliers) of the second order. They will affect the predictive properties 
of the model. 

4. The empirical example

The variable describing daily sales of liquid fuels (in litres) at X gas station in 2012-
2014 was analysed. The sale of liquid fuels is understood as the sum of sales of Pb95 
and Pb98 unleaded gasoline as well as diesel. The data for the period from January 1, 
2012 to June 30, 2014, which consisted of 912 observations, constituted the model 
estimation period. The period of empirical verification of forecasts covered the 
second half of 2014 (184 observations). Figure 1 presents the analysed variable.
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Fig. 1. Daily sales of liquid fuels at gas station X in the period from 01/01/2012 to 31/12/2014

Source: own study based on Department data.

For modelling and forecasting of the variable, a classic time series model with 
complex seasonal fluctuations of a 7-day and 12-month cycle, described by means 
of zero-one variables, was applied:

𝑌𝑌𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑡𝑡 + ∑𝑏𝑏0𝑘𝑘𝑀𝑀𝑘𝑘𝑡𝑡

12

𝑘𝑘=1
+ ∑𝑐𝑐0𝑗𝑗𝐷𝐷𝑗𝑗𝑡𝑡

7

𝑗𝑗=1
+ 𝑈𝑈𝑡𝑡 

𝑡𝑡 = 1,2, … ,𝑁𝑁;  𝑘𝑘 = 1,2, … ,12; 𝑗𝑗 = 1,2, … ,7 

(15)

assuming that:

∑𝑏𝑏0𝑘𝑘
12

𝑘𝑘=1
= 0; ∑𝑐𝑐0𝑗𝑗

7

𝑗𝑗=1
= 0; , (16)
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where: α0, α1 – coefficient associated with a linear trend, b0k, c0j– coefficient associated 
with seasonality, Mkt – dummy variable that takes 1 for k month and 0 for 
the other, Djt – dummy variable that takes 1 for j day and 0 for the other,  
Ut – random component.

In order to check the effectiveness of the proposed procedure, the results of 
detection of influential and outlier observations were compared for four selected 
methods: 
• projection matrix (PM),
• Cook distances (CD),
• DFFITS (DF),
• standardized residuals (SR).

Calculations were made in the R environment using the functions: hatvalues(), 
rstandard(), cooks.distance(), dffits() and the proprietary function gap_test(). 

Figure 2 shows the values of the main diagonal of the projection matrix.
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Fig. 2. Values of the main diagonal of the projection matrix

Source: own study.

None of the values found on the main diagonal of the projection matrix exceed 
0.025. At the limit value of 0.04167 (formula 3), it should be considered that the 
analysed variable does not contain any influential observations.

Figure 3 shows the Cook distance (CD) for each of the observations of the estimation 
period. The horizontal line indicates the limit value of 0.004386 (formula 8).

For Cook’s distance, the limit indicating occurrence of outliers, was exceeded 
44 times.

Figure 4 presents the DFFITS (DF) values for subsequent observations of the 
estimation period. Limit levels of +/–0.28097 were marked with horizontal lines 
(formula 10).
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Fig. 3. Cook distance values for the observations from the estimation interval

Source: own study.
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Fig. 4. DFFITS values

Source: own study.

The DFFITS limit was exceeded for 48 observations.
Figure 5 presents the values of standardized residuals (SR) for the observation of 

the estimation interval together with the limits of +/–3 standard deviations.
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Fig. 5. Standardized residual values for the observations from the estimation period

Source: own study.

The values of standardized residuals indicate the occurrence of outliers during 
the estimation period. The limit (minus) of three standard deviations (formula 6) was 
exceeded for 14 observations.

Figure 6 presents the changes in level of fitted values (CT) as a result of deleting 
the i-th observation.
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Fig. 6. Changes in level of fitted values of the model (CT) as a result of deleting the i-th observation 
of the estimation period

Source: own study.
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The CTi value series has exactly the same form as the series of standardized (SR) 
residuals. The limit of three standard deviations (formula 13) was exceeded for 14 
observations. Their absence caused an increase in the level of fitted values and the 
excess of the limit of minus three standard deviations. 

Figure 7 presents the changes in forecast values (CFi) as a result of deleting the 
i-th observation of the estimation period.
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Fig. 7. Changes in the level of forecasts as a result of deleting the i-th observation  
of the sample time interval

Source: own study.

Figure 7 shows that the observations at both the beginning and the end of the 
estimation period strongly influenced the forecast values. The changes in the values 
above or below three standard deviations of the mean (formula 14) were recorded 
for 19 observations. This indicates that there are atypical observations (outliers) of 
the second order.

Table 1 summarizes, for all analysed methods, the observation numbers that 
were found to be outliers (of the 1st and 2nd order). The observations for which the 
limit values have been exceeded were marked: (–) for the lower and (+) for the upper 
limit. In the case of the Cook distance method, the exceeding of the limit value was 
indicated by the symbol (*).

The analysis of the data contained in Table 1 shows that the direction of the 
influence of atypical observations on the theoretical values of the model and the 
forecast may be different (observations No. 1; 122; 148; 159). This confirms the 
legitimacy of the distinction, in addition to atypical observations of the first order, 
and also atypical observations of the second order.



On the method of identification of atypical observations in time series 11

Table 1. Numbers of identified atypical observations of estimation period by methods 

Number  
of observation SR CD DF CT CF

1 2 3 4 5 6
1 – * – – +

122 – * – – +
124 * –
148 – * – – +
159 – * – – +
228 – * – –
244 * +
281 – * – –
306 * –
316 – * – –
335 * +
356 * +
360 – * – –
361 – * – –
363 * +
367 * –
372 * –
456 * –
487 * –
489 – * – –
505 * –
541 * +
547 * +
554 +
593 * – –
603 * + +
616 * –
625 +
632 +
633 * + +
639 +
640 * + +
650 * –
664 * – –
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1 2 3 4 5 6
665 * – –
671 – * – – –
679 * –
681 * – –
683 * –
685 * – –
725 – * – – –
726 * – –
731 * + +
841 * –
852 * – –
854 – * – – –
890 – * – – –
901 * –

Source: own study.

5. The impact of atypical observation on forecasting properties

Table 2 presents the values of the parameters of ‘goodness’ of fit, stochastic structure 
and the significance of structural parameters of models built on the basis of a full 
series and a series where atypical observations were removed.

Table 2. The assessment of parameters of the stochastic structure of models built on the basis  
of a complete series and after the removal of atypical observations

Methods
Number  

of removed 
observations

R2 Se Vse [%]

Number  
of statistically 

significant 
coefficients

Complete series – 0.628 551.921 9.538 17

SR 14 (1.54%) 0.703 480.144 8.257 18

CD 44 (4.82%) 0.759 417.769 7.178 18

DF 48 (5.26%) 0.763 412.414 7.095 18

CT 14 (1.54%) 0.703 480.144 8.257 18

CF 19 (2.08%) 0.690 493.588 8.506 17

Source: own study.

Table 1, cont.
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The characteristics of the model built on the basis of the original model were 
empirical data matching at the level of 62.8% and a random variation coefficient of 
9.538%. The removal of 48 observations (DFFITS method) improved the assessment 
of fit measures and the stochastic structure to 76.3% and 7.095%, respectively. This 
means that deleting 5.26% of the series observations enabled an increase in the 
determination coefficient rating by 13.5 percentage points (pp), i.e. 21.5%. 

The removal of the observations detected by the CT method enabled the 
determination coefficient (R2) to increase by 7.5 pp and to reduce the level of random 
variation by 1.281 pp. Identical results were obtained for the SR method. Whereas 
removing the outlier observations of the second order (CF method) improved the 
accuracy of the model description by 6.2 pp (approximately 9.93%).

Table 3 presents the assessment of forecast errors ex post built with the use of 
the model for the full time series and one where atypical observations were removed.

Table 3. The evaluation of ex-post forecast errors (MAPE) for the full series and the refined series 
according to methods for the 184 days horizon (in %)

Method Complete series SR CD DF CT CF
MAPE 8.380 8.591 9.100 8.869 8.591 8.668

Source: own study.

Despite a clear improvement in the descriptive properties of the models, the 
removal of outliers obstructed the accuracy ex post. The model with the highest level 
of fit and the lowest level of the coefficient variation (time series reduced by the 
DFFITS method) was characterized by an error of 0.489 pp higher than the model 
for full data. Even worse results – an error of 9.100% – were obtained by removing 
from the series the observations indicated with the use of the Cook distance method. 
The analysis of Table 3 shows that the removal of atypical second order observations 
(CF method) did not improve either the accuracy of the forecasts. The obtained 
forecast errors were higher than for the SR or CT method. The reason for this is 
explained by a more detailed analysis of the data presented in Figure 8 and Table 1. 
The appearance of strong fluctuations in the initial and final part of the estimation 
interval suggests a change in the dynamics of the analysed phenomenon. These 
conclusions are confirmed by the average value of the CF series for 10% of the final 
observations of the estimation interval, amounting to –0.5846. It also indicates that 
the value of forecasts is being underestimated (formula 11).

Due to a different impact direction of atypical observations of the second order 
on forecast values (see Table 1), Table 4 summarizes the average values of the CF 
series according to impact: positive (+) or/and negative (–).

The removal of all atypical observations contributed to the underestimation 
of the already underestimated forecasts, which consequently led to an increase in 
forecast error assessment. This means that in the case of the analysed the time series, 



14 Maciej Oesterreich

it is appropriate to delete only atypical observations of the second order for which 
the values of the CF series are greater than 0 (+). This will result in an increase in the 
level of constructed forecasts and thus a reduction of the average error.

Table 4. The average value of the CF series according to the impact direction  
of atypical observations of the second order

Impact direction of atypical observations Average value of CF
– –6.878
+ 6.090

– /+ –1.418

Source: own study.

For comparative purposes, Table 5 presents the assessment of parameters of the 
stochastic structure and model’s goodness-of-fitting and ex post forecast errors built 
on the basis of a series, where the atypical second order observations were removed, 
with a breakdown into positive (+) and negative (–) CF values.

Table 5. The assessment of parameters of goodness of fit and the stochastic structure  
of models built on the basis of a series after removal of atypical observations of the second order

Methods
Number  

of removed 
observations

R2 Se Vse [%] MAPE

CF(–) 11 (1.21%) 0.671 515.526 8.887 9.088

CF(+) 8 (0.88%) 0.625 531.831 9.188 8.038

Source: own study.

The removal of atypical observations of second order with CF values greater 
than 0 resulted in a decrease in the average relative forecast error to 8.038%, i.e. 
4.1% lower than the one obtained for full data. This contributed to the deterioration 
of the descriptive properties of the model built on the basis of this series, whereas 
the removal of atypical observations with CF lower than 0 clearly deteriorated the 
quality of the obtained forecasts.

6. Conclusion

The analyses carried out at the paper confirmed that the direction in which 
observations affect the theoretical values of the model and forecast may be different. 
The refining of time series from atypical observations of the first order improved 
the descriptive properties of the models, which resulted in an increase in the level of 
the model’s goodness-of-fit and a reduction in the level of variation of the random 
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component. At the same time this process reduced predictive properties of models 
and increased the ex post forecast error rate. 

This confirms the legitimacy of the identification of the atypical observations of 
the second order, in addition to atypical observations of the first order. The elimination 
of this type of observations improved forecasting properties of the model, but also 
resulted in a deterioration of the model’s descriptive properties. 

The main advantage of the presented method is that it enables ex-ante analysis 
without knowing the real values in the forecasted period. The analysis showed that 
elimination of atypical observations of the second order should be preceded by 
the analysis of values of CF series. The appropriate methods of its analysis should 
increase the precision of detection of this type of observation. This will be one of the 
directions of future research.

The conducted research focused on identifying atypical observations and 
analyzing their impact for models constructed using the least squares method (linear 
or linearized). Therefore, future research will focus on the possibility of application 
of the presented method to other types of models.
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O METODZIE IDENTYFIKACJI OBSERWACJI NIETYPOWYCH 
W SZEREGACH CZASOWYCH

Streszczenie: W pracy zaproponowano metodę wykrywania obserwacji nietypowych w szeregach 
czasowych z wahaniami sezonowymi oraz bez tych wahań. Jej istota jej polega na badaniu wpływu 
poszczególnych obserwacji szeregu na wartości teoretyczne modelu oraz wielkości prognoz zbudo-
wanych na jego podstawie. Egzemplifikacją rozważań o charakterze teoretycznym jest przykład em-
piryczny dotyczący modelowania i prognozowania dziennej sprzedaży paliw płynnych na stacji paliw 
X w latach 2012-2014. Dane za okres od 1.01.2012 do 30.06.2014 stanowią okres estymacyjny, a za  
II półrocze 2014 r. okres empirycznej weryfikacji prognoz. Wyniki otrzymane za jej pomocą zostały 
porównane z wynikami uzyskanymi innymi metodami służącymi do identyfikacji obserwacji wpływo-
wych oraz odstających, w tym m.in.: reszt standaryzowanych, odległości Cooka oraz DFFIT. Oblicze-
nia przeprowadzono w środowisku R oraz pakiecie Statistica.

Słowa kluczowe: prognozy, identyfikacja, regresja wieloraka, szeregi czasowe, obserwacje odstające.
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