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Abstract

Background. Wound healing is an essential physiological process in recovery after microsurgery.

Objectives. To further understand the functions of fibroblast growth factor 21 (FGF21), the roles of this
factor were examined and its correlations with inflammation, vascular endothelial growth factor A (VEGFA)
and ERK1/2 signaling pathway activation were analyzed.

Materials and methods. Rat brain microvascular endothelial cells (RBMECS) were treated with interleukin
(IL)-1B and used for the experiments. Cell Counting Kit-8 (CCK-8) was used to detect the cell viability of RB-
MECs after treatment with IL-1B (1 ng/mL) and FGF21 or VEGFA overexpression, while changes in apoptosis
were measured through flow cytometry. Migration was checked through the scratch test. FGF21 and VEGFA
RNA expression was assessed using reverse-transcription quantitative polymerase chain reaction (RT-PCR),
which was also used to examine RNA expression of Bcl-2, Bax and caspase-3. After IL-1p treatment and
FGF21 overexpression, tumor necrosis factor alpha (TNF-a) and tumor growth factor f1 (TGF-B1) proteins
level were observed with enzyme-linked immunosorbent assay (ELISA), which was also applied to check
the expression of ERK1/2 after overexpression of FGF21 and VEGFA. PD98059 (50 pM), an ERK1/2 inhibitor,
was used to examine the roles of ERK1/2 in requlating cell viability and apoptosis.

Results. The IL-1p treatment significantly decreased the viability of RBMECs and TGF-B1, but promoted
cell apoptosis and TNF-a expression. FGF21 was downregulated by IL-1B treatment but its overexpression
enhanced the viability of RBMECs and TGF-B1 and ERK1/2 protein levels, and attenuated cell apoptosis and
TNF-a. Upregulated TNF-a restrained cell viability and apoptosis of RBMECs after FGF21 overexpression, and
its upregulation not only suppressed FGF21, butalso VEGFA. Moreover, VEGFA suppression by TNF-aincreased
cell viability and ERK1/2 protein levels, and suppressed the apoptosis of RBMECs through its upregulation.
However, PD98059 obstructed the functions of FGF21 and VEGFA.

Conclusions. FGF21 promoted the cell viability of RBMECs through upregulating TNF-a-mediated VEGFA
and ERK1/2 signaling.
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Background

Acute stroke remains the leading cause of morbidity and
mortality worldwide,! and is the main cause of disability.
Stroke results from transient or permanent cerebral isch-
emia caused by arterial stenosis or occlusion, and com-
mon manifestations of this disease are focal neurological
deficits.>* Intravenous thrombolysis and endovascular
thrombectomy (EVT) are the 2 main treatments for re-
vascularization.! Recent randomized clinical trials have
shown that EVT has a strong therapeutic effect on acute
ischemic stroke caused by large vessel occlusions.” How-
ever, damage to pig extracranial arteries, particularly en-
dothelial cells, has been reported following EVT.® A key
step during wound healing after surgery is the transition
from an inflammatory stage to a proliferative stage, where
inflammation can recruit the innate immune system and
help to remove dead tissues.” However, prolonged in-
flammation can lead to uncontrolled activation, resulting
in the inhibition of wound healing.® Therefore, cytokines
that can attenuate the influence of EVT on cerebral vessels
and control the inflammatory response attract attention.

Fibroblast growth factor 21 (FGF21) belongs to the FGF19
subfamily of FGF growth factors, which have a low affinity
for heparin and the ability to circulate throughout the body
as endocrine factors binding at FGF receptors.”!° It func-
tions as a potent regulator of lipid or energy metabolism,
and can lengthen the lifespan of mice with overexpres-
sion.!! Moreover, FGF21 is highly expressed in a mouse
model of steatohepatitis, and injection of FGF21 attenuates
the development of steatohepatitis in methionine- and
choline-deficient mice.!? A study examining the effects
of FGF21 on the progression of atherosclerosis has also
reported that this growth factor can significantly down-
regulate the expression of inflammatory factors, including
interleukin (IL)-1q, IL-6, and tumor necrosis factor alpha
(TNF-a), and can suppress the NF-«kB signaling pathway
in macrophages.!® In addition to repressing the inflam-
matory response, FGF21 has also been shown to facilitate
wound healing in diabetic mice by promoting granulation,
collagen deposition and re-epithelialization.!* Unlike other
members in FGF family, FGF21 is the only one that has
no mitogen activity and does not accelerate cancer oc-
currence.!” Thus, FGF21 has a great potential for clinical
usage.

Following brain injury in rats, FGF21 can exert a pro-
tective effect by promoting neuronal survival, inhibiting
the apoptosis of neurons through the PI3K/AKT signaling
pathway, and decreasing cerebral infarct volume.*® As for
angiogenesis in the brain, FGF21 has been shown to im-
prove this process and to promote the healing of human
brain microvascular endothelial cells through the forma-
tion of a FGF21/FGFR1/b-klotho complex and peroxisome
proliferator-activated receptor gamma (PPARY) activa-
tion. However, whether FGF21 can mediate wound healing
of the brain microvasculature in other ways is unknown.
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Thus, we explored additional mechanisms whereby FGF21
could regulate angiogenesis and the healing of rat brain
microvascular endothelial cells (RBMECs).

Angiogenesis is an important part of wound healing
and vascular endothelial growth factor A (VEGFA) is one
of the most efficient factors that promotes this process.'”
In diabetic mice, the upregulation of TNF-a reduces angio-
genesis through inhibiting VEGFA expression.!® In addition,
the downregulation of VEGFA expression reduces the prolif-
eration of endothelial cells, angiogenesis and re-epithelializa-
tion in mice.!” In human dermal fibroblasts, VEGFA can be
induced by visfatin to promote cell proliferation and metasta-
sis, and VEGFA upregulation in wound healing is associated
with activation of the ERK pathway.2*! Moreover, FGF21 has
been reported to suppress melanogenesis in alpaca melano-
cytes by upregulating the expression of p-ERK1/2.22 Based
on these findings, we hypothesized that FGF21 regulates
VEGFA during wound healing and angiogenesis through
activation of the ERK1/2 signaling pathway and regulation
of the inflammatory response.

Objectives

Thus, to further understand the functions of FGF21,
the roles of this factor were examined and its correlations
with inflammation, VEGFA and ERK1/2 signaling pathway
activation were analyzed.

Materials and methods
Cell culture

The RBMECs were purchased from Procell (Wuhan,
China). These cells, which were isolated from brain tis-
sues, are the main component of the blood—brain barrier.
After the RBMECs were thawed in warm water at 37°C,
they were cultured in high-glucose Dulbecco’s modified
Eagle’s medium (DMEM,; Gibco, Waltham, USA) contain-
ing 10% fetal bovine serum (FBS), 100 U/mL of penicillin
and 100 mg/mL of streptomycin (Gibco) at 37°C in 5% CO,.
The medium was replaced every 2 days and the cells se-
lected for the experiments were all in the 3" to 6" genera-
tion. To simulate an inflammatory environment, RBMECs
were treated with rat IL-1p (1 ng/mL; Sigma-Aldrich, St.
Louis, USA) for 3 h. After IL-1p treatment, the RBMECs
were treated with the ERK1/2 specific upstream inhibitor
PD98059 (50 uM; MedChemExpress, Monmouth Junction,
USA) for 1 h. PD98059 is an effective inhibitor of the MEK
signaling pathway through its blockade of MEK1 and
MEK?2 with an IC5 of 5 uM. It also inhibits the ERK1/2
signaling pathway by blocking phosphorylation. In prepa-
ration for the experiments, the cells were grouped and
named the negative control (NC) group, the IL-1p group
and the PD98059 group.
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Cell transfection

To analyze the functions of FGF21, VEGFA and TNF-q,
overexpression of these 3 genes was carried out. To create
overexpressed FGF21, VEGFA and TNF-«a in RBMECs,
the pcDNA 3.1 vector (Invitrogen, Carlsbad, USA) was
selected for transfection. Briefly, a compounded fragment
of FGF21 was inserted into the pcDNA3.1 to create over-
expressed FGF21. Overexpressed VEGFA and TNF-a were
created in the same way. For cell transfection, RBMECs
were seeded into 24-well plates and cultured at 37°C with
5% CO,. Transfection was performed until 50% confluence
and Lipofectamine 3000 (Invitrogen) was used to mediate
transfection. Then, 2 uL of Lipofectamine 3000 and 0.5 pg
of RNA were added into serum-free Opti-MEM medium
to incubate cells at 37°C for 2 h. Later, the medium used
for cell incubation was added for cell culturing at 37°C
for 24 h. The RNA expression of FGF21 and VEGFA was
measured using reverse-transcription quantitative poly-
merase chain reaction (RT-qPCR), and TNF-a protein
expression was measured using enzyme-linked immuno-
sorbent assay (ELISA). After transfection, the cells were
divided into the following groups: 0eNC, oeFGF21, TNF-q,
0eVEGFA, 0eFGF21 with TNF-a, 0eFGF21 with PD98059,
and 0eVEGFA with PD98059.

RT-gPCR

To measure the RNA levels of FGF21, TNF-a and
VEGFA, total RNA was extracted using the TRIzol reagent
(Invitrogen) from untreated and IL-1p-treated RBMECs,
according to manufacturer’s instructions. Thereafter, re-
verse transcription was performed using a High-Capacity
cDNA Reverse Transcription kit (Applied Biosystems, Fos-
ter City, USA). Based on the manufacturer’s instructions,
the PCR reactions were conducted using the 7500 Fast
Real-Time PCR system (Applied Biosystems), and data
were quantified using the 2724t method. The primers used
are listed in Table 1.

The conditions of the PCR were predenaturation at 95°C
for 1 min followed by 40 cycles of denaturation at 95°C for
30 s, annealing at 60°C for 30 s, and extension at 72°C for
30 s. The results were obtained from three independent
trials.

Table 1. Primer sequences
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CCK-8 assay

Untreated and IL-13-treated RBMECs were seeded into
96-well plates at a density of 5 x 103 cells/well and in-
cubated for 24 h at 37°C with 5% CO,. Thereafter, 10 uL
of Cell Counting Kit-8 (CCK-8; Beyotime, Shanghai,
China) was added to cells at 24 h, 48 h and 72 h. Follow-
ing this, the cells were cultured for 1 h and optical density
(OD) values were detected at the 450 nm wavelength using
a Varioskan™ LUX Multimode Microplate Reader (Thermo
Fisher Scientific, Waltham, USA). All samples were run
in a triplicate.

Flow cytometry

The RBMECs with and without IL-1p treatment were
digested using 0.25% trypsin (Gibco) and rinsed twice
in phosphate-buffered saline (PBS). Next, an Annexin
V-FITC Apoptosis Detection kit (Beyotime) was used for
apoptosis detection. Cells were resuspended at a density
of 1 x 10° in 195 pL of Annexin V-FITC binding buffer.
Later, 5 uL of Annexin V-FITC and 10 pL of propidium
iodide (PI) were added and the cells were cultured in dark-
ness at 25°C for 20 min. Thereafter, an Attune NxT Flow
Cytometer (Invitrogen) was used to analyze the apoptosis
rate of RBMECs. All measurements were repeated 3 times.

Scratch test

The scratch test was used to evaluate the migration
ability of RBMECs. Briefly, untreated and IL-1B-treated
RBMECs were seeded into six-well plates and incubated un-
til cells covered the plate. Thereafter, 20-pL tips were used
to create vertical scratches on the RBMECs. Later, the cells
were rinsed with PBS 3 times to remove the scraped cells.
The RBMECs were then cultured in serum-free medium
at 37°C with 5% CO,. Images were taken 24 h after incuba-
tion. All measurements were repeated 3 times.

ELISA

To examine the protein expression of TNF-a, TGF-f1
and ERK1/2, Rat TNF alpha ELISA (ab46070; Abcam,
Cambridge, UK), Rat TGF-1 ELISA (ab119558; Abcam)

RNA names Forward
FGF21 5-GGGTCAAGTCCGACAGAGGTAT-3'
VEGFA 5-CCAGGAGTACCCCG ATGAGATAG-3'
Bcl-2 5'-GAGTACCTGAACCGGCATCT-3
Bax 5-TTGCTACAGGGTTTCATCCA-3'
Caspase-3 5-GGACCTGTGGACCTGAAAAA -3
TNF-a 5-TACTGAACTTCGGGGTGATTGGTCC-3
GAPDH 5-TGCCACTCAGAAG ACTGTGG-3'

Reverse | Reference

5-ATCAAAGTGAGGCGATCCATAGA-3' 22
5-CTGGCTTTGGTGAGGTTTGATC-3' 2
5-GAAATCAAACAGAGGTCGCA-3' &
5-GAGTACCTGAACCGGCATCT-3' »
5'-GCATGCCATAT CATCGTCAG-3’ %
5-CAGCCTTGTCCCTTGAAGAGAACC-3' z
5-GGATGCAGGGATGATGTTCT -3' &




714

and ERK1 (pT202/pY204; Abcam) + ERK2 (pT185/pY187;
Abcam) + total ERK1/2 ELISA (ab126445; Abcam) kits
were used. According to the manufacturer’s instructions,
antibodies were first settled into 96-well plates and pro-
teins from the RBMECs were then added. Next, biotinyl-
ated anti-TNF-a, biotin-conjugated anti-rat TGF-B1 mono-
clonal antibody, detection antibody Erkl (T202/Y204)/
Erk2 (T185/Y187) and detection antibody Erk1/2 were
mixed and incubated at room temperature. Thereafter,
streptavidin-horseradish peroxidase (HRP) was pipetted
into wells followed by washing with wash buffer. Next,
TMB Substrate Reagent (BD Biosciences, Shanghai, China)
was added and Stop Solution (BD Biosciences) was used
for reaction termination. Color intensity was measured
at 450 nm using a Varioskan™ LUX Multimode Microplate
Reader (Thermo Fisher Scientific). The results for this ex-
periment were from 3 independent trials.

Statistical analyses

Data are shown as mean + standard deviation (SD) and
the results were analyzed using GraphPad Prism v. 7.0

W. Chen et al. FGF21 healing of RBMEC by VEGFA ERK1/2

(GraphPad Software, San Diego, USA) and SPSS v. 19.0
software (IBM Corp., Armonk, USA). Comparisons be-
tween the 2 groups were analyzed using the Student’s t-test
and multiple comparisons between the groups were per-
formed using the S-N-K method. An alpha level of p < 0.05
was considered statistically significant.

Results

IL-1B treatment induces cell apoptosis
and inflammation of RBMECs,
and decreases cell viability

To confirm the effects of IL-1p treatment, the cell vi-
ability of RBMECs was first examined. The CCK-8 assay
showed that the viability of RBMECs was significantly
decreased by IL-1pB treatment as compared to untreated
RBMEC:s (p < 0.05, Fig. 1A). In addition, IL-1B-treated
RBMECs showed a significantly higher level of apoptosis
rate compared to untreated RBMECs (p < 0.05, Fig. 1B).
The RT-qPCR also indicated that RBMECs treated with
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Fig. 1. IL-1B treatment induces cell apoptosis and inflammation of RBMECs, and decreases cell viability

A. Cell viability of untreated and IL-1B-treated (1 ng/mL) RBMECs as detected using CCK-8 (**p < 0.05 compared to the NC group); B. Flow cytometry was
used to examine apoptosis of untreated and IL-13-treated (1 ng/mL) RBMECs (**p < 0.05 compared to the NC group); C. RNA expression of Bcl-2, Bax and
caspase-3 were evaluated with RT-gPCR in untreated and IL-1B3-treated (1 ng/mL) RBMECs (**p < 0.05 compared with the NC group); D. TNF-a and TGF-31
protein levels in untreated and IL-1@-treated (1 ng/mL) RBMECs were measured with ELISA (**p < 0.05 compared to the NC group); E. Wound healing

of untreated and IL-1@-treated (1 ng/mL) RBMECs was analyzed with the scratch test (**p < 0.05 compared to the NC group).
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Fig. 2. Overexpression of FGF21 promotes cell viability, and inhibits cell apoptosis and inflammation of RBMECs via the ERK1/2 signaling pathway

A. FGF21 RNA expression in untreated and IL-13-treated (1 ng/mL) RBMECs were measured using RT-qPCR (**p < 0.05 compared to the NC group);

B. RT-gPCR was used to analyze FGF21 RNA expression in RBMECs after overexpression (**p < 0.05 compared with the 0eNC group); C. Cell viability

of RBMECs transfected with oeNC and 0eFGF21 (**p < 0.05 compared to the 0eNC group); D. Bcl-2, Bax and caspase-3 RNA expression in RBMECs
transfected with 0eNC and oeFGF21 were assessed using RT-qPCR (**p < 0.05 compared to the 0eNC group); E. ELISA was used to detect TNF-a and TGF-B1
protein levels in RBMECs after oeNC and oeFGF21 transfection (**p < 0.05 compared to the 0eNC group); F. Phosphorylated ERK1/2 and total ERK1/2 were
measured with ELISA in RBMECs after oeNC and oeFGF21 transfection (**p < 0.05 compared to the oeNC group).

IL-1B exhibited a significantly lower level of Bcl-2, and
a higher expression of Bax and caspase-3, compared
to RBMECs without treatment (p < 0.05, Fig. 1C). Inflam-
matory cytokines were also examined and it was shown
that TNF-a was significantly increased, and TGF-f1 sig-
nificantly decreased by treatment with IL-1p (p < 0.05,
Fig. 1D). Moreover, the wound healing of RBMECs after
II-1B treatment was examined, and the results indicated
that RBMECs after IL-1p treatment had a significantly
larger migration area than untreated RBMECs (p < 0.05,
Fig. 1E). To better understand the functions of inflamma-
tion in wound healing, RBMECs treated with IL-1p were
further examined.

Overexpression of FGF21 promotes
cell viability, and inhibits cell apoptosis
and inflammation of RBMECs

via the ERK1/2 signaling pathway

The RT-qPCR showed that FGF21 RNA expression was
significantly upregulated after IL-1f treatment (p < 0.05,
Fig. 2A). Based on this finding, we overexpressed FGF21
in RBMECs to examine the potential functions of this fac-
tor in cell growth. FGF21 RNA expression in RBMECs
transfected with a compounded fragment of FGF21 was
significantly upregulated compared to RBMECs trans-
fected with a NC (p < 0.05, Fig. 2B). The CCK-8 assays
showed that overexpressed FGF21 greatly increased the cell
viability of RBMEC:s (p < 0.05, Fig. 2C). In addition, Bcl-2
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was significantly upregulated, and Bax and caspase-3 were
markedly downregulated by FGF21 upregulation (p < 0.05,
Fig. 2D). Moreover, overexpressed FGF21 suppressed
the inflammatory response, which was manifested by a low
expression of TNF-a and upregulated TGF-B1 (p < 0.05,
Fig. 2E). The FGF21 mediated progression of wound heal-
ing was also examined, showing that the ERK1/2 signaling
pathway was activated through phosphorylated ERK1/2
proteins (p < 0.05, Fig. 2F).

Upregulated TNF-a inhibits cell viability
and promotes the apoptosis of RBMECs
through suppressing FGF21

As TNF-a was downregulated by FGF21 overexpression,
the role of this factor in the wound healing of RBMECs was
further analyzed. Overexpression of TNF-a significantly
increased the protein level of TNF-a compared to the NC
group (p < 0.05, Fig. 3A). Thereafter, FGF21 RNA expres-
sion was measured, indicating that the increased expression
of FGF21 caused by the overexpression of FGF21 was re-
versed to a lower level by TNF-a (p < 0.05, Fig. 3B). Further-
more, the increased cell viability of RBMECs after FGF21

A RBMEC
400-

3004
200

1004

protein level of TNF-a (pg/mL)
Relative FGF21 RNA expression

0

D RBMEC
25+

20+
15+

10+

Apoptosis rate (%)

‘\0

N
A
& o

&

N
v

&
4 d

&
’;\\\

W. Chen et al. FGF21 healing of RBMEC by VEGFA ERK1/2

upregulation was significantly inhibited by TNF-a pro-
motion, while overexpressed TNF-a increased the apop-
tosis rate of RBMECs whose apoptosis rate was declined
by overexpressed FGF21 (p < 0.05, Fig. 3C,D). Moreover,
Bcl-2 expression was decreased, while Bax and caspase-3
were both promoted after TNF-a overexpression (p < 0.05,
Fig. 3E). The scratch test also indicated that overexpressed
FGF21 significantly decreased the healing area of RBMECs,
while TNF-a upregulation reversed the impact of FGF21
and reduced the migration of RBMECs (p < 0.05, Fig. 3F).

Overexpression of VEGFA promotes
cell viability and represses apoptosis
of RBMECs through the ERK1/2
signaling pathway

Because of TNF-a upregulation, FGF21 was significantly
downregulated. This treatment also decreased the RNA lev-
els of VEGFA (p < 0.05, Fig. 4A). Thus, to examine the func-
tions of VEGFA in RBMEC wound healing, an overexpres-
sion of VEGFA was carried out. After upregulation, VEGFA
RNA expression was largely increased compared to the NC
transfection group (p < 0.05, Fig. 4B). The cell viability
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Fig. 3. Upregulated TNF-a inhibits cell viability and promotes cell apoptosis of RBMECs through the suppression of FGF21

A. Protein expression of TNF-a in RBMECs after TNF-a upregulation was evaluated with ELISA (**p < 0.05 compared to the NC group); B. FGF21 RNA
expression after FGF21 overexpression and TNF-a upregulation were detected with RT-gPCR (**p < 0.05 in comparison with the 0eNC group and #p < 0.05
compared to the 0eFGF21 group); C. Cell viability of RBMECs after FGF21 and TNF-a overexpression (**p < 0.05 compared to the oeNC group and *p < 0.05
compared to the 0eFGF21 group); D. Flow cytometry was used to measure apoptosis rate of RBMECs after transfection with oeFGF21 and oeTNF-a

(**p < 0.05 compared to the 0eNC group and #p < 0.05 compared to the 0eFGF21 group); E. RT-qPCR was used to analyze Bcl-2, Bax and caspase-3 RNA
expression in RBMECs transfected with FGF21 and TNF-a overexpression (**p < 0.05 compared to the oeNC group and #p < 0.05 compared to the oeFGF21
group); F. Scratch test was used to detect wound healing of RBMECs transfected with oeFGF21 and oeTNF-a (**p < 0.05 compared to the oeNC group and

#p < 0.05 compared to the oeFGF21 group).
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Fig. 4. Overexpression of VEGFA promotes cell viability and represses apoptosis of RBMECs through the ERK1/2 signaling pathway

A. VEGFA RNA expression in normal RBMECs and RBMECs after TNF-a overexpression were assessed with RT-gPCR (**p < 0.05 compared to the NC group);
B. VEGFA RNA expression in RBMECs transfected with oeNC and 0eVEGFA were measured with RT-gPCR (**p < 0.05 compared to the 0eNC group);

C. CCK-8 was applied to detect cell viability of RBMECs after oeNC and 0eVEGFA transfection (**p < 0.05 compared to the 0oeNC group); D. Bcl-2, Bax and
caspase-3 RNA expression were detected with RT-gPCR in RBMECs after oeNC or 0eVEGFA transfection (**p < 0.05 compared to the 0eNC group); E. ERK1/2
phosphorylation and total ERK1/2 were measured with ELISA in RBMECs transfected using oeNC and 0eVEGFA (**p < 0.05 compared to the 0eNC group).

of RBMECs was significantly improved by VEGFA overex-
pression (p < 0.05, Fig. 4C). In addition, RT-qPCR indicated
that the Bcl-2 RNA level was significantly upregulated after
VEGFA overexpression, while Bax and caspase-3 RNA ex-
pression were both significantly lower compared to the NC
group (p < 0.05, Fig. 4D). To investigate the mechanism
by which VEGFA mediates cell viability and apoptosis,
the effects of this factor on ERK phosphorylation were also
examined. The results showed that the protein expression
of phosphorylated ERK1/2 was significantly upregulated
by VEGFA upregulation (p < 0.05, Fig. 4E).

Suppression of the ERK1/2 signaling
pathway inhibits the effects of FGF21

and VEGFA on cell viability and apoptosis
of RBMECs

As the ERK1/2 signaling pathway was activated
by FGF21 and VEGFA in RBMECs, we examined the po-
tential functions of this pathway in the wound healing
progression of these cells. To this end, P98059, an ERK1/2
signaling pathway suppressor, was used to block activa-
tion of ERK1/2. PD98059 treatment significantly inhibited
not only the protein levels of phosphorylated ERK1/2,
but total ERK1/2 protein expression (p < 0.05, Fig. 5A).

Thereafter, the roles of the ERK1/2 signaling pathway
were examined after FGF21 and VEGFA were upregulated.
PD98059 treatment significantly inhibited the increased
cell viability caused by overexpressed FGF21 and VEGFA
(p < 0.05, Fig. 5B), and enhanced the apoptosis rate of RB-
MEC after suppression by FGF21 and VEGFA upregula-
tion (p < 0.05, Fig. 5C). Moreover, the high levels of Bcl-2
caused by upregulated FGF21 and VEGFA were reversed
after PD98059 treatment, while the lower levels of Bax
and capase-3 were both upregulated (p < 0.05, Fig. 5D).
The scratch test showed that the decreased migration
areas induced by overexpressed FGF21 and VEGF were
inhibited by PD98059 treatment in RBMECs (p < 0.05,
Fig. 5E).

Discussion

Endovascular surgery has been shown to treat stroke suc-
cessfully.?® However, the vessel damage that can result from
mechanical thrombectomy?® is an urgent clinical problem
that needs to be addressed.3—32 Accelerating the efficiency
of wound healing following this procedure might bring
a better future for endovascular surgeries. In the progres-
sion of wound healing, inflammation is an important step
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Fig. 5. Suppression of the ERK1/2 signaling pathway inhibits FGF21 and VEGFA regulation of RBMEC viability and apoptosis

A. Phosphorylated ERK1/2 and total ERK1/2 were measured in normal and PD98059 (50 uM)-treated RBMECs (**p < 0.05 compared to the NC group); B. Cell
viability of RBMECs after overexpression of FGF21 or VEGFA and overexpression of FGF21 or VEGFA with PD98059 were examined through CCK-8 (**p < 0.05
compared to the 0eNC group and *#p < 0.05 compared to the 0eFGF21 or 0eVEGFA group); C. Apoptosis rate of RBMECs transfected with oeFGF21

or 0eVEGFA, and RBEMCs treated with PD98059 after transfection were evaluated using flow cytometry (**p < 0.05 compared to the oeNC group and

#p < 0.05 compared to the 0eFGF21 or 0eVEGFA group); D. Bcl-2, Bax and caspase-3 RNA expression were measured using RT-gPCR in RBMECs transfected
with 0eFGF21 and 0eVEGFA and PD98059 treatment (**p < 0.05 compared to the 0eNC group and *p < 0.05 compared to the 0eFGF21 or 0eVEGFA group);
E. Wound healing of RBMECs after oeFGF21 and 0eVEGFA transfection and PD98059 treatment were checked using the scratch test (**p < 0.05 compared

to the 0eNC group and *p < 0.05 compared to the 0eFGF21 or 0eVEGFA group).

that can induce immune system activation, restore homeo-
stasis and repair tissue damage.>® However, persistent and
overactivated inflammation can result in further damage.*
In examinations of inflammatory cytokines, TNF-a has

been identified as a factor that can inhibit the metastasis
of keratinocytes through upregulation of TIMP-1 expres-
sion, but a TNF-a antagonist has been shown to improve
the progression of wound healing in diabetic rats models.*®
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By contrast, TGF-P1 has also been reported to attenuate
the inflammatory response via the ERK1/2 signaling path-
way and can facilitate the progression of wound healing.3¢%”
Based on these studies, we examined the effects of inflam-
mation on the wound healing of RBMECs. Using CCK-8
assays and flow cytometry, we determined that RBMECs
treated with IL-1 showed lower cell viability and a higher
cell apoptosis rate. Moreover, downregulated Bcl-2 RNA ex-
pression, and upregulated Bax and caspase-3 expression, also
indicated that IL-1f facilitated cell apoptosis. As for the ef-
fects of IL-1B on inflammatory cytokines, TNF-a protein
expression was upregulated, while TGF-p1 was significantly
decreased. Hence, in the current study, prolonged inflam-
mation in RBMECs has been shown to decrease cell viabil-
ity and migration, and to promote cell apoptosis, through
the stimulation of TNF-a and the suppression of TGF-p1.
Studies examining the functions of FGF21 have com-
monly focused on homeostasis, especially its role in energy
metabolism.?® However, FGF21 can also act as an anti-
inflammatory cytokine, which has been shown in experi-
mental pancreatitis and myocardial ischemia.?® In addi-
tion, FGF21 has been reported to promote wound healing
through increasing the activation of c-Jun N-terminal
kinase (JNK).? In rat myocardial ischemia reperfusion
and H9¢2 hypoxia re-oxygenation models, FGF21 signifi-
cantly reduced cell apoptosis and inhibited TNF-a through
binding miR-145.%° However, whether FGF21 can also in-
fluence TNF-a during the progression of wound healing
has seldom been mentioned. Thus, we have investigated
the role of FGF21 in the wound healing of RBMECs, which
revealed that FGF21 promoted cell viability and inhibited
cell apoptosis. Moreover, FGF21 suppressed the protein
levels of TNF-a and increased TGF-B1. Therefore, we hy-
pothesized that FGF21 might promote wound healing
through a suppression of TNF-a. Apart from inflamma-
tion, the ERK1/2 signaling pathway has also been shown
to play an important role in FGF signaling transmission.®
Activation of the ERK1/2 signaling pathway helps FGF21
facilitate glucose uptake by inducing expression of glucose
transporter-1 in adipocytes.* Moreover, p-ERK1/2 was ac-
tivated and promoted during the wound healing of diabetic
rats after propranolol treatment.*? Based on these studies,
we analyzed the expression of ERK1 and ERK2 and showed
that these proteins were significantly upregulated. There-
fore, FGF21 might accelerate the wound healing of RB-
MECs through activation of the ERK1/2 signaling pathway.
As outlined above, FGF21 inhibited TNF-ot in the RBMEC
model. Others have reported that TNF-a can suppress
B-Klotho expression and attenuate the roles of FGF21
in adipocytes.® In the current study, TNF-a also increased
cell apoptosis, and reduced the viability and wound healing
of RBMECs by inhibiting the functions of FGF21. There-
fore, inflammation might retard the progression of wound
healing by inhibiting FGF21. Moreover, TNF-a was found
to inhibit VEGFA in RBMEC cells, which is an important
factor in the progression of wound healing.** The VEGFA
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has been reported to accelerate angiogenesis in human um-
bilical vein endothelial cells (HUVECs) via ERK1/2 phos-
phorylation and ACE2 inhibition.*® Therefore, we examined
the functions of VEGFA in RBMECs, showing that it could
improve cell viability and depress cell apoptosis. Moreover,
VEGFA enhanced phosphorylation of ERK1/2 in RBMECs.
Therefore, we hypothesized that TNF-a might also inhibit
wound healing through downregulating VEGFA.

In the current study, the ERK1/2 signaling pathway was
activated by FGF21 and VEGFA. Based on this finding,
we speculated if activation of the ERK1/2 signaling path-
way was a necessary step in wound healing. To test this
idea, we used PD98059 to inhibit ERK1/2. Treatment with
this agent significantly repressed the promotion of cell
viability and migration caused by FGF21 and VEGFA,
while inhibition of the apoptosis rate was also reversed
to a higher level. PD98059 has been shown to inhibit
the wound healing progression of human keratinocytes
by suppressing p-ERK1 and p-ERK2, which was also shown
in a rat wound model.%® In our study, FGF21 mediated cell
viability and cell apoptosis of RBMECs via the inhibition
of TNF-a and activation of the ERK1/2 signaling path-
way. Furthermore, TNF-a suppressed FGF21 functions
and VEGFA, while VEGFA also regulated the viability and
apoptosis of RBMECs via the ERK1/2 signaling pathway.
Thus, FGF21 may accelerate wound healing through up-
regulating VEGFA and activating the ERK1/2 signaling
pathway by suppressing TNF-a. However, this finding will
need to be confirmed in future work.

Conclusions

The FGF21 facilitated the viability and inhibited the
apoptosis of RBMECs through the activation of ERK1/2
and VEGFA, caused by inhibition of TNF-a. These findings
suggest that FGF21 might be a useful factor to improve
wound healing. However, in vivo and clinical studies will be
needed to demonstrate the effectiveness of this approach.
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