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Abstract: Stone columns (or granular piles, GPs) are 
progressively being utilized for ground improvement, 
mostly for pliant edifice such as road mounds, oil depot, 
and so forth. The present analysis is done by introducing 
strengthening at both the ends of GP, i.e., bottom and 
top end so that the bulging problem will be solved and 
the beneficiary effect of the bearing stratum can be 
utilized by the bottom strengthening feature. Analysis of 
a single partially strengthened, at both top and bottom, 
end-bearing GP is presented in this article in terms of 
displacement affecting component for the top (DACT) 
of GP, percentage load transferred to the base (PLTB) of 
strengthened GP, and normalized shear stress (NSS). 
The PLTB of the strengthened GP was found to increase 
considerably. The NSS was found to reduce at the top end 
of GP and is found to be redistributed along the length of 
GP.

Keywords: granular pile; DACT of GP; NSS; PLTB of GP; 
reinforced stone columns; end-bearing GP.

1  Introduction
The adequate infrastructure of buildings, roads, tunnels, 
bridges, and other civil engineering works is a must for 
any country’s progress. Consequently, construction is now 
done on places with enormously poor ground situations 
like soft clays, which cover a vast area in India. The 
rigorousness of the granular pile (GP) stops the horizontal 
enfolding of stones, hence aiding faster and cost-effective 
installation. The strengthening of the conventional GP 

may be achieved by (stiffened deep cement mixing) SDCM, 
use of geosynthetics, etc., which ultimately improves the 
performance of GP, owing to better mechanical properties 
of strengthening material used. For resolving the problem, 
the elastic continuum approach is applied. As the top 
and bottom portions are strengthened, a new matrix is 
created to introduce strengthening parameters for the 
top and bottom of GP. The parameter relative stiffness 
of bearing stratum, i.e., (Ebs/Ess), is defined for partially 
strengthened end-bearing GP, where “Ebs” and “Ess,” are, 
respectively, the deformation modulus of bearing stratum 
and surrounding soft soil. The basic mirror image method 
is used to obtain the solution.

This study emphasizes the single end-bearing GP 
with its top and bottom portions strengthened, leaving 
some intermediate portion as unstrengthened for 
economic considerations. In past research, the effect of 
strengthening at the top was studied for getting rid of the 
bulging problem, as reported earlier. Now in this study, 
the bottom portion of end-bearing GP is also strengthened 
to take advantage of the bearing stratum, and as a result, 
it has been found to improve the performance of GP.

The analysis is based on the following assumptions: 
i.	 It is assumed that the stress-strain relationship is of 

linear nature. 
ii.	 To have a uniform distribution of load across the base 

of the granular pile and proper contact of the GP base 
with the base stratum, the base of the GP is considered 
as smooth by Madhav et al. [1] across which the load is 
uniformly distributed. 

iii.	 A linear performance is presumed to be applicable 
for soil, and simultaneously, it is supposed to be 
homogeneous and isotropic.

iv.	 It is assumed that there will be no slip or yield state 
at the granular pile-soil interface, owing to its rough 
nature.
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2  Literature Review
In earlier investigational and mathematical methodologies 
for studying the performance of GPs, several investigators 
have contributed. Meanwhile, in 1969 with the pioneer 
study of Mattes and Poulos [2] in the area of GPs, as a 
ground improvement technique, several researchers have 
worked in this area, providing innovative elevations to 
this area. Priebe [3] proposed the reduced stress method 
for quantifying a decrease in settlement of soft ground 
reinforced with columns made up of stones. Ambily and 
Gandhi [4] performed drained elasto-plastic examination 
using Mohr-Coulomb’s principle for soft clay, stones, 
and sand. Numerical results from the FEM link well with 
the experimental results. Black et al. [5] examined the 
performance of columns made up of stones in a weak 
deposit with the effect of reinforcing stone columns 
by jacketing with a tubular wire mesh by connecting 
reinforcement with a metal rod and a concrete plug. It was 
found that the load settlement response was increased 
significantly by adopting various methods of reinforcing. 
Madhav et al. [6] studied the interactions among a 
GP and raft positioned on top using the continuum 
approach. It was found that the percentage load carried 
by the granular pile (GP) increases with the increase of its 
relative stiffness and decreases with the increase of the 
relative size of the raft. Wang [7] solved the differential 
equations of the foundation reinforced by stone columns 
using a semi-analytical method, and the results obtained 
were comparable with the existing analytical solutions. 
Najjar et al. [8] assessed the degree of improvement 
in the mechanical properties of soft clays in practical 
applications, including the use of sand drains or sand 
columns in clayey soils, by changing the parameter of 
the diameter of the sand column. Test results indicated 
that sand columns improved the un-drained strength 
significantly, even for area replacement ratios less than 
18%. Black et al. [9] did physical model tests to recognize 
the settlement characteristics, mainly in relation to small-
group configurations. For the control of settlements, it 
was found that an optimum area replacement ratio of 
30%–40% exists. Yoo [10] presented a three-dimensional 
finite-element model to bring out a parametric study 
on several leading aspects such as the consistency of 
soft ground, the geo-synthetic encasement length and 
stiffness, embankment fill height, and area replacement 
ratio. An overall reduction in settlement was observed due 
to additional confinement provided by the geo-synthetic 
encasement. Shahu and Reddy [11] studied small scale 
model tests of floating stone columns group and the 
parameters affecting the group response are recognized 

as ratio of area, length of column, column’s deformation 
modulus etc. Shahu and Reddy [12] gave design charts for 
assessing long-term drained settlement of floating stone 
column group foundations which were based on three-
dimensional, elasto-plastic, finite element analyses. Etezad 
et al. [13] presented an analytical model for determination 
of the bearing capacity of soft soil strengthened with 
stone columns under rigid raft foundation and subjected 
to a general shear-failure mechanism. Hosseinpour et al. 
[14] experimentally obtained the soil curving developed 
during post-construction due to a reduction in apparent 
stiffness of soft clay from virtual un-drained to drained 
stiffness. Hong et al. [15] examined the impacts of geo- 
textile encased granular columns used in areas having 
soft soils through model tests. Experimental results show 
that encasement improves the bearing capacity of all 
modeled sand columns, even when encasement rupture 
occurs. Garg and Sharma [16] analytically carried out the 
settlement analysis of a single and group of two partially 
floating granular piles. The settlement at the top of the GP 
was found to decrease with the introduction of stiffening 
at the top. Madhav et al. [17] presented the analytical 
solution for studying the settlement analysis of a group of 
two partially stiffened end bearing GPs. They revealed the 
advantageous effect of partial stiffening, in increasing the 
load sharing characteristic of the base of the GP. Nav et al. 
[21] concluded that when columns are used in combination 
with geosynthetics, the soil settlement reduces. Szypcio 
[22] presented the problem of plastic yielding at the head 
of a single column head and soil in the surroundings. The 
settlement influence factor for an end-bearing granular 
pile decreases with an increase in the bearing stratum’s 
relative stiffness, as concluded by Sharma and Gupta [23].

3  Description of Problem 
Fig. 1 (a), (b), and (c) depict the basic plot of the problem, 
where a single end bearing GP having its top and bottom 
both portions strengthened is presented. The length 
of end-bearing GP is taken as “Lg” while its diameter as 
“Dg”= (2a). GP is assumed to be subjected to an axial load 
“F”. “Fb” is considered the load transferred to the base of 
the strengthened GP. Fig. 1 (a) shows that the top portion 
of single end-bearing GP is strengthened upto some 
definite length “Lt,” and similarly bottom portion of GP 
is also strengthened for a length “Lb”. A parameter “ηt” 
(=Lt/Lg) is chosen to show the strengthening phenomenon 
at the top portion of the GP. At the same time, “ηb” (=Lb/
Lg) denotes the strengthening effect taken at the bottom 
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end of the GP, leaving some portion at the middle to be 
unstrengthened. “Etsp,” “Ebsp,” “Emusp,” “Ess” and “Ebs” are, 
respectively, the modulus of deformation, of the granular 
pile in the top strengthened portion, bottom strengthened 
portion, middle un-strengthened portion, the surrounding 
soft soil, and the bearing stratum. The Poisson’s ratio of 
surrounding soft soil and bearing stratum are, respectively, 
represented by “νss” and “νbs”. The relative stiffness of GP 
and bearing stratum are, respectively, defined - Kp= Emusp/
Ess, i.e., the ratio of modulus of deformation of the middle 
portion of the GP to that of the surrounding soft soil 
and Kbs= Ebs/Ess, i.e., the ratio of modulus of deformation 
of bearing stratum to that of the surrounding soft soil. 
For taking the degree of strengthening into account for 
the top and bottom portion of the GP, respectively, the 
parameters “χt” and “χb” were introduced. “χt” is the 
factor by which the “Kp,” of the unstrengthened portion 
of GP, is multiplied to get the “Kp,” of the top strengthened 
portion of the GP and similarly, “χb” is the factor by which 
the “Kp”, of the unstrengthened portion of GP is multiplied 
to get the “Kp,” of the bottom, strengthened portion of the 
GP. The value of χt and χb both is ≥ 1, being unity for the 
unstrengthened condition of GP and greater than unity for 
the strengthened condition of GP. The relative length of GP 
is defined as Lg/Dg, i.e., ratio of length and diameter of the 
GP. zg is taken as the depth of an element from the top of 
the GP, and z*g=zg/Lg is defined as the normalized depth.

4  Method Adopted for Analysis
The basic mirror image technique, as shown in Fig. 2, 
is applied to obtain the solution with the simultaneous 
imposition of elastic continuum approach. Following 
section deals with the method used for analysis.

4.1  Soil Displacements

For carrying out the analysis, the basic discretization and 
the integration scheme suggested by Mindlin [18–19] is 
used. So, the partially strengthened GP is discretized into 
“n” cylindrical elements. GP is assumed to be acted upon 
by shear stresses,t, while τ*E=τ(πDgLg)/F is the NSS. It 
was considered that a uniform pressure “pb” is developed 
across the base of the GP. For the sake of analysis, nodes 
were considered at the periphery (at the center of each 
discretized element) and center of the base of GP. The 
soil displacements of the nodes were evaluated based on 
the influence of the elemental shear stresses. Thus, soil 

displacement equations for a GP which is end-bearing, are 
given by Mattes and Poulos [2] as described by Eq. (1).
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(1)

where {Ssd} and {rsd} in Eq. (1) are, respectively, the soil 
displacement and normalized soil displacement vectors 
each of size “n,” while {t/Ess} is a column vector of size 
(n+1). In order to account for the effect of bearing stratum, 
the mirror image approximation Poulos and Mattes [20] 
is applied. For considering the effect of the mirror image 
elements, a non-dimensional parameter, ψ, is chosen, 
which takes into account the compressibility of the base 
and its value lying between 0 and 1. The exact value of ψ 
is 0 for floating GP and 1 for end-bearing GP. The impact 
of the elements of the mirror image is taken as, ψ, times 
the influence of shear stresses on the real elements 
in the reverse direction. In Eq. (1), [IFCsd] denotes the 
soil displacement influence coefficients, and [IFCsdim] 
represents the soil displacement influence coefficients 
due to image elements, both are square matrices each of 
size “n”.

Figure 1: (a) Plan of strengthened end bearing GP (b) Sectional 
elevation at 1-1 of a single strengthened end bearing GP, subjected 
to load F, revealing strengthening effect. (c) Problem description 
sketch, development of interfacial shear stresses on soil due to a 
single strengthened end-bearing GP.
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4.2  Granular Pile Displacements

Following analysis is carried out to obtain the GP 
displacements for end bearing GP resting on a relatively 
stiff bearing stratum. Boussinesqs’ equation is used 
to obtain the displacement of a rigid circular disc on a 
semi-infinite mass. So, by using Boussinesqs’ equation, 
displacement of the base of a GP resting on a bearing 
stratum of some finite compressibility is approximated by
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In order to express the base pressure in terms of shear 
stresses, as given by Eq.(3), equilibrium equation is used 
as under,
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Hence, using the applied load and mobilized shear 
stresses, the normalized settlement of the base (using 
Eq.–s (2) and (3)) can be expressed as
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To evaluate the displacement of any ith element lying in 
the bottom strengthened portion of the GP, where s≤i≤n, 
it is assumed that bottom strengthening is done from the 
bottom nth element to the Sth element as shown in Fig. 
1 (b). The displacement of the base is added with the 
displacement of the element due to the axial stress acting 
on it as given by
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where sj/Ebsp, is axial strain of the jth element, si/Ebsp, 
is axial strain of the ith element, and Dz is the length of 
element.
In the above analysis, in order to maintain the compatibility 
of displacements at the junction of strengthened and 
unstrengthened bottom portion of GP, due consideration is 
observed. As shown in Fig. 1 (b), the bottom strengthening 
is carried out till the end of the Sth element from the bottom 
of the GP. The displacement at the top of the Sth element 
or bottom of the (S+1)th element, i.e., interface of bottom 
strengthened and an unstrengthened portion of GP, is as 
given below:
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Figure 2: Basic mirror image methodology for GP.
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To satisfy the compatibility at the interface between the 
bottom strengthened and an unstrengthened portion 
of GP, the displacement of the bottom end of the (S+1)
th element of the unstrengthened portion is taken as the 
displacement of top of the Sth element of strengthened 
portion of GP. Hence, the displacement of (S+1)th element 
is evaluated as 

 

�ρsd� = �S
sd

Dg
� = ��IFCsd� − ψ�IFCsdim�� � τ

Ess
�       (1) 

ρb
p =

Sb
p

Dg
= pb(1−νbs

2 )π/4
Ebs

   (2) 

pb = F
πDg2/4

− 4(Lg/Dg)

n
∑ τj
j=n
j=1    (3) 

ρb = � F
EssπDg2  /4

− 4(Lg/Dg)

n
∑ τj

Ess

j=n
j=1 � × π(1−νbs

2 )
4(Ebs/Ess)

   (4) 

ρi
p = ρb

p +∑ σj
Ebsp

(Δz/Dg) +j=i−1
j=n

σi
Ebsp

(Δz/2Dg)   (5) 

 

ρbottom interface
p = ρb

p +∑ σj
Ebsp

(Δz/Dg)j=S
j=n    (6) 

ρi=S+1
p = ρb

p +∑ σj
Ebsp

(Δz/Dg) +j=S
j=n

σi
Emusp

(Δz/2Dg)       (7)

 

ρi middle
p = ρb

p +∑ σj
Ebsp

(Δz/Dg)j=S
j=n +∑ σj

Emusp
�Δz
Dg
� + σi

Emusp
(Δz/2Dg)j=i−1

j=S+1     (8)

 
ρtop interface,i=m
p = ρb

p + ∑ σj
Ebsp

(Δz/Dg)j=S
j=n + ∑ σj

Emusp
(Δz/Dg)j=m

j=S+1      (9)

 
ρ1≤i≤m 
p = ρb

p + ∑ σj
Ebsp

(Δz/Dg)j=S
j=n + ∑ σj

Emusp
(Δz/Dg)j=m

j=S+1 + ∑ σj
Etsp

(Δz/Dg)j=i−1
j=m + σi

Etsp
(Δz/2Dg) 

 (10)

 

{𝜌𝜌𝜌𝜌𝑝𝑝𝑝𝑝} = 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏{1} + [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇1] � 𝜎𝜎𝜎𝜎
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�   (11) 

 

[MAT1] =
�
Lg
Dg
�

nKp

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

.

0.5
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1 − − 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

0 0.5
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1 − − 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

0 0 0.5
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1 − − 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

0 0 0 0.5 − − 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏. . . . . . . . .

0 0 0 0 0.5 1 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

0 0 0 0 0 0.5 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏. . . . . . . . .

0 0 0 0 0 0 0 0 0.5
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (12) 

(7)

The displacement of any ithelement  lying in the middle 
unstrengthened portion of the GP, i.e., m≤i≤S, is given by
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(8)

In order to satisfy the compatibility at top interface 
between strengthened and unstrengthened portion of GP, 
the displacement of the bottom end of the mth element of 
strengthened portion is taken as the displacement of the 
top of the (m+1)th element of unstrengthened portion of 
GP. Hence the displacement of mth element is evaluated as 
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(9)

In order to find out the displacement of any ith element 
lying in the top strengthened portion of the GP, i.e., 1≤i≤m, 
the following equation is utilized.
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Using the matrix form, the above set of displacement 
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In Eq. (11), [MAT1] is an upper triangular matrix of size 
(n×n) obtained by incorporating the strengthening 

parameters for top and bottom of the granular pile in Eq. 
(5) and is given by Eq. (12) 

(12)

 

�ρsd� = �S
sd

Dg
� = ��IFCsd� − ψ�IFCsdim�� � τ

Ess
�       (1) 

ρb
p =

Sb
p

Dg
= pb(1−νbs

2 )π/4
Ebs

   (2) 

pb = F
πDg2/4

− 4(Lg/Dg)

n
∑ τj
j=n
j=1    (3) 

ρb = � F
EssπDg2  /4

− 4(Lg/Dg)

n
∑ τj

Ess

j=n
j=1 � × π(1−νbs

2 )
4(Ebs/Ess)

   (4) 

ρi
p = ρb

p +∑ σj
Ebsp

(Δz/Dg) +j=i−1
j=n

σi
Ebsp

(Δz/2Dg)   (5) 

 

ρbottom interface
p = ρb

p +∑ σj
Ebsp

(Δz/Dg)j=S
j=n    (6) 

ρi=S+1
p = ρb

p +∑ σj
Ebsp

(Δz/Dg) +j=S
j=n

σi
Emusp

(Δz/2Dg)       (7)

 

ρi middle
p = ρb

p +∑ σj
Ebsp

(Δz/Dg)j=S
j=n +∑ σj

Emusp
�Δz
Dg
� + σi

Emusp
(Δz/2Dg)j=i−1

j=S+1     (8)

 
ρtop interface,i=m
p = ρb

p + ∑ σj
Ebsp

(Δz/Dg)j=S
j=n + ∑ σj

Emusp
(Δz/Dg)j=m

j=S+1      (9)

 
ρ1≤i≤m 
p = ρb

p + ∑ σj
Ebsp

(Δz/Dg)j=S
j=n + ∑ σj

Emusp
(Δz/Dg)j=m

j=S+1 + ∑ σj
Etsp

(Δz/Dg)j=i−1
j=m + σi

Etsp
(Δz/2Dg) 

 (10)

 

{𝜌𝜌𝜌𝜌𝑝𝑝𝑝𝑝} = 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏{1} + [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇1] � 𝜎𝜎𝜎𝜎
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�   (11) 

 

[MAT1] =
�
Lg
Dg
�

nKp

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

.

0.5
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1 − − 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

0 0.5
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1 − − 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

0 0 0.5
𝜒𝜒𝜒𝜒𝑡𝑡𝑡𝑡

1 − − 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

0 0 0 0.5 − − 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏. . . . . . . . .

0 0 0 0 0.5 1 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

0 0 0 0 0 0.5 1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏

1
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏. . . . . . . . .

0 0 0 0 0 0 0 0 0.5
𝜒𝜒𝜒𝜒𝑏𝑏𝑏𝑏⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (12) 

Further using Eq. (4) for replacing the base displacement, 
Eq. (11) can be rewritten as

{ρp} = F(1−νbs
2 )

(Ebs/Ess)Dg2Ess
{1}−

π(Lg/Dg)(1−νbs
2 )

n(Ebs/Ess)
[1] � τ

Ess
�+ [MAT1] � σ

Ess
�   (13) 

σi = F
(πDg2/4)

− ∑ 4τjLg
nDg

− 2τiLg
nDg

j=i−1
j=1    (14) 

� σ
Ess
� = F

(πDg2/4)Ess
− 4(Lg/Dg)

n
[MAT2] � τ

Ess
�   (15) 

{𝜌𝜌𝜌𝜌𝑝𝑝𝑝𝑝} = {𝑌𝑌𝑌𝑌} + [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇]� 𝜏𝜏𝜏𝜏
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�   (16) 

where 

{Y} =
F(1− υbs2 )

(Ebs/Ess)Dg
2Ess

{1} +
F

(πDg
2/4)Ess

[MAT1]{1} 

[MAT] = −
4(Lg/Dg)

n
[MAT1][MAT2]−

π(Lg/Dg)(1−νbs
2 )

n(Ebs/Ess)
[1]   (17) 

 

� 𝜏𝜏𝜏𝜏
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� = �[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]−𝜓𝜓𝜓𝜓[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]− [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇]�

−1
{𝑌𝑌𝑌𝑌}   (18) 

ρb
s = Sb

s

Dg
= �IFCjsd − ψIFCjsdim� �

τ
Ess
� =

∑ (IFCj
sd−ψIFCj

sdim)τj
j=n
j=1

Ess
   (19) 

ψ = 1 − π(1−νbs
2 )pb

4(Ebs/Ess)∑ τjIFCj
sdj=n

j=1
   (20) 

ρtop = Stop

Dg
= F

π
4EssDg

2 DT   (21) 

Stop = F
π
4EssDg

DT           (22) 

 

(13)

Here, {1} and [1] are, respectively, unit column vector and 
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Using matrix form, the above equation may be written for 
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where [MAT2] is a lower triangular matrix having the 
diagonal and off-diagonal terms as 0.5 and 1.0, respectively, 
and is of size “n.”

The final form of displacement equations for elements 
i = 1 to “n” in terms of shaft shear stresses Eq. (15) is 
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where

(17)
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4.3  Soil and Strengthened GP Displacement 
Compatibility 

Solutions are obtained in terms of interface shear stresses 
and base pressure, after applying the compatibility of 
displacements of the GP and the soil as described below, 

The interface shear stresses are evaluated for granular 
pile resting on stiff bearing stratum using Eq.–s (1) and 
(16) as 
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The iterative technique (Poulos and Mattes [20]) is used, 
for estimating ψ. Eq.–s (18) and (3) are solved to evaluate 
the “n” unknown shear stresses, t, and base pressure, 
pb, by allocating some initial value to, ψ. After getting 
the solution for that initial allocated value of ψ, a more 
accurate value is evaluated for ψ, by considering the 
compatibility between displacements of soil and the 
bearing stratum at the pile tip. At the pile tip, the soil 
displacement is given by

{ρp} = F(1−νbs
2 )

(Ebs/Ess)Dg2Ess
{1}−

π(Lg/Dg)(1−νbs
2 )

n(Ebs/Ess)
[1] � τ

Ess
�+ [MAT1] � σ

Ess
�   (13) 

σi = F
(πDg2/4)

− ∑ 4τjLg
nDg

− 2τiLg
nDg

j=i−1
j=1    (14) 

� σ
Ess
� = F

(πDg2/4)Ess
− 4(Lg/Dg)

n
[MAT2] � τ

Ess
�   (15) 

{𝜌𝜌𝜌𝜌𝑝𝑝𝑝𝑝} = {𝑌𝑌𝑌𝑌} + [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇]� 𝜏𝜏𝜏𝜏
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�   (16) 

where 

{Y} =
F(1− υbs2 )

(Ebs/Ess)Dg
2Ess

{1} +
F

(πDg
2/4)Ess

[MAT1]{1} 

[MAT] = −
4(Lg/Dg)

n
[MAT1][MAT2]−

π(Lg/Dg)(1−νbs
2 )

n(Ebs/Ess)
[1]   (17) 

 

� 𝜏𝜏𝜏𝜏
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� = �[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]−𝜓𝜓𝜓𝜓[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]− [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇]�

−1
{𝑌𝑌𝑌𝑌}   (18) 

ρb
s = Sb

s

Dg
= �IFCjsd − ψIFCjsdim� �

τ
Ess
� =

∑ (IFCj
sd−ψIFCj

sdim)τj
j=n
j=1

Ess
   (19) 

ψ = 1 − π(1−νbs
2 )pb

4(Ebs/Ess)∑ τjIFCj
sdj=n

j=1
   (20) 

ρtop = Stop

Dg
= F

π
4EssDg

2 DT   (21) 

Stop = F
π
4EssDg

DT           (22) 

 

(19)

Due to shear stresses on real and imaginary elements “j,” in 
the above equation, sd

jIFC  and dims
jIFC  are the displacement 

influence coefficients for the tip, respectively. But due 
to symmetrical conditions, dims

j
sd
j IFCIFC = . Now the new 

values of the parameter ψ are obtained by equating the 
soil displacement at the pile tip to the displacement of the 
base due to base stress, pb, Eq. (2) as given by
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This process of iteration is repeated as just described 
again and again by solving Eq. (18) iteratively using the 
new value of ψ, and the process is repeated until the 
percentage difference between the new value of ψ and 
last calculated value of ψ becomes as low as  0.01%, i.e., a 
very high-order convergence is achieved. The normalized 
top displacement of a single partially strengthened GP is 
obtained as
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The top displacement of a single partially stiffened GP is 
obtained as
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In above Eq.–s (21) and (22), DT is the displacement 
affecting component for the top (DACT) of GP. 

The parameters that are found affecting the above 
displacement analysis are enlisted:
(i)	 Relative length, i.e., ratio of length and diameter of 

the GP, (Lg/Dg), 
(ii)	 The relative stiffness of GP, Kp = (Emusp/Ess),
(iii)	In the case of the end bearing GP, the relative stiffness 

of bearing stratum, Kbs= Ebs/Ess.

(iv)	 Poisson’s ratios of the surrounding soft soil, nss and 
that of the base stratum, nbs.

(v)	 Percentage length of strengthening from the top 
(PLST) of GP, ηt (=Lt/Lg).

(vi)	Percentage length of strengthening from the bottom 
(PLSB) of GP, ηb (=Lb/Lg).

Table 1: Validation of results.

Variables 
verified

Lg/Dg Kpand
Ebs/Ess

Results of 
Poulos and 
Mattes [20]

Present 
analysis with
(χt=χb=1) 

DACT (DT) 
of GP

25 100 and
10

0.54 0.539

25 100 and 
100

0.51 0.508

25 100 and 
1000

0.49 0.489

20 100 and 
100000

0.09 0.0899
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(vii)	Strengthening factor for the top and bottom, χt and χb 

respectively.

5  Results and Discussion
The results for displacement effecting component for 
top of GP, DT, are validated with the results obtained by 
Poulos and Mattes [20] in Table 1 for an unstrengthened 
single end-bearing GP, by selecting the values of both 
the parameters viz. strengthening factor for the top and 
strengthening factor for the bottom as unity.

The following paragraphs deal with the results and 
discussion of the ongoing analysis, by making the GP 
partially strengthened. Results, in general, are obtained 
for the following ranges of the above-defined parameters

Kp= 50–400, ηt=10–40%, ηb=10–40%, χb=1–5, χt=1–5, 
Lg/Dg=10–40, Ebs/Ess=10–100. The Poisson’s ratio values for 
soil and bearing stratum are taken each equal to 0.5 in the 
following analysis.

Fig. 3 represents the variation of displacement 
affecting component for the top of GP, DT, with 
strengthening factor for the top, χt, or strengthening factor 
for the bottom, χb. Both the PLST of GP and PLBT from 
the bottom of GP are taken as 10%, as shown in Fig. 3. 

As depicted in Fig. 3, in some curves, χt is taken as unity, 
implying that the strengthening effect is only applied at 
the bottom end. Hence, here the effect of variation of χb is 
depicted. Similarly, when χb is taken as one, it indicates 
that the strengthening effect is adopted at the top end of 
GP only, and hence its variation is shown. It can well be 
seen from the curves that when the strengthening effect is 
only provided at the bottom of GP, then the curve is almost 
linear, representing that this is not making considerable 
outcome on the parameter of displacement affecting 
component for the top of GP, DT. But for the case of 
strengthening adopted for the bottom, the displacement 
affecting component for the top of GP, DT, decreases as 
the value strengthening factor for the top, χt, increases. 
Besides this, it is visible that the value of displacement 
affecting component for the top of GP, DT, decrease with 
an increase in relative stiffness of GP, Kp as well as relative 
stiffness of bearing stratum Ebs/Ess, whatever may be the 
case, i.e., bottom strengthening or top strengthening. It 
may well be observed from the Fig. 3 that at– Lg/Dg=10, Ebs/
Ess=100, χt =1, ηt=10%, Kp=50, for χb=1, 2, 3, 4, and 5, the 
values of  displacement affecting component for top of 
GP, DT are, respectively, 0.1228, 0.1150, 0.1124, 0.1110, and 
0.1103, thus causing a decrease in percentage of 6.3, 2.2, 
1.2, and 0.6 with respect to χb=1; and at Lg/Dg=10, Ebs/Ess 

Figure 3: Variation of displacement affecting component for the top of GP, DT, with strengthening factor for the top, χt, or strengthening 
factor for the bottom, χb. Impact of the relative stiffness of GP, Kp; PLST of GP, ηt;  PLSB of GP, ηb; and relative stiffness of bearing stratum, Ebs/
Ess, on a single partially strengthened GP(Lg/Dg=10, ηt or ηb=10%).
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Figure 4: Variation of displacement affecting component for the top of GP, DT, with strengthening factor for the top, χt, or strengthening 
factor for the bottom, χb. Impact of the relative stiffness of GP, Kp; PLST of GP, ηt;  PLSB of GP, ηb; and relative stiffness of bearing stratum, Ebs/
Ess, on a single partially strengthened GP (Lg/Dg=10, ηt or ηb=20%).

Figure 5: Variation of displacement affecting component for the top of GP, DT, with strengthening factor for the top, χt, or strengthening 
factor for the bottom, χb. Impact of the relative stiffness of GP, Kp; PLST of GP, ηt;  PLSB of GP, ηb; and relative stiffness of bearing stratum, Ebs/
Ess, on a single partially strengthened GP (Lg/Dg=10, ηt or ηb=30%).



An Analytical Study of Partially Strengthened Single End-Bearing Granular Pile Near the Top and Bottom    107

=100, χt =1, ηt=10%, Kp=100, for χb=1,2,3,4,5, the values of  
displacement affecting component for top of GP, DT are, 
respectively, 0.0775, 0.0733, 0.0719, 0.0712, and 0.0708, 
thus causing a percentage decrease of 5.4, 1.9, 0.9, and 0.5 
with respect to χb=1.

Fig. 4 shows the variation of displacement affecting 
component for the top of GP, DT, with strengthening factor 
for the top, χt, or strengthening factor for the bottom, χb, 
as explained in Fig. 3. Both the PLST of GP and PLSB of GP 
are taken as 20%, shown in Fig. 4. Thus, in contrast to Fig. 
3, the percentage length of strengthening is increased; rest 
effect is as it is. Hence, it can be observed from the curves 
that the values of displacement affecting component for 
the top of GP, DT, are less than of the values in Fig. 3. For 
example, from observing the curves, it may well be noted 
that at, Lg/Dg=10, Ebs/Ess=100, χt=1, ηt=20%, Kp=100, for 
χb=1, 2, 3, 4, and 5, the values of displacement affecting 
component for top of GP, DT, are, respectively, 0.0775, 
0.0684, 0.0653, 0.0637, and 0.0627, so causing a large 
percentage decrease of 11.7, 4.5, 2.4, and 1.5 with respect 
to χb=1.

Fig. 5 shows the variation of displacement affecting 
component for the top of GP, DT, with strengthening factor 
for the top, χt, or strengthening factor for the bottom, 
χb. Both the PLST of GP and the PLSB of GP are further 
increased to 30% in the Fig. 5. By increasing the percentage 
length of strengthening, the values of displacement 
effecting component for the top of GP decrease more. 
The effect of the relative stiffness of the bearing stratum 
can well be seen from the Fig. 5. As shown in the Fig. 5, 

the value of displacement affecting component for top of 
GP, DT, at Lg/Dg=10, Ebs/Ess=100, χt=1, ηt=30%, Kp=100, χt=2 
is 0.0869, while with Ebs/Ess=10 and rest parameters as it 
is, the value turns out to be 0.0638, which decreases to 
26.58%.

Fig. 6 represents the variation of displacement affecting 
component for the top of GP, DT, with strengthening factor 
for the top, χt or strengthening factor for the bottom, χb, 
such that χt=χb. Due to simultaneous dual strengthening, 
the values of displacement affecting component for 
the top of GP, DT are less than to the values shown in 
earlier figures. Also, it is visible from the Fig. 6 that top 
strengthening causes more reduction in displacement 
affecting component for top of GP, DT, as compared to 
the bottom strengthening. For example, it may be seen 
from the figure that at– Lg/Dg=10, Ebs/Ess=100, ηt=30%, 
ηb=10%, χt=χb=3 for Kp=50, 100, 200, and 400, the values 
of displacement affecting component for top of GP, DT are, 
respectively, 0.0925, 0.0590, 0.0359, and 0.0219, whereas 
at– Lg/Dg=10, Ebs/Ess=100, ηt= 10%, ηb= 30%, χt=χb=3 for, 
Kp=50, 100, 200, and 400, are respectively 0.1020, 0.0629, 
0.0373, and 0.0224. Hence, it can be seen that the value 
of displacement affecting component for the top of GP 
decreases with the increase in the value of Kp. 

Fig. 7 shows the variation of displacement affecting 
component for top of GP, DT, with strengthening factor for 
the top, χt or strengthening factor for the bottom, χb, such 
that χt= χb. In this Fig. 7, three factors vary namely relative 
stiffness of GP, Kp; PLST of GP- is increased further as in 
contrast to Fig. 6, i.e., ηt =20% or 40%, similarly PLSB of 

Figure 6: Variation of displacement affecting component for the top of GP, DT, with strengthening factor for the top, χt or strengthening factor 
for the bottom, χb, such that χt= χb. Impact of the relative stiffness of GP, Kp; PLST of GP, ηt; PLSB of GP, ηb; on a single partially strengthened 
GP (Lg/Dg=10, Ebs/Ess=100).
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Figure 7: Variation of displacement affecting component for the top of GP, DT, with strengthening factor for the top, χt, or strengthening 
factor for the bottom, χb such that χt= χb. Impact of the relative stiffness of GP, Kp; PLST of GP, ηt; PLSB of GP, ηb; on a single partially 
strengthened GP (Lg/Dg=10, Ebs/Ess =100).

Figure 8: Variation of displacement affecting component for the top of GP, DT, with strengthening factor for the top, χt or strengthening factor 
for the bottom, χb, such that χt=χb. Impact of the relative stiffness of GP, Kp; PLST of GP, ηt; PLSB of GP, ηb; on a single partially strengthened 
GP (Lg/Dg=10, Ebs/Ess =100)
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Figure 9: Variation of displacement affecting component for the top of GP, DT, with strengthening factor for the top, χt, or strengthening 
factor for the bottom, χb. Impact of the relative length of GP, Lg/Dg; PLST of GP, ηt;  PLSB of GP, ηb; and relative stiffness of bearing stratum, 
Ebs/Ess, on a single partially strengthened GP (Kp=50, ηt=ηb=20%)

Fig. 10 Variation of PLTB of GP, (Fb/F)x100 with strengthening factor for the top, χt, or strengthening factor for the bottom, χb. Impact of the 
relative stiffness of GP, Kp, and relative stiffness of bearing stratum, Ebs/Ess, on a single partially strengthened GP (Lg/Dg=10, ηt or ηb=10%)
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GP also increased likewise, ηb=40% and 20%. The nature 
of the curves is same as in previous one, with a variation 
in values, i.e., in this case, the values are a little lower than 
the previous one because of higher percentage length of 
strengthening. For instance, at– Lg/Dg=10, Ebs/Ess=100, 
ηt=40%, ηb=20%, χt=χb=3 for Kp= 50, 100, 200, and 400, 
the values of displacement effecting component for top of 
GP, DT, are, respectively, 0.0821, 0.0513, 0.0310, and 0.0191, 
whereas at– Lg/Dg=10, Ebs/Ess=100, ηt=20%, ηb=40%, 
χt=χb=3 for Kp= 50, 100, 200, and 400, are, respectively, 
0.0854, 0.0523, 0.0312, and 0.0190. However in Fig. 6, the 
values of displacement effecting component for top of GP, 
DT, at– Lg/Dg=10, Ebs/Ess=100, ηt= 10%, ηb=30%, χt=χb=3 for 
Kp= 50, 100, 200, and 400, are, respectively, 0.1020, 0.0629, 
0.0373, and 0.0224; hence it is clear that DT decreased with 
the increase in values of ηt and ηb.

Fig. 8 shows the variation of displacement affecting 
component for top of GP, DT, with strengthening factor 
for the top, χt, or strengthening factor for the bottom, 
χb, such that χt=χb. The variation of three parameters 
namely relative stiffness of GP, Kp; PLST of GP, ηt; PLSB 
of GP, ηb; such that ηt=ηb=30% is depicted here. At Lg/
Dg=10, Ebs/Ess=100, ηt=30%, ηb=30%, χt=χb=3 for Kp= 50, 
100, 200, and 400, the values are, respectively, 0.0844, 
0.0522, 0.0314, and 0.0192, which are somewhat closer to 
the values shown in Fig. 7; at– Lg/Dg=10, Ebs/Ess=100, ηt= 

20%, ηb= 40%, χt= χb=3 for Kp= 50, 100, 200, and 400, are, 
respectively, 0.0854, 0.0523, 0.0312, and 0.0190.

Fig. 9 shows the variation of displacement affecting 
component for the top of GP, DT, with strengthening factor 
for the top, χt, or strengthening factor for the bottom, 
χb. This Fig. 9 depicts the variation of three different 
parameters: the relative length of GP, Lg/Dg, both the PLST 
of GP and the PLSB of GP are taken as 10% and relative 
stiffness of bearing stratum, Ebs/Ess. It has been found that 
for a longer pile, bearing stratum will be at a larger depth, 
and also the length of strengthening portion will be 
large; hence, the cumulative effect of both will reduce the 
displacement affecting component for the top of GP, DT, 
depending upon the length of the strengthening portion 
and depth of the bearing stratum as seen from the Fig. 9. 
Larger the depth of the bearing stratum, the lesser will be 
the reduction in DT and vice versa.

Fig.10 shows the variation of PLTB of GP, (Fb/F)x100 
with strengthening factor for the top, χt, or strengthening 
factor for the bottom, χb. Both the percentage length of 
strengthening from the top of GP (ηt) and the percentage 
length of strengthening from the bottom of GP (ηb) are 
taken as 10% as shown in Fig. 10. It can well be seen 
from the Fig. 10 that when strengthening effect is only 
provided at the top of GP, then the curve is almost linear, 
showing that this is not producing a substantial effect 

Figure 11: Variation of PLTB of GP, (Fb/F)x100 with  strengthening factor for the top, χt, or strengthening factor for the bottom, χb. Impact of 
relative stiffness of GP, Kp, and relative stiffness of bearing stratum, Ebs/Ess, on a single partially strengthened GP (Lg/Dg=10, ηt or ηb=20%).
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on the parameter of PLTB of GP, (Fb/F)x100. But for the 
case of strengthening adopted for the bottom, the PLTB 
of GP, (Fb/F)x100 increases mainly till the strengthening 
factor for the bottom, χb, becomes 3; thereafter, it becomes 
constant. Moreover, it can also be seen that the value 
of PLTB of GP, (Fb/F)x100 increases with an increase in 
relative stiffness of GP, Kp, and relative stiffness of bearing 
stratum Ebs/Ess, whatever may be the case, i.e., bottom 
strengthening or top strengthening. But specifically for 
the case of bottom stiffening, the PLTB of GP, (Fb/F)x100 
increases more for greater value of Ebs/Ess. It may well be 
observed from the Fig. 10 that at– Lg/Dg=10, Ebs/Ess=100, χt 
=1, ηb=10%, Kp=100, for χb=1, 2, 3, and 4, the value of  PLTB 
of GP, (Fb/F)x100 are, respectively, 64.74, 68.34, 69.65, and 
70.34, thereby causing an increase of 5.5, 7.5, and 8.6 with 
respect to χb=1.

Fig. 11 shows the variation of PLTB of GP, (Fb/F)x100 
with strengthening factor for the top, χt or strengthening 
factor for the bottom, χb. Both the percentage length of 
strengthening from the top of GP (ηt) and the percentage 
length of strengthening from the bottom of GP (ηb) are 
further increased in contrast to Fig. 10 and are taken as 
20% in Fig. 11. Therefore, it can be observed from the Fig. 
11 that the value of PLTB of GP, (Fb/F)x100 is on the higher 
side as compared to the values in Fig. 10. For instance, 
from observing the curves it may well be noted that at– 
Lg/Dg=10, Ebs/Ess=100, χt =1, ηb=20%, Kp=100, for χb=1, 2, 3, 

and 4, the value of PLTB of GP, (Fb/F)x100 is, respectively, 
64.74, 70.37, 72.49, and 73.61, thereby causing a large 
increase of 8.6, 11.9, and 13.7 with respect to χb=1.

Fig. 12 shows the variation of PLTB of GP, (Fb/F)x100 
with strengthening factor for the top, χt or strengthening 
factor for the bottom, χb. Both the PLST of GP and the 
PLSB of GP are further increased to 30% in the Fig. 12. 
By increasing the percentage length of strengthening, 
the values of PLTB of GP increase further. The effect of 
the relative stiffness of the bearing stratum can well be 
seen from the curve. As shown in the Fig. 12 the value 
of PLTB of GP, (Fb/F)x100 at– Lg/Dg=10, Ebs/Ess=100, χt =1, 
ηb=30%, Kp=100, χb=2 is 72.11%, while with Ebs/Ess=10 and 
rest parameters as it is, the value turns out to be 53.99% , 
thereby causing an increase of 33.56% with respect to Ebs/
Ess=10.

Fig. 13 depicts the variation of PLTB of GP, (Fb/F)x100 
with strengthening factor for the top, χt, or strengthening 
factor for the bottom, χb, such that χt= χb . The relative 
stiffness of GP, Kp, PLST, ηt=10% or 30%, PLSB of GP, 
ηb=30% and 10% are the parameters which are considered 
here. Due to the simultaneous effect of the bottom and top 
strengthening, all the curves in Fig. 13 are curved. Owing 
to dual strengthening, the values of PLTB of GP, (Fb/F)
x100, are certainly higher than values in previous figures. 
Simultaneously, it can well be concluded from the Fig. 13 
that bottom strengthening contributes more for PLTB of 

Figure 12: Variation of PLTB of GP, (Fb/F)x100 with  strengthening factor for the top, χt, or strengthening factor for the bottom, χb. Impact 
of the relative stiffness of GP, Kp, and relative stiffness of bearing stratum, Ebs/Ess, on a single partially strengthened GP (Lg/Dg=10, ηt or 
ηb=30%).
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GP, (Fb/F)x100. For example it may be seen from the figure 
that at– Lg/Dg=10, Ebs/Ess=100, ηt=30%, ηb=10%, χt= χb=3 for 
Kp= 50, 100, 200, and 400, the values of PLTB of GP, (Fb/F)
x100 are, respectively, 56.07, 70.94, 81.86, and 88.57, while 
that at– Lg/Dg=10, Ebs/Ess=100, ηt=10%, ηb=30%, χt= χb=3 
for Kp= 50, 100, 200, and 400, the values are, respectively, 

61.58, 75.15, 84.48, and 89.87. Thus, it can be seen that the 
percentage increase in the value of PLTB of GP decreases 
with the increase in the value of Kp.

Fig. 14 investigates the impact of relative stiffness of 
GP, Kp; PLST, ηt; PLSB of GP, ηb; on the variation of PLTB 
of GP, (Fb/F)x100. The values of both the strengthening 

Figure 13: Variation of PLTB of GP, (Fb/F)x100 with  strengthening factor for the top, χt, or strengthening factor for the bottom, χb, such that χt= 
χb. Impact of the relative stiffness of GP, Kp; PLST of GP, ηt; PLSB of GP, ηb; on a single partially strengthened GP (Lg/Dg=10, Ebs/Ess=100).

Figure 14: Variation of PLTB of GP, (Fb/F)x100 with  strengthening factor for the top, χt, or strengthening factor for the bottom, χb, such that χt= 
χb. Impact of the relative stiffness of GP, Kp; PLST of GP, ηt; PLSB of GP, ηb; on a single partially strengthened GP (Lg/Dg=10, Ebs/Ess=100).
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Figure 15: Variation of NSS, τ*
E= τ(πDgLg)/F with normalized depth, z*g=zg/Lg. Impact of strengthening factor for the top, χt, or strengthening 

factor for bottom, χb, on a single partially strengthened GP (Lg/Dg=10, Kp=100, ηt=20%, ηb=20%, Ebs/Ess=100).

Figure 16: Variation of NSS, τ*
E= τ(πDgLg)/F with normalized depth, z*g=zg/Lg. Impact of strengthening factor for the top, χt, or strengthening 

factor for bottom, χb, on a single partially strengthened GP (Lg/Dg=10, Kp=100, ηt=30%, ηb=30%, Ebs/Ess=100).
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factors are kept equal to each other. The PLST of GP, ηt, 
is taken higher, i.e., 40% and 20%, and similarly PLSB of 
GP, ηb, varies as 20% and 40%. The trends of the curves 
are same as earlier; with a difference in values, i.e., in 
this case the values are slightly higher because of higher 
percentage length of strengthening. As an example, it 
may well be established from the Fig. 14 that at– Lg/Dg=10, 
Ebs/Ess=100, ηt=40%, ηb=20%, χt= χb=3 for Kp= 50, 100, 
200, and 400, the values of PLTB of GP, (Fb/F)x100 are, 
respectively, 61.14, 74.85, 84.33, and 89.85, while that at– 
Lg/Dg=10, Ebs/Ess=100, ηt=20%, ηb= 40%, χt=χb=3 for Kp= 50, 
100, 200, and 400, the values are, respectively, 65.14, 77.78, 
86.09, and 90.67. Thus, it may be concluded that if these 
data are compared with the data of Fig. 13, then at– Lg/
Dg=10, Ebs/Ess=100, ηt= 20%, ηb= 40%, χt=χb=3 for Kp= 50, 
100, 200, and 400, there is an increase in the PLTB of GP, 
respectively, 5.7, 3.4, 1.9, and 0.8, by increasing top and 
bottom percent length of strengthening each by 10%, i.e., 
at– Lg/Dg=10, Ebs/Ess=100, ηt= 10%, ηb= 30%, χt=χb=3 for Kp= 
50, 100, 200, and 400.

Fig. 15 depicts NSS variation, τ*
E=τ(πDgLg)/F 

with normalized depth, z*g=zg/Lg. The impact of the 
strengthening factor is shown. In Fig. 15, unstrengthened 
conditions are depicted, while in other, strengthening 
effect is presented with strengthening factor at top and 
bottom. It may well be seen from the Fig. 15 that the 
NSS is reduced at the top section of GP by introducing 
the strengthening, and the effect is maximized with the 
impact of strengthening introduced at both ends. The NSS 
is redistributed and shifted toward downside of the GP.

The variation of NSS, τ*
E=τ(πDgLg)/F with normalized 

depth, z*g=zg/Lg is shown in Fig. 16. The impact of 
strengthening factor is shown. Since the percent length 
of strengthening is increased by 10% on both sides, 
i.e., bottom and top, as compared to Fig. 15, the impact 
of this change is well visible from the curve that due to 
bottom strengthening, the NSS is reduced in the bottom 
strengthened portion of the GP. Rest effects are the same 
as described earlier.

6  Conclusions
Partially strengthened single end bearing GP, resting on a 
bearing stratum, strengthened at both ends is analyzed, 
using basic mirror image technique and basic integration 
scheme of Mindlin’s equation. An entirely new matrix was 
developed incorporating the strengthening factor for the 
top of GP and strengthening factor for the bottom of GP.

1.	 It may be concluded that previous studies about 
the strengthening effect at the top of the GP are more 
effective in the reduction of displacements at the top, i.e., 
displacement effecting component for the top of GP as 
compared to the strengthening effect at the bottom of the 
GP. As observed from the study, the curve of displacement 
affecting component for the top of GP versus strengthening 
factor for either top or bottom reveals that the values of 
displacement affecting component for the top of GP are 
reduced more. The figure is a curved one with decreasing 
trends, in case of strengthening at the top, as in contrast 
to bottom strengthening, where the curve is almost linear.

2.	 In the case of dual strengthening, both the curves 
for displacement affecting component for the top of GP are 
curved one with decreasing trends.

3.	 It was concluded that as studied earlier, the 
strengthening at the top is not affecting much the PLTB of 
GP, but due to bottom strengthening, this value is affected 
considerably and found to increase. As observed in the 
analysis, it was noted that by providing strengthening 
at the top of GP, the PLTB of GP versus strengthening 
factor curve is almost linear. In contrast, the same figure 
is curved with increasing values for the case of bottom 
strengthening.

4.	 The PLTB of a strengthened GP is found to 
increase considerably in the range of strengthening factor 
for the bottom of GP, χb, varying between 1 and 4. After 
the value of strengthening factor for the bottom of GP, χb, 
exceeds 4, the percentage load transferred to the base of 
the GP increases marginally only.

5.	 The study of NSS reveals that due to the dual 
effect of strengthening, the NSS is reduced at the top of the 
strengthened GP and is shifted in the downward direction 
along with the depth of the GP. Similarly, the NSS near the 
base end is also redistributed.  

6.	 As for the future scope of the work, the study can 
be carried out on a group of strengthened end-bearing 
piles and, a pile with raft system.

Funding: Not applicable

Conflicts of interest/Competing interests: The authors 
declare that they have no known competing financial 
interests or personal relationships that could have 
appeared to influence the work reported in this article.



An Analytical Study of Partially Strengthened Single End-Bearing Granular Pile Near the Top and Bottom    115

References
[1]	 Madhav, M. R., Sharma, J. K., & Chandra, S. (2006). Analysis 

and settlement of a non-homogeneous granular pile. Indian 
Geotechnical Journal, 36(3), 249-271.

[2]	 Mattes, N. S., & Poulos, H. G. (1969). Settlement of single 
compressible pile. Journal of the Soil Mechanics and 
Foundations Division, 95(1), 189-207.

[3]	 Priebe, H. (1976). Estimating Settlements in a Gravel Column 
Consolidated Soil. Die Bautechnik 53, 160-163.

[4]	 Ambily, A. P., & Gandhi, S. R. (2007). Behavior of stone 
columns based on experimental and FEM analysis. Journal of 
geotechnical and geoenvironmental engineering, 133(4), 405-
415.

[5]	 Black, J. A., Sivakumar, V., Madhav, M. R., & Hamill, G. A. 
(2007). Reinforced stone columns in weak deposits: laboratory 
model study. Journal of Geotechnical and Geoenvironmental 
Engineering, 133(9), 1154-1161.

[6]	 Madhav, M. R., Sharma, J. K., & Sivakumar, V. (2009). 
Settlement of and load distribution in a granular piled 
raft. Geomechanics and Engineering, 1(1), 97-112.

[7]	 Wang, G. (2009). Consolidation of soft clay foundations 
reinforced by stone columns under time-dependent 
loadings. Journal of geotechnical and geoenvironmental 
engineering, 135(12), 1922-1931.

[8]	 Najjar, S. S., Sadek, S., &Maakaroun, T. (2010). Effect of sand 
columns on the undrained load response of soft clays. Journal 
of Geotechnical and Geoenvironmental Engineering, 136(9), 
1263-1277.

[9]	 Black, J. A., Sivakumar, V., & Bell, A. (2011). 
The settlement performance of stone column 
foundations. Géotechnique, 61(11), 909-922.

[10]	 Yoo, C. (2010). Performance of geosynthetic-encased 
stone columns in embankment construction: numerical 
investigation. Journal of Geotechnical and Geoenvironmental 
Engineering, 136(8), 1148-1160.

[11]	 Shahu, J. T., & Reddy, Y. R. (2011). Clayey soil reinforced with 
stone column group: model tests and analyses. Journal of 
Geotechnical and Geoenvironmental Engineering, 137(12), 
1265-1274.

[12]	 Shahu, J. T., & Reddy, Y. R. (2014). Estimating long-term 
settlement of floating stone column groups. Canadian 
geotechnical journal, 51(7), 770-781.

[13]	 Etezad, M., Hanna, A. M., &Ayadat, T. (2015). Bearing capacity 
of a group of stone columns in soft soil. International Journal of 
Geomechanics, 15(2), 04014043.

[14]	 Hosseinpour, I., Almeida, M. S. S., & Riccio, M. (2015). 
Full-scale load test and finite-element analysis of 
soft ground improved by geotextile-encased granular 
columns. Geosynthetics International, 22(6), 428-438.

[15]	 Hong, Y. S., Wu, C. S., & Yu, Y. S. (2016). Model tests on 
geotextile-encased granular columns under 1-g and undrained 
conditions. Geotextiles and Geomembranes, 44(1), 13-27.

[16]	 Garg, V., & Sharma, J. K. (2019). Analysis and settlement of 
partially stiffened single and group of two floating granular 
piles. Indian Geotechnical Journal, 49(2), 191-203.

[17]	 Madhav, M.R., Sharma, J.K., Garg, Vaibhaw, (2019). Stiffening 
effect on end bearing granular piles. A special issue Honouring 

Dr Bengt. Fellenius, “ Geotechnical Engineering Journal of The 
SEAGS and AGSSEA50, no. 3:32-40.

[18]	 Mindlin, R. D. (1936). Force at a point in the interior of a semi‐
infinite solid. physics, 7(5), 195-202.

[19]	 Mindlin, R. D. (1937). Stress system in a circular disk under 
radial forces, presented at the joint meeting of applied 
mechanics and hydraulic division of the ASME held at Cornell 
University, NY, pp. A115–118.

[20]	 Poulos, H. G., & Mattes, N. S. (1969). The behaviour of axially 
loaded end-bearing piles. Geotechnique, 19(2), 285-300.

[21]	 Nav, M.A., Rahnavard, R., Noorzad, A. and Napolitano, R., 
(2020), June. Numerical evaluation of the behavior of ordinary 
and reinforced stone columns. In Structures (Vol. 25, pp. 481-
490). Elsevier. https://doi.org/10.1016/j.istruc.2020.03.021.

[22]	 Szypcio, Z., (2000). Bearing capacity of a single column. Studia 
Geotechnica et Mechanica, 22(3-4), pp.41-54.

[23]	 Sharma, J.K. and Gupta, P., (2018). Analysis and settlement 
evaluation of an end-bearing granular pile with non-linear 
deformation modulus. Studia Geotechnica et Mechanica, 40(3), 
pp.188-201. https://doi.org/10.2478/sgem-2018-0022.

https://doi.org/10.1016/j.istruc.2020.03.021
https://doi.org/10.2478/sgem-2018-0022

