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Abstract 
 

The modern electrical power system is characterised by increased complexity and dynamics. 

This outlook is partly motivated by the society due to increased motivation to move to a carbon 

neutral environment. The pathway to such an environment has led to higher penetration of 

renewable energy sources, research into improving efficiency of energy systems, optimizing 

the operation of existing assets, e-mobility and decentralisation of the power system itself.  

 

The above-mentioned approaches to a net zero emissions environment creates additional 

challenges such as the increased share of renewables in the energy mix which leads to 

uncertainty in the power outputs making the problem of energy balancing more complex. 

Optimizing the power system involves deployment of optimization algorithms (conventional 

and intelligent) modelled specifically for intended power networks. E-mobility while 

decarbonising the transportation sector represents a significant load with a stochastic nature. 

Finally, the aspect of decentralisation leads to questions regarding energy security and 

independence from the power system operators.  

 

This thesis attempts to address a few of these challenges. It explores the use of deep-learning 

based forecasting algorithms such as the Long Short-Term Memory (LSTM), Convolutional 

Neural Networks (CNN), CNN-LSTM and other similar architectures in-order to model the 

stochastic nature of power outputs from renewable energy sources. It also deploys certain 

statistical tools such as the Markov chains for uncertainty analysis of the forecasts made by 

such algorithms. For the purpose of optimization hybrid optimizers such as the Mixed Integer 

Distributed Ant Colony Optimization (MIDACO) – MATPOWER amongst others are used in-

order to leverage both the global solution search capabilities of intelligent optimization 

algorithms and the speed of MATPOWER. It also explores the use of Genetic Algorithm (GA) 

for energy management. Problems concerned with E-mobility are addressed by way of 

deploying co-ordinated charging in Electrical Vehicle Charging Stations (EVCS) in order to 

manage the sudden increase in energy demand and finding the optimal location for such an 

EVCS within the existing network. Finally, all the above-mentioned methods are applied to 

networks of different configurations under different scenarios in order to understand, extend 

and generalise their applicability.  

 

This study uses a combination of both real and modelled data obtained from installations 

available locally and from collaborating institutions abroad. All the power flows calculated are 

based on the alternating-current model  
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1. Introduction 
In recent times, there has been a shift in the outlook of the global energy scenario. There are 

considerable efforts being made in-order to shift from fossil fuels to renewable energy sources 

which is evident from the International Energy Agency (IEA) global energy review 2019 [1]. 

Over the last decade despite an increase in overall energy demand, the share of energy from 

coal in the energy mix has fallen by 2% from 2010 to 2019, the share of nuclear energy has 

fallen by 1% but the share of renewable energy has increased by 2%. The increase in the share 

of renewable energy is mainly due to significant growth in both solar Photovoltaics (PV) and 

wind power [1]. These contributions from renewable energy sources are mainly directed 

towards the power sector which represents a rapidly changing landscape in terms of 

sustainability and energy efficiency.  

This momentum of renewable energy sources in the power sector is expected to increase due 

to the societal attitude to remain eco-friendly and the political will to do the same which is 

evident from the recently struck agreements such as the Paris agreement [2], the European 

green deal [3] and the Sustainable Development Goal 7 (SDG7) [4] which all promote the use 

of renewable energy sources, improved energy efficiency, e-mobility and the need to reduce 

CO2 and other greenhouse gases emissions in order to mitigate climate change.  

In order to achieve the targets included in the numerous agreements mentioned above an 

efficient and sustainable power system has to be adopted. The Microgrid is one of the 

approaches of achieving such a power system. A crucial part of a microgrid is its Energy 

Management System (EMS) embedded with forecasters and optimizers. It is responsible for:  

• Optimal resource allocation based on maximising a fixed objective. 

• Account for the unpredictability of the renewable energy-based generators in its 

network. 

• Maintenance of electrical network parameters such as voltage magnitude, frequency 

and others within specified limits according to standards  

• Implement specified programs such as demand response and flexibility according to the 

needs of the local situation.  

The importance and the need of this research work is to improve upon the current optimization 

and forecasting methods implemented in EMSs. The core thesis of this research work is as 

follows:  

“Application of hybrid optimization algorithms embedded with deep learning forecasters 

enables optimal energy management of electrical networks. This can be used for microgrid 

optimal operation and to find the optimal location of microgrid elements such as an electrical 

vehicle charging station” 

The thesis is realised as follows:  

• Firstly, literature review is made of the existing approaches to optimization and 

forecasting. 

• Secondly, new approaches to the same are proposed improving upon the existing 

approaches and providing an explanation as to why they will be better  

• This is followed by implementation of the proposed approaches and application of the 

same to pre-existing electrical networks and related data  



• Then the proposed methods are compared with the existing methods from the literature 

to establish superiority 

• Finally, they are used to obtain optimal operational conditions of the microgrid based 

on real data from Wroclaw University of Science and Technology and optimal location 

of the EVCS in the microgrid.  

The contributions of the thesis can be summarised as follows:  

• The development of hybrid optimization algorithms which leverage the superior 

solution search capabilities of meta-heuristic algorithms and conventional optimization 

algorithms  

• Deep learning neural network models to achieve better performance than conventional 

forecasting models for short term forecasting needs. 

• An EMS tailored for optimal operational management of the Microgrid present at 

Wroclaw University of Science and Technology. 

• Identification of an optimal operational scenario of the EVCS taking into account the 

interest of both the consumer and the power system. Then finding its optimal location 

in the microgrid. 

The rest of this document is organised in the following manner. The introduction section 

introduces the microgrid concept and provides the literature review behind the existing 

methods for optimization and forecasting involved in power systems. Chapter 2 presents the 

proposed forecasting alternatives using deep learning models and a comparison with the 

existing ARIMA model. Chapter 3 presents optimal power flow as a first step towards energy 

management, introduces the hybrid optimization algorithms and then makes a comparison with 

the existing approaches. Chapter 4 presents energy management by way of economic dispatch 

of microgrids, it involves calculation of levelized cost of energy for all sources of energy 

present in the microgrid and aims to minimise the same during its operation. Chapter 5 

investigates numerous charging scenarios for charging stations and identifies the best scenario 

based on which the optimal location of the charging station is decided in the microgrid. This is 

followed by the general conclusions and summary of the thesis.     

1.1 Microgrid 

The typical microgrid is defined in many ways. The most widely accepted definitions provided 

by the US department of energy [5] and Conseil International des Grandes Réseaux Électriques 

(CIGRÉ) [6] are as follows:  

“A group of interconnected loads and distributed energy resources within clearly defined 

electrical boundaries that acts as a single controllable entity with respect to the grid. A 

microgrid can connect and disconnect from the grid to enable it to operate in both grid-

connected or island mode” 

 

“Microgrids are electricity distribution systems containing loads and distributed energy 

resources, (such as distributed generators, storage devices, or controllable loads) that can be 

operated in a controlled, coordinated way either while connected to the main power network 

or while islanded”  

 

While other definitions exist, they are similar to the definitions provided above. All emphasise 

on the following characteristics:  



• The microgrid is visualised as a single controllable entity 

• It is capable of operating in either a grid connected mode or isolated mode or both  

• It is typically composed of numerous distributed energy resources  

• In most cases it involves a high penetration of renewable energy resources  

• The system is local in nature considering the needs of the society it is built for  

• It is controllable and its operations can be co-ordinated  

Microgrids enable the concept of active distribution networks and realise the implementation 

of smart grids. Active distribution networks are usually characterized by a higher penetration 

of Renewable Energy Sources (RES), Energy Storage Systems (ESS), bi-directional flow of 

power between the consumer and the Distribution System Operator (DSO), Demand Side 

Management (DSM), smart metering and it enables all players to make decisions in real-time 

that improves sustainability and profitability. It is characterised by the presence of modern 

Information and Communication Technology (ICT) and control systems.  Smart grids on the 

other hand are defined as power networks that are capable of handling all stakeholders in an 

integrated manned. The stakeholders being the generators, system operators and consumers. 

This results in power being managed in a sustainable and economic manner. It is also 

characterised by modern ICT, control and monitoring systems [7].   

The difference between microgrids and regular distribution networks with RES is mainly with 

regard to controlling the operations of the network. Microgrids quite often are equipped with 

Energy Management Systems (EMS) that are capable of managing both generators and loads 

in a way that is economical and sustainable. Moreover, they also interact in a smart manner 

with the upstream distribution network. They perform these duties while maintaining all 

electrical parameters of the network within their specified limits as required by power quality 

standards. This includes voltage magnitudes, voltage angles, harmonics and any other 

parameters of necessity. They provide decision making power to both the generators and 

consumers.   

The typical microgrid layout is shown in Fig. 1. It consists of numerous components such as 

generators which could be solar PV panels, wind turbines, micro hydro plants, diesel 

generators, fuel cells etc. It includes different types of load demands such as critical load and 

common load. It includes different storage systems such as battery storage systems, pumped 

hydro storage systems, fly-wheel storage systems, compressed air storage systems etc. At the 

core of the microgrid is the central controller which is responsible for monitoring, co-ordinating 

and controlling the operations of the microgrid. It receives information from different 

components through a network of sensors and then moves into decision making depending 

upon a certain objective that is set by the user.   

In general, the central controller or the EMS can be of two types, centralized and de-centralized 

[8]. In the centralized scheme the EMS receives information from all different components 

which includes meteorological data, load profiles of all consumers, information from energy 

storage systems, current output of generators and forecasted outputs of generators etc. based 

on which the EMS prepares a schedule for the microgrid and it’s components and the decisions 

made are sent to the individual local controllers.  On the other hand, in case of the de-

centralized scheme the local controllers have more power, where each local controller sends a 

future possible generation or consumption schedule to the central controller which is analysed 

by the central controller and an optimal scheduling scheme is prepared and the decision is sent 



to the local controllers. The local controllers may refuse to implement the decision made and 

bargain until the local or global objectives of the system are obtained. 

 

Figure 1 Typical microgrid layout 

 A typical EMS of a microgrid can be seen in Fig 2. As mentioned earlier the EMS receives 

information from all components present within the microgrid which is called as data 

acquisition. Once this is obtained the next step is data processing which involves 

standardisation of all data sets into a format that is applicable to the EMS. In this step the data 

is also manipulated as required which could involve normalization of the data, imputation 

replacing missing data, using transformations such as wavelets or Fourier’s etc. This step is 

followed by forecasting which takes into account the meteorological data and past generation 

data in order to predict the future generation profiles of generators within the microgrid. It also 

involves load forecasting.  These forecasted variables are then used by the optimization 

algorithm of the EMS to create a suitable schedule of the operations of the microgrid and its 



components also known as Economic Dispatch (ED). Based on this schedule real-time control 

decisions are made wherein errors between the forecasted and actual values are accounted for 

by the EMS in real time.   

 

Figure 2 Typical energy management system 

1.2 Forecasting  

Forecasting in microgrids is mainly concerned with a few components. The generators whose 

output’s depend upon meteorological factors and the load demand of the consumers which 

fluctuates regularly. This thesis is concerned with the forecasting of mainly the solar PV 

systems, individual wind turbines and load profiles of the consumer. The literature concerning 

the same is analysed below.  

1.2.1 Solar power forecasts  

The main challenges to wide spread adoption of PV systems are its variability and uncertainty 

[9]. In any given time-horizon from seconds to years the power output of a PV system is 

difficult to ascertain. In order to overcome this challenge numerous forecasting algorithms have 

been proposed. It is crucial to have forecasts of sufficient accuracy in order to deploy the PV 

systems in a large scale without threatening the stability of the power system and promote their 

participation in the electricity markets.  

Broadly, forecasting algorithms for solar PV systems can be classified as physical or statistical. 

The physical forecasting model includes creating an appropriate model for the PV system 

taking into account not only the historical output values of the system but also other variables 

such as Irradiation (W/m2), Wind speed (m/s), Ambient temperature (oC) and PV Module 

temperature (oC) which could affect the output of PV system. The selection of variables for the 

forecasting model are of utmost importance to achieve an acceptable accuracy [9]. The 

statistical model on the other hand takes into account only the historical values of the power 

output of the system. Both approaches have been used widely and the selection of an approach 

depends upon the availability of data and the local conditions of the PV system and needs.   



The actual forecasting models used can be classified into 5 classes: time series models, 

regression models, Numerical Weather Predictions (NWP) based models, machine learning 

models and image-based models [10]. Each class is explained briefly.  

Time series models:  The models under this class fall mainly under 3 sub-classes. They are 

Auto Regressive Moving Average (ARMA) based models, Exponential Smoothing (ETS) 

models and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models. 

There are numerous models which are also a combination of the sub classes and in combination 

with other classes of forecasting models such as in combination with machine learning 

forecasting models. ARMA class of models such as auto regressive integrated moving average 

(ARIMA) , seasonal Auto Regressive Integrated Moving Average (SARIMA) are the most 

popular forecasting models used when it comes to solar PV output forecasts [10]. This is also 

because they serve as standards when it comes to testing and validating the results of other 

forecasting algorithms and have been in use for quite some time. They also have dedicated 

modules in most statistical software such as R or MATLAB making their application easier. 

The biggest drawback of such models is the fact that they are statistical and mainly only focus 

on the historical data of the output without considering factors such as irradiation, module 

temperature etc which affect the output of all PV systems.  

Regression: Regression is defined as a statistical method of ascertaining the relationship 

between an output and an input variable or variables. When more than one input variable is 

used to determine the output, it is called Multiple Linear Regression (MLR). The regression 

model is written as follows: 𝑌 =  𝛽𝑜 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 +  𝜖, where 𝑌 is the 

output/dependent term, 𝑋𝑘 are the input/independent terms, 𝛽0 is the constant term and  𝛽𝑘 is 

the slope of each input/independent term, and ϵ is model’s error, also known as residuals.  

One of the simplest regression models is the first order Auto Regressive model (AR1) which 

is defined as 𝑌𝑡 =  𝛽𝑜 +  𝛽1𝑌𝑡−1 + 𝜖  Where, the forecasted output at t (𝑌𝑡) is calculated based only 

on the output value at the previous time step (𝑌𝑡−1). Considered to be a very naive method of 

creating MLR forecasting models is to include all possible variables that affect the output such 

as ambient temperature, module temperature, wind speed, humidity, cloud cover etc. Hence, 

for this method, as well as in the case of many others it is imperative to choose the right 

combination of input variables to make an accurate forecast.    

Numerical weather prediction: NWP models are able to determine the irradiation fluxes across 

numerous levels of the atmosphere. Until recently the Global Horizontal Irradiance (GHI) and 

the Direct Normal Irradiance (DNI) were not provided by NWP models due to lack of 

appropriate application especially when compared to other variables such as temperature, 

humidity, precipitation and wind. This situation has now changed due to the enormous adoption 

of solar energy-based generators and devices which benefit from the availability of such 

information.  

There are many NWP models that exist such as the Weather Research and Forecast (WRF) and 

especially the WRF – Solar [11] which is regarded as the first NWP model for forecasting solar 

power.  Integrated forecasting system (IFS) developed by the European centre for medium-

range forecasts. Advanced Regional Prediction Systems (ARPS) developed by the university 

of Oklahoma. The Global Environmental Multiscale (GEM) which is an integrated forecasting 

and data assimilation system created by Environment Canada. Global Forecast System (GFS) 

created by the National Centres for Environmental Prediction (NCEP) among others. All such 

models solve fundamental equations of fluid motion but their approach to the same might 



differ. They might differ in terms if the numerical scheme used and in terms of models for sub-

grid physical processes [10]. The usage of such NWP models for solar radiation simulations 

can be a challenging task and would require the need of domain expertise to use them 

appropriately.  

Machine learning: One of the more popular approaches to forecasting in general and solar 

power forecasting is the use of Machine Learning (ML) approaches. ML methods include the 

use of neural networks such as Artificial Neural Networks (ANN) which incorporates Multi – 

Layer Perceptrons (MLPs) with back propagation. The general idea is to teach such neural 

network-based models the relationship between input and output variables using already 

available data which characterise a particular system. Over time there has been significant 

improvement in the structure and complexity of such neural networks which has led to the 

development of deep learning models which exhibit superior performance in terms of speed 

and accuracy of producing forecast models. This is because in comparison with the traditional 

ML models the deep learning models do not saturate in terms of performance when greater 

data and higher computational power is available [12], Another reason for their improved 

performance is the ability of such models to extract features from raw data utilising feature 

learning which helps the model to understand unknown representations within the input data 

[13].  

Apart from ANNs and deep learning models there are numerous other ML methods which are 

used for different purposes within the field of forecasting. Support Vector Machines (SVMs) 

and K- nearest neighbours (kNN) are used for classification of data. Gradient boosting and 

random forests regressions represent ensemble learning methods for regression which combine 

the prediction from numerous forecasting models with the objective of producing more 

accurate forecasts.  While the world of ML is too big to describe in a few paragraphs, all 

methods have a common approach to creating models which is to initially split the data into 

training and test sets. To fit a model according to their own working algorithm and validate the 

functioning of the model against the test set. All results are then evaluated using a common set 

of evaluation metrics such as the Root Mean Square Error (RMSE), BIAS, Mean Absolute 

Error (MAE) etc. in order to determine the superior models.  

Image based models: The accuracy of models quite often can be improved with the use of 

satellite or sky imagery. Such images provide information regarding the approach of clouds 

beforehand which can be incorporated in the model improving its performance[10]. These 

images are used in tandem with other approaches mentioned above. The image containing data 

pertaining to the clouds is used to train regression models, deep learning models etc. These 

approaches extract data from the images only along a line or a sector upwind of the sun and 

apply regression or machine learning methods only at a select number of pixels in order to 

derive the GHI or DNI at the imaging device’s location.  

A few examples from the literature are as follows, [14] presents a model which is based on a 

Recurrent Neural Network (RNN) utilising Genetic Algorithm (GA) and Ensemble methods 

for  day ahead forecasting for regional solar power plants in Thailand. The data utilised for 

model training includes historical data of the power generated by solar power plants. Weather 

data at the location of the power plants obtained using measuring devices and weather forecast 

data obtained from 3 free weather models which are PVwatts, Pysolar and NCEP forecasts 

respectively. PVwatts developed by the National Renewable Energy Laboratory (NREL) is 

able to provide information regarding solar irradiance upon entering the latitudinal and 

longitudinal co-ordinates. Pysolar which is a python library provides information regarding 



solar irradiance, azimuth angle and altitude angle of the sun at all locations on earth. NCEP 

forecasts developed by National Centre for Environment Prediction (NCEP) provides 4 times 

a day weather forecasts every 6 hours. The evaluation criteria used for assessment of the results 

obtained was the RMSE. Due to utilisation of various data sources the number of variables 

taken into account are quite high which are the GHI, Diffuse Horizontal Irradiation (DHI), 

altitude degree, ambient temperature, module temperature, downward and upward short-wave 

radiations at the surface and finally solar irradiation. The results have indicated an 

improvement of 1.71 % with regard to the RMSE when compared with a single model instead 

of a combination of an RNN based on GA and Ensemble methods.  

Forecasting concerned with the largest solar plant in Russia, the Sakmarskaya solar power plant 

can be found in [15] wherein a combined physical and statistical approach to forecasting has 

been adopted. The forecasts were carried out utilising solar radiation flux density, relative air 

humidity, wind speed and temperature. The meteorological variables were obtained from an 

onsite weather station. The comprehensiveness of the model arises from the detailed physical 

model which involves assessment of changing flux density of the solar radiation as it moves 

through the atmosphere. This is made possible by the use of a clearness index which accounts 

for absorption of solar radiation by various atmospheric elements such as the ozone layer, dust 

particles, clouds and water vapour. The evaluation metrics used in this study are the RMSE and 

the Mean Absolute Percentage Error (MAPE). The analysis of the forecasting model is quite 

rigorous and the authors have made concrete efforts to identify weak points that result in high 

accuracy of forecasts. In this manner recommendations have been made to improve the 

accuracy of the forecasts to an error value of 3-4 % of the output power.  

A purely statistical approach to forecasting can be found in [16]. The study uses a novel 

Mycielski – Markov method in order to make forecasts. Mycielski refers to the signal 

processing involved and it is used to make forecasts in a deterministic way using recurrence of 

data points. Markov chain on the other hand is responsible for calculating the probabilities of 

different solar energy states and produce a forecast based on these probabilities. The data for 

this study was local and was taken from monocrystalline PV panels installed therein. The 

method is claimed to be novel since it accounts for both the deterministic component through 

Mycielski and the probabilistic component through Markov. The evaluation metrics used in 

this study are the RMSE, coefficient of determination, MAPE and Relative RMSE (RRMSE).  

A novel analog ensemble approach to hourly day ahead forecasts is described in [17]. The 

model uses both statistical and physical data. It utilises freely available open source data 

(weather forecasts), measured data such as historical output data, irradiation, temperature and 

some astronomical data such as the declination angle and solar time. The approach was applied 

to a zone in South east Massachusetts to demonstrate its performance. The open data sources 

for weather forecasts were obtained from 3 widely available NWP models which are the North 

American Mesoscale Forecast System (NAM), the Global Forecast System (GFS) and the Short 

– Range Ensemble Forecast System (SREF). All of the above-mentioned models provide the 

GHI, DNI, DHI and ambient temperature. The NAM and GFS models are run 4 times a day, 

every 6 hours at 00, 06, 12 and 18 UTC time. The SREF is run every 6 hours at a 3-hour lag 

compared to the NAM and SREF at 03, 09, 15 and 21 UTC time. In order to download 

information from all the sources mentioned a web-crawler was deployed by the authors. Once 

all the data is collected, data cleaning is deployed to remove missing data and invalid data. The 

approach in its core has two algorithms which are the Earth Declination Angle Change (EDAC) 

limit algorithm and the Historical Day Change (HDC) limiting algorithm. In brief both the 



algorithms have 3 steps that are: building a data set from past values that have similar 

declination angles and solar times, within this said data set identify the points most similar to 

the weather conditions of the time for which the forecast is to be made and predict the power 

at the time for which the forecast is to be made using the available information. The advantages 

of using such an approach is that it doesn’t need detailed information regarding the PV system 

for which it used, it can be set up with minimum work effort and labour costs, much of the data 

used is available freely to the public and it is a novel approach to forecasting since it used 

declination angles and solar times. The evaluation metrics used were the Normalized MAE 

(NMAE) and Normalized RMSE (NRMSE). The results of the study were compared with three 

baseline models based on the Persistence model, the NWP model and a Support Vector 

Machine model (SVM). The results showed a significant improvement over all baseline models 

used with regard to both the NRMSE and the NMAE.   

An improvised probabilistic method of forecasting solar power is described in [18]. The model 

is based upon a correlated weather scenario generation. The process utilises copula which is a 

popular method for ascertaining the dependency amongst variables. It is used for re-writing 

multivariate joint distributions in the form of univariate marginal distribution functions with a 

copula that defines the dependency amongst the variables. The steps involve fitting Probability 

Distribution Functions (PDFs) of the historical actual and historical forecasted weather data. 

This is then followed by obtaining the joint Conditional Distribution Functions (CDF) of the 

historical actual weather data utilising the forecasted historical weather data and Copula. 

Following this is the generation of numerous weather scenarios through Gibbs sampling. The 

process described above is utilised to produce numerous weather scenarios which help in 

obtaining probabilistic forecasts. In order to do so an initial deterministic forecasting process 

still has to be in place which is done in this article through a data-driven multi-layered multi-

model ensemble machine learning system. The input variables used for this particular system 

include historical values of solar power output from the solar farms and weather data such as 

air temperature, solar radiation, solar zenith angle and wind speed obtained from the National 

Solar Radiation Database (NSRDB). The data has a 30-minute temporal resolution. Given the 

input data the forecasts are obtained using an ensemble wherein the first step involves using 

the input data to obtain forecasts from different machine learning algorithms such as random 

forests, gradient boosts, SVMs and neural networks. This is followed by a blending algorithm 

which utilizes the individual forecasts to produce a final forecast. The evaluation criteria used 

for the forecasts are the NRMSE and the NMAE for the initial deterministic forecasts and 

Pinball loss for the final probabilistic forecasts. For comparison of the results four 

benchmarking methods are used which are Quantile Regression (QR), fixed-date, shifted-date 

and bootstrap methods. The results have shown improvement over all other benchmarking 

techniques used.  

1.2.2 Wind power forecasts  

The challenges to wind power integration into power systems are similar to that of the solar 

PV systems which are variability and uncertainty. In order for increased wind power 

penetration, forecasting is deployed so that appropriate scheduling and reserve capacity can be 

planned by the power system operators and regulators [19].   

Again, similar to the solar power forecasts, wind power forecasting can also be categorised 

under physical and statistical methods of forecasting. The physical methods take into account 

numerous physical factors affecting wind speed such as temperature, physical terrain of the 

surroundings, pressure and obstacles. Moreover, numerous such models employ NWP models 



that solve conservation equations numerically at the location [19]. The statistical models are 

time-series models which are dependent on analysis of historical recorder data. It involves 

pattern identification, parameter characterization and model checking. The models can be 

categorized as Autoregressive (AR), Moving Averages (MA), ARMA and ARIMA models.   

The forecasts can also be classified based on the time horizon. There are 4 categories namely, 

very short term ranging from a few seconds to 30 minutes, this time horizon is useful in 

electricity market clearings and wind turbine control. Short-term ranging from 30 minutes to 

48/72 hours ahead which is useful in economic load dispatch and load increment/decrement 

decisions. Medium term ranging from 48/72 hours to 1 week ahead, these are useful for 

generator online/offline decisions, planning maintenance schedules and unit commitment 

problems. Long term ranging from 1 week to a year or more, this is useful during feasibility 

studies of wind farms and maintenance scheduling for optimal operational cost [20].  

This thesis mainly focuses on forecasting at the short term. Hence, certain examples from the 

literature are as follows. [21] presents a comparison of popular short-term forecasting methods 

especially between conventional time-series methods – ARMA and intelligent methods which 

are ANNs and Adaptive Neuro-Fuzzy Inference Systems (ANFIS). The data used in the study 

were collected from the wind atlas of South Africa. It included wind speed measurements at 

various heights, wind direction data, atmospheric pressure, relative humidity and temperature. 

The results in this study have shown that for very short-term forecasting (10 – min ahead) the 

intelligent methods outperform the ARMA model and for the short-term forecasting (1- hour 

ahead) the ARMA model performs better. The evaluation criteria used in the study are the 

MAE and the RMSE.  

An improved statistical approach to short term wind speed forecasting can be found in [22] 

wherein they have proposed the use of a Repeated Wavelet Transform – ARIMA (RWT – 

ARIMA) which has shown to be superior to both the ARIMA model, a hybrid Wavelet – 

ARIMA (WT – ARIMA) model and the persistence model. The performance of the model has 

been evaluated at different time horizons such as 1 min, 3 min, 7 min and 10 min. This article 

provides an in-depth analysis into the usage of wavelets, ARIMA and WT – ARIMA for the 

purposes of short-term wind speed forecasts. The evaluation criteria used in this study are the 

MAE, RMSE, MAPE and Sum of Square Error (SSE). It has been shown that the reason for 

the better performance of the (RWT – ARIMA) model is due to its ability to decompose the 

higher frequency time series into detailed coefficients and course approximations in addition 

to the low frequency time series decomposition. This way it is expected that the RWT- ARIMA 

will be able to capture all time variations in the wind speed data.  

An intelligent approach to short term wind speed forecasting is presented in [23]. The approach 

used in this case is the Jaya – SVM model. It is different from the regular SVM approach in 

the fact that the input data is analysed and only the most representative features of the same are 

utilised by the model. The Jaya optimization algorithm is used to optimize the hyper parameters 

of the SVM. This particular optimization algorithm was chosen by the authors due to its nature 

of finding the optimal solution of a given problem while avoiding the inferior solutions. 

Moreover, its simplistic approach avoiding the need to use control parameters and work only 

on the basis of common parameters such as the number of iterations and population size merit 

its use. The results of using this model have been compared with the same data used on 7 other 

models which are the deep belief network, multi-layer perceptron regression model, least 

absolute shrinkage and selection operator, gaussian process regression, extreme gradient 

boosting, granular computing method and stacked sparse autoencoder. The data used in this 



study includes wind speed data alone collected in Jilin, China. The evaluation parameters used 

include the MAPE, R2, MAPE and MAE. The results have shown the Jaya – SVM model 

outperform all the above mentioned 7 algorithms with regard to all evaluation parameters. 

Moreover, it is also shown that the model displayed higher reliability within the same 

confidence levels. It is believed that this improvement in performance of the SVM is due to the 

Jaya algorithm. 

A comprehensive approach to forecasting has been adopted in [24] wherein the approach 

involves considerable data pre-processing, a modified multi – objective optimization algorithm 

and various forecasting models. A novel data pre-processing technique called Improved 

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) has 

been used in order to overcome the disadvantages of more regularly used data pre-processing 

techniques such as the Empirical Mode Decomposition (EMD) and the Ensemble EMD 

(EEMD). EMD has weaknesses such as mode-mixing and EEMD has problems with residual 

noise. ICEEMDAN is able to overcome such problems, remove noise fluctuations and extract 

the main features within the wind speed data. The prediction model used is a combination of 

both conventional and intelligent algorithms, they are the Back Propagation Neural Network 

(BPNN), Ensemble Neural Network (ENN), Extreme Learning Machine (ELM), Generalized 

Regression Neural Network (GRNN) and the ARIMA model. The reason for using both types 

of models is because the ARIMA is efficient in characterising linearity and the intelligent 

algorithms are good at dealing with non-linear characteristics. The weight coefficients of all 

above mentioned models were determined by a modified multi – objective dragonfly algorithm. 

The original algorithm was modified by adding to it an exponential step size strategy and an 

elite reverse learning strategy. This enables the algorithm to hop out of local optimum solutions 

when entrapment happens. The multi – objective optimization algorithm used focuses on two 

objectives which is accuracy of the result and stability. The data used in this study is the wind 

speed data obtained at an interval of 10 minutes from 4 adjacent wind farms located in 

Shandong, China. The evaluation metrics used in this study are the MAE, SSE, MAPE and the 

RMSE. The results of the study were compared with forecasting results from individual models 

of ARIMA, ELM, ENN, BPNN and GRNN. The proposed model has outperformed all the 

above-mentioned individual models.  

A hybrid forecasting model based on intelligent algorithms is presented in [25]. The model is 

composed in total of 4 different modules which are the Crow Search Algorithm (CSA), Long 

Short-Term Memory (LSTM) deep learning networks, Wavelet Transform (WT) and Feature 

Selection (FS) depending upon entropy and Mutual Information (MI). The procedure of the 

model is as follows, first the erratic and fluctuating characteristics of the time series data is 

removed using WT which splits the wind speed data used into 4 sub – series. This is followed 

by FS which discards inputs that are redundant and selects the most appropriate inputs for 

forecasting. This not only contributes towards increased accuracy of the model but also 

improves the run time. The outputs from this step are then used to train an LSTM model which 

makes the forecasts. The LSTM is optimized using the CSA. The data used in this study was 

obtained from two different sites, one from Spain and the other from Iran. In the former the 

data was recorded every 10 minutes which was then converted to hourly wind speed data and 

from the latter the data available was hourly. The evaluation criteria used in this study are the 

RMSE, MAE and MAPE. The results of the study have been compared with various other 

models such as the WT-FS-LSTM model, MLP model, WT-FS-MLP model, basic LSTM 

model, FS-LSTM model, WT-LSTM model, WT-FS-LSTM model and WT-FS-LSTM model 

optimized by particle swarm optimization (PSO) and it had outperformed them all.  



A turbine specific approach to forecasting wind speeds is presented in [26]. In this approach 

firstly, data is collected at hub height from a cluster of turbines and then two different stochastic 

models are built in-order to capture two different characteristics that are responsible for wind 

propagation in a wind farm which are the temporal and spatial dependencies along with the 

high-magnitude and high-frequency erratic fluctuations that have an impact on model accuracy. 

The two models are then coupled together to produce probabilistic forecasts of wind-speeds 

for each turbine. These forecasts are then used to make wind power forecasts using the power 

curves of the turbines. The first characteristic which are the temporal and spatial characteristics 

are modelled as a gaussian process with a specific non-separable covariance model. This is 

different in comparison with regular approaches which usually tend to separate the models for 

spatial and temporal dependencies. This is followed by adding another gaussian process which 

is used to capture the second characteristic which is the high – frequency and high – magnitude 

variations. The data used in this study is obtained from a wind farm located in the United States. 

It includes wind speed and wind power data that are recorded hourly at a height of 100 m for 

about 200 turbines. The wind power data is scaled in the range of [0,1] and wind direction 

measurements are made in three different locations of the wind farm. The wind power curves 

are created using the binning method. This approach is compared with several other models 

such as the persistence model, Regime – switching ARIMA model, spatio – temporal gaussian 

process, calibrated regime-switching gaussian process and Farm-level ARIMA model. The 

evaluation criteria used in this study includes the RMSE based on forecast per time horizon 

and RMSE based on forecast per location. There is an overall improvement of the proposed 

method despite the benchmark models performing satisfactorily at certain instances.  

1.2.3 Load forecasting  

The need for load forecasting depends from scenario to scenario[27]. For example, short-term 

forecasting of load is crucial for power balancing in the electrical grid, in the power exchanges 

and control of power plants. Long-term forecasting on the other hand is useful in capacity 

planning and expansion, creating long term maintenance schedules, making capital investments 

and carrying out revenue analysis. Moreover, load forecasting can also be carried out over 

varying electrical boundaries, it can be made for a building, a local neighbourhood, a district 

or a country.  

There is a plethora of methods when it comes to load forecasting but in a broad manner, they 

can be classified under 4 classes as explained below.  

Artificial neural networks: The conventional time series models that are often employed are 

unable to characterize the complex non-linear relationships that exist within data [27]. 

Moreover, at times they produce results that are unsatisfactory. With the increase in 

computational power availability and improvement of neural network-based models, ANNs 

and deep learning-based models are becoming increasingly popular. These class of models are 

based on the functioning of the human brain. ANNs consist of a network of neurons in many 

different arrangements and are interconnected to one another wherein they can send and receive 

signals that are normalized. The training process for any ANN involves characterization of 

weights which can be seen as the threads that connect these neurons. They are known to be 

quite powerful in patter recognition applications. One of the most popular and commonly used 

ANN is the MLP model. It is based on the theory of back-propagation wherein the error 

between the output value of the ANN and the actual value helps determine the weight values 

of the neural network. ANNs are quite often data-driven and unlike time series models which 

saturate in performance, ANNs improve with increased data availability and increased 



computational power. The drawbacks of ANNs and deep learning models are that, they are 

essentially black boxes which means it is impossible to understand the exact relationship by 

which they relate the inputs and outputs, they have high training times, they are 

computationally expensive, they are data intensive, as in they need a certain minimum amount 

of data to function desirably and the models may never converge to a satisfactory relationship 

at times.  

Time-series models: Some of the most popular methods of forecasting belong to this class of 

models, as already explained in the previous sections it includes the ARMA and ARIMA set 

of models amongst a few others. The ARMA and ARIMA were introduced by George Box and 

Gwilym Jenkins in 1970 [27]. The difference between ARMA and ARIMA is the differencing 

of the time series data which is done in ARIMA and not in ARMA. This is because these class 

of models are applicable only to stationary signals. Autoregression (AR) can be defined as a 

linear relationship between a current output value and past values whereas a Moving Average 

(MA) can be defined as a linear relationship between the present value and past white noise or 

error values. The models can also be adapted to account for seasonality and such an adaptation 

is called as Seasonal ARIMA or a SARIMA model. In general, the Box – Jenkins class of 

methods are adaptable and seasonal. The drawbacks of such methods are that they are unable 

to characterize complex non-linearity present in the data, they are not suitable for long term 

forecasting and at times needs strong expertise in order to understand the underlying statistical 

data.     

Bottom up end-use approach: This approach is called so because it involves creating a 

representative model of the entire system by aggregating the demand of the individual 

components of the said system. The most commonly used bottom up approach is the Capasso 

model. This model calculates the probability of an appliance working throughout the day (at 

every time step) taking into consideration the appliance’s and the members of the household’s 

characteristics. This probability is then calibrated based on whether the activity attached to the 

appliance can be performed by one person or more and if the activity can be carried out along 

with another activity. Once the final probability is attained, socio-economic criteria is used in-

order to decide the penetration of various appliances of a given household. The power 

requirements and duration associated with each appliance is calculated and it is ascertained if 

those parameters can be correlated with a specific activity and building. For this to be possible 

the minimum duration of every appliance has to fit the probability of the activity in which it is 

involved and the required power has to be lower than Plimit which is the maximum load demand 

of the household taking into account that other appliances might also be functioning at the same 

time instance. This leads to construction of an appliance and household daily load profile. This 

model is quite comprehensive and accounts for behavioural differences amongst different 

households. It characterizes the relationship between the members of a household and their 

appliances. The disadvantages of this approach is the massive exercise to be carried out in 

terms of surveys and accumulation of data, the lack of data in terms of behaviour of the 

consumers in the long run and the fact that the model assumes a linear relationship between 

end use and load consumption.   

Support vector machine: SVMs were originally introduced by Vladimir Vapnik and later the 

soft margin classifier was put forth by Vapnik and Cortes. SVMs were initially used for pattern 

classification problems such as facial recognition and text classification. In 1995 this class of 

algorithms was extended to also include SVM regression which led to its application to time 

series forecasting. SVMs create a hyperplane which in a higher dimensional feature space 



classify incoming observations into different subsets. In practice however it may not be 

possible to classify real data easily. Keeping this in mind a soft margin classifier was 

introduced. SVM is useful in the fact that it is able to create non-linear decision boundaries, 

this is possible since it is able to linearize such boundaries by using appropriate transformations 

on a higher dimensional feature space. The drawback in this process is the high computational 

power required to make calculations in a higher dimensional space which makes proper 

selection of hyper-parameters crucial. It is possible to improve the computational efficiency by 

using something called a “kernel trick”. These are in fact functions which utilise the inner 

products between observations instead of the observations themselves. Thus, it changes how 

similarity between two observations is calculated, making it more flexible and possible to solve 

a non linear problem linearly in a higher dimensional space.  

Regression: Regression here is the same as explained before in the sub-section of solar 

forecasting. It is a popular statistical method used to establish a relationship between a 

dependent variable and other independent variables. The most common regression methods 

used are the linear and polynomial regression methods though other exist.  

A few examples from the literature are as follows:  

A unique approach to load forecasting is described in [28]. For all practical purposes it can be 

viewed as top down approach. The reasoning behind such a model is that the geographical area 

of a bulk power system can be massive. The study conducted in China, takes into account a 

large geographical area and creates sub districts within the same region and attempts to 

establish different forecasting models for each of these sub districts based on their individual 

meteorological conditions and historical consumption data. The individual models for the sub-

districts are called subnet models and every such model is created using the Mining Default 

Rules Based on Rough sets (MDRBR) algorithm. The MDRBR is an approach which uses the 

mining policy in a bottom to top approach. Every rule with every condition is used to form 

different layers one by one. For example, given 3 rules with 3 conditions, a layer is first created 

with one rule having one condition and when this is fulfilled the next layer is built with the 

second rule and second condition and when this is fulfilled a third one is built. In this manner 

the procedure keeps moving until all rules containing all conditions are satisfied. The rules are 

in fact simple “IF” statements such as, if the temperature is above 350C then the load is high. 

The area under investigation for the study is divided into 3 subnets which are the Beijing 

subnet, Tianjin subnet and Tangshan subnet. The total number of attributes considered include 

meteorological factors such as temperature, humidity, rate of change of temperature, rate of 

change of humidity and the characteristic of the day, if it is a holiday or a weekday and 

historical load consumption data. The evaluation criteria of the study used is “Accuracy”, a 

term defined by the national electric power dispatch centre of china. Similar to other metrics it 

is dependent upon the error value between predicted and actual value.  

A comprehensive study regarding the application of deep learning models for hour ahead and 

day-ahead load forecasting is presented in [29]. The study involves modelling a sophisticated 

model involving data pre-processing, feature selection and hyperparameter fine-tuning. The 

data pre-processing used is quite standard involving imputation, detection of outliers and 

normalization of the data. Feature selection involves optimal choosing of features needed to 

train the model, this is done so that redundant data can be avoided which reduces computational 

burden and improves accuracy. The study has used Pearson correlation and analysis of the same 

to select the optimal features needed. 9 deep learning models are used by the study which 

include the regular LSTM, BiLSTM, BiLSTM with attention, CNN + BiLSTM, CNN + LSTM, 



Encoder – Decoder LSTM, ConvBiLSTM, BiLSTM with attention and ConvLSTM. The 

performance of all the above-mentioned algorithms are dependent on the hyperparameters that 

define them, this study has optimized the selection of a few of the hyperparameters which are 

in fact common to all the models. They are the optimizer, the number of layers and neurons, 

the best learning rate, the activation function and the number of epochs and batch size. The 

evaluation metrics used for the study include the RMSE, MAPE, Coefficient of Variance (CV) 

and a new Root Mean Square Logarithmic Error (RMSLE). RMSLE was introduced as a new 

metric because the RMSE was not a suitable candidate for comparison of results in this study 

since it involves a number of buildings with different load capacities and the buildings with 

higher load capacities will automatically see their RMSE values ballooned. The forecasting has 

been carried out for 5 different types of buildings in 5 different places. The building types are 

a grocery store, a school, an office, a research laboratory and an academic building. The 

buildings are spread across Bangkok, Thailand, Hyderabad, India, Virginia, Massachusetts and 

New York in the USA. Such a wide variety of buildings from different locations were chosen 

in order to show the general applicability of the forecasting method irrespective of the building 

type and the place. The data used in the study include meteorological data such as temperature, 

humidity, air pressure, wind speed and solar irradiation and load consumption data of all 

buildings. While a number of input variables exist, feature selection ensures that the optimal 

number of variables are chosen. The study also investigates into the performance of Ensemble 

learning based clustering wherein 2-3 clusters of different combinations of features were used 

to train and evaluate models. The best results were achieved by the ensemble of a cluster 

consisting of historical load data and hourly meteorological data along with a BiLSTM with 

attention network for low load conditions and the same cluster with an LSTM with attention 

for high load conditions. Finally, a sensitivity analysis was also carried out in-order to 

understand the effect of data with different resolutions on the forecasting model. It was 

concluded that data with a higher resolution does improve the forecasting model but it also 

increases the computational burden in terms of time and memory.  

Load forecasting using the ARIMA model has been adopted in [30]. The study presents a short-

term load forecasting model for a 400 kV substation. The study has also investigated the effects 

of different data sets with different sizes on the accuracy of the forecasting model. The software 

used for this study is R, which is a widely used tool in data science and data analytics. The 

Auto.arima function in R is used to fit the data and make the forecasts. They have considered 

two cases wherein the accuracy of forecasting has been evaluated when the input data contains 

data related to temperature and when the input data does not contain any information related to 

the temperature. The evaluation criteria used in this study is the RMSE and it was evaluated 

for both types of data sets (with and without temperature) and for two different dataset lengths 

(one day and one week). It was found that the RMSE was the lowest when the dataset 

considered had included data regarding temperature and the data points available were for the 

whole week making it the most accurate model.  

Load demand while being stochastic for whole of the year still follows a seasonal and daily 

trend which is also influenced by meteorological factors. It is this combination of data that 

form the basis of most forecasting models. During a year there are certain days (festivals, events 

etc.) during which the regularly used forecasting models come up short and make highly 

erroneous forecasts. In order to make accurate forecasts for these special days a model is 

presented in [31] which is based on SVM hybridized with a novel Grey Wolf Optimizer (GWO) 

algorithm to forecast the load for 3 different festival days in Assam, India. The need for such a 

forecasting model also comes from the fact that the particular region is energy scarce and 



during the festival period the energy demand increases so rapidly that in-order to maintain 

operations, accurate forecasting methods are required. The data used in this study for model 

training is mainly historical hourly data for the festival days since the data in any given hour 

of the holidays under study change rapidly due to the many rituals that are scheduled for certain 

parts of the day. Moreover, from observation it has been noticed that every calendar year during 

these days the demand increases due to the addition of new electrical appliances with different 

characteristics and ratings. In order to account for this change an hourly annual demand growth 

of 4.4% - 7.6% has been added from the previous calendar year. Apart from this data the 

ambient temperature forecast is also utilised by the model which is taken from an external 

service provider of such data. The GWO which is based on the grey wolfs’ social hierarchy 

and hunting pattern is used to optimize and find the best combination of parameters for the 

SVM. The evaluation metric used in this study is the MAPE and the results are compared with 

four other methods which are the SVM, ANN, PSO-SVM and GA-SVM. The proposed method 

has been shown to be faster, reliable and more accurate than the other algorithms.  

Load forecasting for multiple households using a multivariate model utilising past consumption 

values, socio-economic data and meteorological data is presented in [32]. The study utilises 

Bayesian Networks (BNs) defined as a probabilistic graphical model to perform the 

forecasting. It is defined as a directed acyclic graph wherein the model depends on the graph 

and the conditional probabilities, both of which have to be learnt. The learning of the graph can 

be constraint dependent, score dependent or a combination of the two. The constraint-based 

approach utilises independent tests whereas the score-based approach uses heuristics to build 

structures that are evaluated using metrics such as the Akaike Information Criteria (AIC) or 

Bayesian Information Criteria (BIC). The final model includes the part described above and a 

quantitative part. Once that is obtained it is possible to calculate the conditional probability 

distribution function of an unobserved variable given certain observed variable states. The data 

utilised in the study is publicly accessible and it is the Irish smart meter data which is available 

due to a project executed by the Irish Commission for Energy Regulation. The data is 

comprehensive and is obtained from 5000 Irish homes for a period of 17 months with a 

sampling rate of 30 minutes. The data captured is active power consumption. Along with this 

there is also data from questionnaires regarding the number of household occupants, customer 

classification, tariff schemes, tariff incentive stimulus and socio-economic data such as the 

social class of the household based on the occupation of the bread winner, the electricity used 

for cooking and house heating. The data once obtained was pre-processed, initially a filter was 

used so that data pertaining to only those households which also filled the questionnaires 

regarding their socio-economic status would be used. This resulted in a total of 929 households. 

Once this was done 59 evenly spaced dates were chosen and from every such date two data 

sets were determined, one to learn the forecasting model and the and the other to test it. This 

resulted in a total of 59 pairs of learning and test data sets. During this categorization any 

missing values were removed. Next, the power consumption values were normalized by the 

individual household’s average consumption. Then the data was also discretized using a 

quantile-based discretization after which the temporal associations within the data were 

ascertained using Mutual Information (MI). This MI was in fact used to choose how many past 

values of power consumption should be used to train the BN model during the training process. 

The temperature values representing the meteorological data used were also discretized. Apart 

from the above-mentioned data, the time index and the questionnaire responses were used to 

train the BN model. The evaluation criteria used in this study are the NRMSE, the MAE, the 

Median Absolute Error (MedAE) and the Mean Arctangent Absolute Percentage Error 



(MAAPE). The model presented was compared in performance with the persistence model, the 

ANN model and Hidden Markov Model (HMM) and shown to be better.      

1.3 Optimization  

A crucial economical and technical tool regarding power systems is the Optimal Power Flow 

(OPF). It is used for the purposes of analysing, operations planning and future expansion 

planning in power systems [33] . Over the last decade or so this aspect of the power system has 

been highly researched and numerous different methodologies and approaches have been 

experimented with. OPF can be used to set control variables of the power system at specific 

times so that the system under consideration is able to achieve a particular objective set by the 

OPF user. It also ensures that the power system is able to maintain operational limits with 

regards to variables such as voltage, frequency, line limits etc.  

OPF was first introduced by Carpentier in 1962 [33]. It can be defined as a non-convex and 

non-linear problem that has an objective function which must be fulfilled to the best of 

possibilities about a set of equality and inequality functions. In short, OPF is about controlling 

the power flow in a power network while simultaneously trying to achieve an objective that it 

is programmed to achieve [34]. It does so while maintaining all electrical parameters of the 

system within their operational limits.  

The OPF problem has numerous extensions some of which are described below:  

Static OPF: This OPF problem is about achieving the best objective function value possible 

while handling all constraints in a single time step or in a particular moment in time [35].  

Dynamic OPF: It can be defined as static OPF applied to multiple time steps or periods. It 

determines the optimal operational state of the power system over a time horizon [36].  

Transient stability-constrained OPF: This is the type of an OPF problem that takes into account 

both the static and dynamic nature of the power system and power system stability concerns as 

constraints. The system is able to manage severe contingencies in this case [37].  

Security-constrained OPF: The security-constrained OPF is an extension wherein the regular 

OPF (static or dynamic) is solved along with a set of contingencies defined for the power 

system [38].  

Deterministic OPF: Much of the OPF studies carried out are deterministic in nature, as in, they 

do not consider uncertainties associated with the components and operational variables of the 

power system [39].  

Stochastic OPF: This OPF in contrast to the deterministic OPF considers the uncertainties 

associated with the components and operational variables of the power system. It is in fact 

associated with the constraints and the objective functions of the OPF problem defined. The 

resulting optimized control actions obtained by solving the OPF problem also contain 

information regarding their uncertainties [40]. 

Probabilistic OPF: This OPF approach works with PDFs of loads, renewable generators and 

other uncertain parameters of the power system and generates PDFs of the dependent variables 

and results. Such PDFs can be generated using the Monte-Carlo method [41], customized 

Gaussian mixture model etc.  



AC OPF: This type of an OPF problem is based on AC power networks and is more 

representative of the conventional power system in place across the world. It is modelled on 

the natural characteristics of power flow in the power system [42].  

DC OPF: This type of an OPF problem is a simplification of the AC OPF wherein line losses 

and reactive power flows are not considered [43].  

There are many different methodologies by which an OPF problem can be solved. In general, 

they can be classified in to two different categories namely conventional and meta-heuristic 

optimization algorithms [44]. Examples from both categories are presented below.  

1.3.1 Conventional optimization algorithms  

Linear Programming: The power system and it’s functioning in terms of power flow and OPF 

is described by a set of equations that are non-linear in nature. Quite often the problem can be 

linearized and therefore simplified so that it is easier to obtain a solution. This method is the 

linear programming method and it is widely used, reliable and has high success at converging 

to a solution. The disadvantages of the method is that it may result in solutions that are sub-

optimal, entrapment in the local minimum solution and the possibility of errors while 

calculating system constraints. A few examples of the same can be found in [45], [46]. 

Non-Linear Programming: The non-linear programming does not involve linearization of the 

problem and it is capable of handling non-linear functions along with the system constraints. 

These methods use a reduced gradient, Lagrange multiplier methods and it is possible to 

implement them on a large power system. Moreover, it is expected that the results will be an 

improvement from the linear programming approach as entrapment in the local minimum and 

sub-optimal solutions can be avoided. However, It has been observed that certain non-linear 

linear formulations of the problem do not consider certain system components or constraints 

which can be seen as it’s drawback [47].  

Quadratic Programming: In this formulation, the objective function of the problem is presented 

as a quadratic function whereas the constraints are still maintained as linear functions. This 

method yields quick results along with improved solutions, an example of the same can be 

found in  [48].  

Newton’s method: The Newton’s method has been used widely, especially for solving the 

power flow problem. The method utilises gradients and decomposition enabling quick 

convergence to a solution. The negative aspect of this method could be the entrapment of the 

solution at a local minima and subsequently sub-optimal solutions. The application of this 

method for power flow calculations is presented later in the thesis in detail [49].  

Interior Point method (IP): This method used for solving OPF problems provides quick 

convergence and improved solutions. The application of this method to non-linear problems 

has enabled its application in solving the OPF problem. The drawbacks of this method also 

include local entrapment of the solution and its suboptimal nature, an example of the same can 

be found in [50] .  

Distributed and Parallel OPF (DPOPF): This OPF approach utilises processing units at every 

bus of the power system in consideration. This is more applicable to a smart grid with a high 

penetration of IoT. Utilising the processing units, the approach minimises the optimization sub-

problem at every bus. When such an approach is utilised in microgrids that are islanded it is 

called distributed OPF (DOPF). The method is usually deployed with a control algorithm in 



order to carry out synchronized computations when the data arrival in asynchronous. It is quite 

useful in deregulated power systems when the uncertainty increases. Hence, it is an appropriate 

approach for a network consisting of renewables that are uncertain in nature such as microgrids, 

an example of the same can be found in [33]. 

Alternating Direction Method of Multipliers (ADMM): In this method, sub-problems of the 

optimization problem are solved by each local controller which are present within the power 

network. There is exchange of information between the local controller and the main controller 

and between the local controller and other local controllers. The control action decided by the 

local controllers is evaluated by the central controller and suggestions are sent back which may 

or may not be implemented by the local controller. The local controller has the power and the 

possibility to contradict the main controller until a suitable control action is implemented, an 

example of the same can be found in [51].  

1.3.2 Meta-heuristic optimization algorithms  

The meta-heuristic algorithms address some of the concerns mentioned above. They are able 

to produce results where in there is a higher chance that the solution doesn’t get trapped in the 

local minimum solution compared to the conventional algorithms and that it is as close to the 

global minimum as possible [35]. It also ensures that there is no need to simply the objective 

functions and the constraints by means of relaxations and linearization since they can find 

solutions to complex, non-convex, mixed integer and non-linear problems [35]. Certain 

disadvantages of this approach is that their results are not always reliable since they are unable 

to reproduce the same objective function value at every run. Moreover, the algorithms take 

longer time to converge to a solution compared to the traditional conventional algorithms.  

Some of the popular meta-heuristic approaches are described below:  

Genetic Algorithm (GA): One of the first meta-heuristic approaches to be developed was the 

Genetic Algorithm. It can be described as a search technique based on the idea of natural 

selection and genetics such as mutations, cross-over, selection and inheritance [52]. Like many 

other meta-heuristics also known as intelligent algorithms, the GA begins the search process 

by creating a set of possible solutions referred to as the population. The goodness or quality of 

each solution depends on the objective function value obtained as result of plugging the 

solution into the objective function, closer the value is to the global optimum solution better is 

its quality. Henceforth, quality or goodness of a solution will be called as fitness.  Every 

generation or iteration for which the algorithm is run, the GA tries to improve the fitness of the 

population in its disposal using selection, mutation and crossover. Selection is a process by 

which moving from one generation to another the GA ensures that the solution candidates with 

a better fitness have a higher probability to move on to the next generation. Crossover is a 

process by which there is some exchange of information between the solution candidates with 

the chance of producing solution candidates with better fitness in the next generation. Mutation 

is defined as a random act by which certain information within the population (solution 

candidates) is changed with the hope of obtaining a candidate with a better fitness. In general 

the advantages of the GA can be summarised as having a higher potential of finding the global 

optimal solution irrespective of the nature of the objective function, it does not need calculation 

of derivatives, it can handle both discrete and continuous variables and it is not very sensitive 

to bad initial solution guesses. The disadvantages include the high computational burden 

associated in running the algorithm in terms of time and memory, inaccuracy of solutions in 

certain cases and it is possible for the GA to be stuck in local optimum in certain cases.  



Simulated Annealing (SA): This approach can be defined as an iterative process which is based 

on the annealing process in metallurgy which is based on heating and then gradual cooling of 

a metal in order to increase crystal size thereby reducing defects. The process begins as usual 

by creating a candidate solution and setting a positive temperature. Then gradual and controlled 

cooling is implemented. As one moves from one temperature level to another the probability 

of a good solution candidate being accepted from the solution space remains high while the 

probability of a worser solution candidate being accepted from the solution space is low. 

During every temperature level the algorithm randomly selects a new solution candidate close 

to the existing best solution, evaluates its fitness and takes a decision to move on it or not based 

on the probabilities presented to it on that temperature level. The advantages of this method are 

that it is easy to implement, it is quite robust and is very suitable for combinatorial optimization 

problems [52]. The disadvantages are that it could have a large computational time, the choice 

of the final solution could depend on the initial solution that is selected and there is a possibility 

of entrapment onto a local minimum.  

Particle Swarm Optimisation (PSO): This approach to optimization involves mimicking the 

swarm behaviour of a flock of birds or a school of fishes wherein the individual members 

(possible solutions) move around their neighbourhood (search space of solutions) searching for 

the optimal solution. The process begins as in the case of GA wherein an arbitrary solution is 

first chosen and then it is improved over generations. In every iteration or generation, the fitness 

of the particles is determined and this is done by means of their location in the search space. 

The search for a better solution is driven by the location of already known best solutions of the 

particles themselves and that of the entire population. The iterations carry on in this manner 

until a suitable solution is arrived at [52]. In an ideal situation this happens with the 

convergence of all particles onto a solution which would be the global optimum solution but 

this is not guaranteed. The advantages of this method are that it is simple to implement, it has 

only a few parameters which determine the manner by which a solution is arrived at, it can be 

run in parallel computation, it is robust, quick convergence to a solution meaning faster run 

times, has a higher probability than most algorithms to find the global optimum solution, it is 

useful in finding results to problems for which formulating mathematical models might be 

difficult [52]. The disadvantages are that even though the parameters are a few, it could be 

difficult to find the optimal setting of the parameters for the given problem, it is still possible 

that the solution may not converge to a global minimum.  

Tabu Search (TS): This optimization approach can be described in some manner as a stochastic 

optimization approach since transitional rules from one solution to a better solution are 

probabilistic rather than deterministic [53]. The problem begins as usual with a set of current 

solutions, this is then improved by a process in which trial solutions are generated in the 

neighbourhood of the current solutions. While generating trial solutions certain conditions are 

imposed so that regression of solutions is avoided. These conditions are frequently updated in 

what is called a tabu list. This prevents the algorithm from reverting back to older solutions 

that could represent local optimal solutions or simply bad solutions. The algorithm also has a 

mechanism to override the tabu list by something called an aspiration criterion. This ensures 

that certain moves can be made even if they are in the tabu list if they would yield to better 

solutions. This is incorporated to make sure that the algorithm is not trapped in a local minimum 

solution. The advantages of this algorithm are that it can be robust and is easy to implement, 

also it is known to provide suitable solutions to many combinatorial optimization problems 

[52]. The disadvantages on the other hand are that, it has a high computational time, possibility 

of entrapment in a local minimum, the algorithm is sensitive to initial choice of a solution and 



that there is no information regarding the upper bounds of how long it could take to arrive at a 

solution.  

Harmony Search (HS): Another algorithm which unlike others based on natural processes is 

the harmony search algorithm. This approach is based upon the technique employed by 

musicians to improve the harmony of their instruments. The process begins with an arbitrary 

set of solutions which is improved over iterations. The process of creating new solutions in this 

approach involves considering all the solutions from the previous iteration instead of just two 

as in the case of GA. The HS is relatively new met-heuristic algorithm and has shown to be 

effective. The advantages of this method are that there is no need to mention the initial solution 

from which the improvements are made, high possibility of convergence and it can handle both 

discrete and continuous variables. The disadvantages include the possibility of high number of 

iterations and may have a lot of iterations without any improvement in the results [52]. 

Apart from the algorithms mentioned above there are numerous meta-heuristic optimization 

algorithms used such as the Artificial Bee Colony (ABC), Ant Colony Optimization (ACO) 

described later in this thesis, Cuckoo Search Algorithm (CSA), Firefly Algorithm (FA), 

Shuffled Frog Leaping Algorithm (SFLA), Shuffled Bat Algorithm (SBA), Biogeography 

Based Optimization (BBO) etc.  

A few of such approaches applied to OPF and ED problems are shown below.  

The application of Gravity Search Algorithm (GSA) to the OPF problem is shown in [54]. The 

algorithm is used in this case to determine the optimal control settings of the OPF problem. 

The performance of the GSA is evaluated on two test cases, the IEEE 30 bus and the IEEE 57 

bus systems. Also, the performance of the algorithm with regard to different objective functions 

is made with other popular meta-heuristic optimization algorithms found in the literature. The 

GSA begins the process by considering numerous agents/objects/candidate solutions, every 

such agent has a mass of its own which represents the fitness of the solution, higher the fitness, 

higher the mass. Then the algorithm works based on Newton’s laws of physics and the agents 

slowly move towards the objective having the greatest mass or fitness thus converging towards 

the global optimum solution. During the course of convergence, the lighter mass agents with 

lower fitness move faster while the solutions with a better fitness move slowly. The objective 

functions considered in this case were the quadratic cost function, voltage stability 

improvement, voltage profile improvement, voltage stability during contingencies, piece wise 

quadratic function and the quadratic cost function with valve point loadings. The other 

algorithms with which it was compared with includes the BBO, PSO, Improved GA, Gradient 

Method (GM), Enhanced GA, Evolving Ant Direction Differential Evolution (EADDE), 

Evolving Ant Direction with Hybrid Differential Evolution (EADHDE) and Differential 

Evolution (DE). The GA had outperformed all the above-mentioned algorithms.  

A hybrid approach utilising the combination of an Imperialist Competitive Algorithm (ICA) 

and the teaching learning optimization algorithm for optimal power flow is described in [55]. 

This approach was adopted due to the nature of ICA to converge to the local optimal solution 

often despite being a powerful optimization algorithm. Hence, to promote the search for a 

solution around the global optimal solution it was combined with the Teaching Learning 

Algorithm (TLA). The performance of the algorithm was evaluated on the IEEE 30 bus and 

the IEEE 57 bus system with different objective functions. The ICA is based on the imperialist 

ambitions amongst nations. As usual, the process begins with initialisation of a population of 

solutions, in this case referred to as countries. The countries with better fitness solutions are 



chosen to be the imperialist nations and the rest are colonies of the same. The imperialist 

nations and their colonies form an empire with each empire fighting for dominance. At the end 

of the convergence only one empire remains with its imperialist and its colonies having the 

same fitness which results in achieving the optimal solution. The TLA is based on the teaching-

learning process characteristic of a classroom. The process begins with the initialisation of the 

population which is referred to as bunch of learners and the parameters of the objective function 

of the problem are given to them as different subjects. The grades of the learner’s determine 

the fitness value of that learner. The learner with the best fitness is then chosen as the teacher 

of that population and then the exchange of information begins between teacher and the 

learners and between the learners themselves which eventually over generations leads to the 

global optimal solution. The different objective functions used in this study include 

minimization of fuel cost, minimization of fuel cost with valve point effect, minimisation of 

fuel cost with prohibited zones, minimisation of fuel cost with valve point effect and prohibited 

zones, piece wise quadratic fuel cost function. The comparison of the results was made with 

GA, PSO, SA, ICA, TLA, Modified ICA (MICA), MICA-TLA, SFLA and SFLA-SA. The 

proposed algorithm outperforms other algorithms with which the comparisons were made.     

A Glow-worm Swarm Optimization (GSO) algorithm for OPF is described in [56]. This study 

uses a multi-objective function minimising both costs and emissions. The performance of the 

algorithm has been tested on two systems which are the IEEE 30 bus and the practical Indian 

75 bus system. This algorithm is based on the activities of the glow-worm during the night. 

These insects interact with each other and are attracted to one another based on the amount of 

luciferin (responsible for the glow) a worm produces. The process begins with randomly 

scattering the glow-worms in the workspace and at this point all the worms have the same 

amount of luciferin, every further iteration results in either the increase or decrease of luciferin 

based on the fitness of the solution obtained by the moving glow-worm. The way every worm 

moves from one position to another during one iteration to another is determined in a 

probabilistic manner. This process is slightly biased as the worms inherently move in the 

direction of the worm with the strongest glow or luciferin. The final solution represents the 

point at which all the worms converge. The study has considered several cases which are 

minimization of cost for the IEEE 30 bus and the Indian practical 75 bus system and multi-

objective optimization of the IEEE 30 bus system. The results of this approach have been 

compared with that of the results from PSO applied to the same systems. It has been shown 

that the GSO performs better.  
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2. Solar Forecasting 
While the introduction section provided approaches and examples to forecasting of various 

elements crucial to power system operation, this thesis mainly focuses on solar PV output 

power forecasting due to the setup at Wroclaw University of Science and Technology. In 

section 1.2.1 numerous classes of methods to solar forecasting were introduced and, in this 

thesis, the approaches investigated forms a part of the class of machine learning models for 

forecasting called deep learning.  

Deep learning represented by Deep Neural Networks (DNNs) can be simply defined as ANNs 

with a deep stack of hidden layers consisting of deep stacks of computation [1]. These class of 

neural networks are powerful, scalable and versatile making them suitable and applicable to 

solve highly complicated and large machine learning tasks such as image classification, speech 

recognition etc. 

The purpose of choosing deep learning-based forecasting models are as follows, the traditional 

forecasting algorithms based on machine learning and also statistical methods flatten quite 

early in terms of performance. This means that irrespective of the amount of computational 

power and data available there is a strict and short limit to which the relationship between 

variables can be ascertained by the algorithm, that is they saturate in performance. In 

comparison the deep learning networks do not saturate early and improve in performance with 

greater availability of data and computational power. A comparison of numerous well known 

machine learning algorithms such as the linear regression, small neural networks and logistic 

regression with DNNs in terms of performance can be found in [2]. Another argument for 

choosing this approach is feature learning which enables the model to extract features from raw 

data and learn numerous unknown representations that might be present within it. This results 

in forecasting models of improved accuracy [3].    

The forecasting is performed for predicting the output power of the solar PV panels located 

above the building of Wroclaw University of Science and Technology. In total there are 3 

different modules which are polycrystalline, monocrystalline and CIGS that consist of 27, 21 

and 56 panels. The forecasting carried out in this study is mainly on the data from the 

polycrystalline module but there is not reason as to why it cannot be extended to other modules. 

The setup is quite elaborate and numerous variables are measured which are the PV module 

temperatures (oC), wind speed (m/s), irradiation (W/m2) and ambient temperature (oC). The 

peak power output of the module is 5 kW.  

2.1 Data pre-processing  

While different deep learning algorithms are explored in this thesis. The data pre-processing 

remains the same with every approach. The features utilised in this study to train models are 

different, they differ from one another with regards to their units of measurement, range of 

their values and their respective distributions. During training of neural networks when data of 

such varied characteristics are used, it leads to big weight values and models tend to perform 

poorly and can be highly sensitive to any changes in the input data [4]. In order to deal with 

the challenges mentioned above, all the data used in this study are normalized within the range 

of [0,1]. The algorithm used to do so is provided below:  

𝑥𝑖−min (𝑥)

max(𝑥)−min(𝑥)
                                                             (1) 

 Where, x represents the vector of the data and xi represents one particular value in the data.  



Another data processing approach used is the sliding window algorithm, while this step is not 

essential to all the deep learning models, it is imperative for some and in general useful for all 

as it speeds up model the model training process. Later on depending on the type of DNN used 

it will explained how this algorithm actually splits the data before training begins. The 

algorithms is described below.  

Algorithm 1  

Procedure Variables (X, Z, t) 

 i = 0, n = 0;                  # number of windows = n 

 P = [];             # P is the set of windows extracted 

 While i + Z ≤ length (X) do    #Z is the length of the sliding window 

 P[n] = X [i…. (i + Z – 1)}; 

 i = i + t; n = n + 1; 

 end While 

 return F 

end Procedure 

 

2.2 Evaluation metrics  

The Evaluation metrics utilised in this study to ascertain the performance of a model were 

selected based on the recommendations of the International Energy Agency (IEA) co-operative 

programme on photovoltaic systems [5] and a popularly cited review paper on solar forecasting 

[6]. The metrics are the RMSE, MAE and Mean Bias Error (MBE). RMSE is a parameter which 

is used to evaluate numerous forecast results, in general it is suitable for solar forecasting as 

well since it has the characteristic to heavily punish larger errors than smaller ones, on the 

contrary the MAE punishes all errors equally and MBE provides general information as to 

whether the model obtained has a tendency to over predict or under predict. The metrics are 

described below.  

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =  √
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 (4) 

𝑒𝑖  =  𝑦𝑖(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡) – 𝑦𝑖(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) 
(5) 

 

Here, 𝑦𝑖(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡) and 𝑦𝑖(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) are the forecasted and observed values at the 𝑖𝑡ℎ time step. 

𝑒𝑖 is defined as the error at 𝑖𝑡ℎ time step. 𝑖 =  1, … … , 𝑁 defines all time steps. The evaluation 

metrics values presented later on are obtained from data that is reverted back from their 

normalized values by using the inverse of the min-max algorithm mentioned in (1). 

 

 

2.3 Convolutional Neural Networks (CNNs) 

 

CNNs first introduced in 1998, have been widely adopted for numerous applications such as 

image recognition, text recognition, translation, speech recognition, sentence classification, 

face detection etc. [7]. It has the ability to extract spatial and temporal relationships within data 



which is crucial for the forecasting process. Since this thesis is working with data that are 

essentially vectors the CNN is modified and a 1-D CNN is used.   

 

The CNN can be visualized in terms of different layers as shown in Fig. 1 and each layer is 

defined below: 

  

Input Data 

Convolutional layer 

consisting of 4  filters for 4 

parameters 

Max pooling layer Flattening layer

Dense neural network 

connection 

Output

 

Figure 1 CNN structure visualization  

 

Convolutional layer: This layer is at the heart of a CNN and is responsible for feature extraction 

[7], [8]. The feature extraction is particularly done by filters also known as kernels. Given the 

input data these filters can be visualized as rectangles having a width equal to the number of 

input features in the data and length equal to what is decided by the user. The length in short is 

the number of time steps that the user would like to take into account. Once this filter is defined 

it is moved along the entire length of the data one-time step at a time or more as defined by the 

user. In this study this shifting of the filter also known as the stride is 1 time step [9]. Fig. 2(a) 

shows such as example where the input data is traversed by the kernel covering 4 possible 

features in width and 3-time steps in length. The elements of the kernel are multiplied with the 

elements of the boxes of the input data they cover and are added together. This value is then 

sent through the activation function of the kernel. Once the kernel has moved along the entire 

length of the data a new vector of a reduced dimension is created. This dimension reduction 

helps the CNN to learn features quickly even if the amount of data available is massive.  

                                    

  
Figure 2 (a) Kernel movement visualization (b) ReLU function 

 

The number of filters or kernels chosen in this study is always kept equal to the number of 

variables or features that are to be learnt, assuming 4 input variables exist, 4 filters are chosen 

as shown in Fig. 1. This is not mandatory; any number of filters can be chosen. The activation 

function chosen in the study is the ReLU (Rectified Linear Unit), this is the one of the most 

widely used activation functions [7] though it is also possible to use others such as sigmoid, 

Tanh etc.  

Being a non - linear function ReLU actually behaves like a linear function. This feature enables 

the function to learn complex relationships that exists within the input data. It works in the 

following manner, when the input value remains above 0.0 the output value remains unchanged 

and when the input value is less than or equal to 0.0 the output value is 0.0. It is defined in (6).  



𝑔(𝑧) = max  {0, 𝑧}                                                       (6) 

Where, z is the input value and g is the ReLU function. The advantages of using ReLU are that 

it is easy to implement for neural networks due to its linear function like characteristic despite 

being non-linear, sparsity and ease of computation [10]. The function is visualized in Fig. 2(b).  

Pooling Layer: The convolutional layer is followed by the pooling layer which reduces the 

output of the convolutional layer. In short it summarises the features that have been learnt in 

the previous step. This reduces the size of the data resulting in higher processing speeds and 

reduced demand for memory and also prevents overfitting. There are different types of pooling 

layers such as averaging and max pooling [1], the most widely used is the max pooling layer. 

The max pooling layer in general is reducing the input data massively, even with a kernel of 

length 2 and stride 2 for a 1-D CNN the data is be reduced by as much as 50%. Hence, choosing 

the right parameters during model training are imperative for good accuracy.    

Flattening Layer: The flattening layer following the max-pooling layer transforms the output 

into a vector of one dimension which then serves as the input for the dense or fully connected 

layer.  

The optimization algorithms used to minimize errors and fit a model are of many types. They 

are RMSprop, Adam, AdaGrad, Nadam etc. The optimization algorithm mainly used for the 

models in this study is Adam which is a combination of two well-known stochastic gradient 

descent optimizers known as AdaGrad (Adaptive Gradient) algorithm and RMSProp (Root 

Mean Square Propagation). The advantage of using Adam is that it is able to adjust its learning 

rate as the error is minimized during model fitting.  

In general, when it comes to CNN based forecasting models, 3 types of architectures are 

explored in this thesis. They are the simple CNN model as elaborated in Fig. 1, the multi-

headed CNN model described in Fig. 3 and a CNN-LSTM model shown in Fig. 4 which is in 

fact a combination of 2 different types of deep learning architectures.   

The approach in a simple CNN model is that feature extraction is done by a single convolutional 

layer or a single CNN with filters equal to the number of features in the input data. In case of 

the multi-headed CNN as shown in Fig. 3, a CNN layer is used for every feature in the input 

data, assuming there are 4 features or variables, 4 different CNNs are used. These are then 

followed by 4 max-pooling and 4 flattening layers for dimensionality reduction and conversion 

to a 1-D vector. Since the output from 4 flattening layers have to be tied together into 1, a 

concatenation layer is used, the output from which is used to train a dense neural network. This 

approach is shown to have some flexibility but there is not explicit evidence in the literature 

that it results in accurate forecasting models. An example of such an architecture being used 

can be found in [11] where a multi-headed CNN approach with 2-D convolutional nets have 

been used for image classification.  
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 Figure 3 Multi-headed CNN structure. 

The architecture for a CNN-LSTM model is shown in Fig. 4 and as mentioned before it is a 

combination of two different deep learning neural networks where LSTM stands for Long 

Short-Term Memory. This model has been implemented for numerous time series forecasting 

problems that have both temporal and spatial relationships to be exploited. The LSTM in 

particular is very suitable when it comes to time series forecasting and classification. This is 

because of the presence of a memory cell which in fact behaves as an accumulator of state 

information. Whenever new information is fed into an LSTM, a part of it is captured by it and 

is sent back to itself while the rest is forgotten. This ability of the LSTM allows it to remember 

past data and when a relationship is ascertained between inputs and outputs, the temporal 

relationship is also captured. This is markedly different from how regular ANNs work. A 

detailed explanation into the workings of an LSTM will be explained in its respective future 

section.  

The architecture is similar to that of the regular CNN shown in Fig. 1 with the exception of an 

LSTM layer beyond the flattening layer used to extract the temporal relationships from the 1-

D vector output of the flattening layer.  
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Figure 3. CNN-LSTM structure 

It is important to understand how the data is manipulated by different structures as it moves 

through the numerous layers of different architectures mentioned above. The data manipulation 



as it moves through the CNN, multi – headed CNN and the CNN – LSTM model are shown 

below.  

 

Figure 4. Data flow visualisation for the simple CNN architecture 

For the CNN model, it is important to reshape the data into a [samples, timesteps, features] 

structure which is done by the input layer shown in Fig 4. It can be seen as [None, 2, 3]. None 

because the model created has the ability to look up the number of samples automatically 

whenever an array is given to it. 2 represents the past two-time steps that are taken into account 

and 3 features represent the 3 variables used which are output power, ambient temperature and 

irradiation.  

The convolutional layer reduces the size of the input data and creates a learned representation 

model of the same followed by a max pooling layer which summarises them. This is then 

followed by another convolutional layer and a max pooling layer in order to extract further 

relationships within the input data. This is then followed by the flattening layer which creates 

a 1-D vector representation of the data which is initially fed to a fully-connected DNN 

consisting of 50 neurons that is followed by another DNN that takes the input from the previous 

DNN and produces a 1-D vector of the output which is the forecasted output power.  

As described earlier the multi – headed CNN structure is simply a structure where every feature 

of the input data is handled by its own individual CNN, the learned representations of which 

are tied together during model training. Fig. 4 presents the data flow during training of such a 

model. As in the previous case the data is shaped into [samples, timesteps, features]. Instead of 

having a single [None, 2, 3] input, we have 3 [None, 2, 1] inputs where again 2 represents the 

number of time steps taken into account and 1 represents the one feature being learnt. The 3 

input layers are then followed by 3 convolutional layers for size reduction and 3 max pooling 

layers for summarising the learning. This is then followed by another set of 3 convolutional 

layers and max pooling layers for further extraction of relationships. The data is then flattened 

to a 1-D vector by the flattening layer and there are 3 according to the 3 learned representations 

from the 3 different features used in this study. The outputs from the 3 layers are then tied 

together using a concatenation layer before they are given as an input to the DNN consisting 

of 50 neurons followed by another DNN which takes the input from this DNN and outputs a 

single 1-D vector of the forecasted power output.   



 

Figure 5. Data flow visualisation for the multi-headed CNN architecture 

The CNN-LSTM as described before is a combination of two deep learning models and can be 

quite effective in feature extraction and learning. In the model used in this study as shown in 

Fig. 3 the LSTM layer is used at the backend and the input data is analysed by the CNN model. 

The input data which has been fed until now has always been in the form [samples, timesteps, 

features] but for this model the input array is further split into two sub sequences which is then 

analysed by the CNN creating a learned representation which is then given as an input to the 

LSTM layer.  

This study initially feeds an array of 4-time steps which is then split into sub sequences 

consisting of 2-time steps each which is then processed by the CNN and sent to the LSTM 

layer.  Hence, the data for this model is in the form of [samples, sub sequences, timesteps, 

features].   

It can be seen that the input layer has a shape [?, 2, 2, 3], number of samples has been 

represented by a “?” because the model is able to judge automatically the total number of 

samples. The sub sequences are 2 with 2-time steps each and the number of features is 3, the 

same as for the above two models. Then, as done before the CNN reduces the size of the input 

data and creates a learned representation which is summarised by the max-pooling layer. This 

is then further sent for feature extraction by means of another convolutional and max-pooling 

layer. The dimension is then reduced by the flattening layer and then the output is fed to the 

LSTM layer which along with the 1 neuron DNN makes the output power forecast. A 

comprehensive explanation of the LSTM structure will be explained in the coming sections.  

 



 

                Figure 6. Data flow visualisation for the multi-headed CNN architecture 

2.3.1 10 – min ahead forecasting 

The forecasting models used in this thesis were all coded in PYTHON using Jupyter 

Notebooks. The environment for deep learning utilised was TensorFlow and the models were 

constructed using KERAS. Additionally, numerous PYTHON libraries were put to use for data 

pre - processing and manipulation. The fitting and evaluation of models and analysis of the 

results were carried out in a computer with an Intel core i7 9th generation processor with a 16 

GB RAM running on a Windows 10 operating system.  

The input data used in this study has already been explained previously. Here, only the size of 

the input vector is defined which is an array of dimensions 201755 x 3. Where, 201755 

represents 10-minute time steps taken into account and 3 represents the 3 features taken into 

account which are the output power, irradiation and ambient temperature from the previous 

time steps. 

The evaluation metrics already explained previously are used to determine the effectiveness of 

the forecasting models used. The nature of machine learning models to fit different models 

when they are run every time poses a threat to the reliability of such models. Quite often the 

accuracy of many such models vary over a range and it is imperative to understand this range 

in order to make accurate forecasts. For 10-minute forecasts, the results of forecasting utilising 

all above mentioned models have been analysed by running all models 200 times. In every 

single run the testing and training data have been selected at random in order to understand 

how slight changes in training data affects such models and also how the accuracy varies over 

several runs. While 200 runs may not be enough, the computational burden involved in running 

them higher than 200 times is significant, even for 200 runs it takes several hours. Later on, 

while evaluating other deep learning models that are significantly less computationally 

intensive the results will be analysed over a higher number of runs.  

It can be seen from table 1 that except for the CNN-LSTM model, other forecasting models 

have the tendency to overpredict. This means that on average the predictions made by these 

models are higher than the actual value. In terms of minimum and maximum values of the 

RMSE, the spread is the highest for the CNN model and lowest for the CNN-LSTM model 



which indicates that the CNN-LSTM model is the most consistent in its performance. The same 

pattern has been observed in the spread of the MAE values leading to the same conclusion that 

the CNN-LSTM model is more consistent.   

Table 1. 10 – minute ahead forecast evaluation 

Models RMSE (kW) MAE BIAS 

 Min Max Mean Min Max Mean  

CNN 0.009 0.635 0.187 0.005 0.314 0.895 Overprediction 

Multi headed–CNN 0.006 0.570 0.166 0.004 0.232 0.060 Overprediction 

CNN - LSTM 0.005 0.448 0.109 0.003 0.214 0.052 Underprediction 

 

In order to understand variability of all models, not only is it important to look at the mean, 

minimum and maximum values of the evaluation criteria over several runs but it is also 

important to look at the standard deviation and confidence intervals. Table 2 presents   

Table 2. 10 – minute ahead forecasts (standard deviation and confidence intervals) 

Models RMSE (kW) MAE 95% confidence interval 

 Mean Standard 

deviation 

Mean Standard 

deviation 

RMSE MAE 

CNN 0.187 0.126 0.089 0.061 [0.170, 0.205] [0.081, 0.098] 

Multi headed-CNN 0.166 0.137 0.060 0.060 [0.147, 0.185] [0.054, 0.066] 

CNN - LSTM 0.109 0.106 0.052 0.050 [0.094, 0.124] [0.045, 0.059] 

 

In general, the mean of the RMSE for the CNN, multi – headed CNN and CNN - LSTM models 

over 200 runs as already mentioned before are 0.187 kW, 0.166 kW and 0.109 kW respectively, 

this is equal to 3.7 %, 3.3% and 2.2% of the peak power output of the solar panel. The standard 

deviations of the RMSE for the same are 0.126 kW, 0.137 kW and 0.106 kW respectively, 

which are 2.5 %, 2.7% and 2.2% of the peak power output of the solar panel.  

The mean values of the MAE for the 3 models run over 200 times are 0.089 kW, 0.060 kW and 

0.052 kW which are 1.7%, 1.2% and 1% of the peak power output of the panel respectively. 

The standard deviation of the MAE for the same are 0.061 kW, 0.060 kW and 0.050 kW which 

are 1.2%, 1.2% and 1% respectively.  

The 95% confidence intervals for the RMSE and MAE values for all models were calculated 

and is shown in Table 2. It can be observed that both the spread and the values of the RMSE 

and MAE are the lowest for the CNN – LSTM model making it the most accurate and reliable 

model.  

Fig. 7 presents the forecasting made every 10-mins for the entire day. 4 random days of the 

year are considered for this purpose. The days are quite representative with regards to the 

different seasons in a year seen in Wroclaw. The figure on the upper left and lower left are 

typical for the summer and days with high availability of sunlight since the peak power during 

the day reaches 4 kW and above. The figures on the upper and lower right are more typical for 

the winter and low sunlight days when the power output remains quite low. It can be seen that 



the models achieved are able to work reliably despite the change in seasons hence not requiring 

training different models based on different seasons of the year. The accuracy of all models 

reduces around the peak values irrespective of the day under consideration.  

 

 

Figure 7. 1-day forecasts for 4 random days of the year with the forecasts made every 10-min 

The training time for one run (fitting the model, prediction and evaluation) of the 3 above 

mentioned models for the input data of the same size are 1min 14 secs, 2 min 50 secs and 2 

min 10 secs for the CNN, multi – headed CNN and CNN – LSTM models respectively. From 

the evaluation metrics analysed above and the run times it can be ascertained that the most 

accurate model is the CNN – LSTM model and is the second slowest, the multi – headed CNN 

the slowest but the second most accurate and the CNN is the fastest but least accurate model.   

2.3.2 1 – hour ahead forecasting 

A similar evaluation for 1- hour ahead forecasts is shown below in Table 3. In this case all 

models were run 100 times with the training and test data changing in every run. The mean 

RMSE values for the CNN and CNN-LSTM models are at 0.319 kW and 0.282 kW which are 

6.38% and 5.64% of the peak value. For the multi – headed CNN model which is 0.293 kW 

representing 5.86 % of the peak value. In case of the MAE the CNN-LSTM model has a mean 

value of 0.152 kW which is 3 % of the peak value and the CNN model has a mean MAE value 

of 0.171 kW which is 3.42% of the peak value. The multi-headed model has a mean MAE 

value of 0.200 kW which is 4% of peak value.  

  

Table 3. 1– hour ahead forecast evaluation 



Models RMSE (kW) MAE BIAS 

 Min Max Mean Min Max Mean  

CNN 0.055 0.704 0.319 0.015 0.428 0.171 Underprediction 

Multi headed–CNN 0.023 0.418 0.293 0.047 0.331 0.200 Overprediction 

CNN - LSTM 0.038 0.605 0.282 0.022 0.331 0.152 Underprediction 

 

Table 4. presents evaluation metrics in order to determine the variability of the models under 

investigation over the 100 runs performed. All models have varying performance when it 

comes to variability with the CNN-LSTM model performing better. The CNN-LSTM is less 

variable and a more reliable model than the CNN and CNN-LSTM since the standard deviation 

for the CNN-LSTM model is 0.060 (RMSE) and 0.038 (MAE) and the same for the CNN 

model is 0.090 (RMSE) and 0.070 (MAE) and the same for the multi-headed CNN model is 

0.153 (RMSE) and 0.099 (MAE). Like for the 10 – minute ahead forecasts it can be said that 

the CNN-LSTM model is the most accurate and reliable model for the hour ahead forecasts as 

well.  

When it comes to the 95% confidence intervals of the metrics over all the runs, it can be seen 

that the spread for the CNN-LSTM model is better.   

Table 4. 1 – hour ahead forecasts (standard deviation and confidence intervals) 

Models RMSE (kW) MAE 95% confidence interval 

 Mean Standard 

deviation 

Mean Standard 

deviation 

RMSE MAE 

CNN 0.319 0.090 0.171 0.070 [0.288, 0.424] [0.168, 0.274] 

Multi headed-CNN 0.293 0.153 0.200 0.099 [0.226, 0.373] [0.179, 0.254] 

CNN - LSTM 0.282 0.060 0.152 0.038 [0.213, 0.305] [0.132, 0.191] 

 

 

Figure 8. 1-day forecasts for 2 random days of the year with the forecasts made every 1 hour 

Fig. 8 presents two different cases. The days were chosen at random and it can be seen that the 

models are inaccurate at the peaks and in other instances. Overall, when compared to the 10 

min ahead forecasts the forecasting models have degraded in performance making this class of 

deep learning methods suitable only for very short-term forecasting. In the figure on the left 



the CNN model follows the actual curve better and in the figure on the right the CNN-LSTM 

model follows the actual curve better.  

2.4 LSTM – Autoencoder (L-AE) 

 

The LSTM category of deep learning models can be defined as specialized Recurrent Neural 

Networks (RNNs), this category of models has shown significant performance in the case of 

handling sequential data including time-series sequences [1], [12]. The difference between 

RNNs and Feed Forward Neural Networks (FFNNs) is the fact that the RNNs posses a memory 

cell. It is said to have such a feature because unlike in a FFNN where the connections between 

neurons are just made in one direction (from input to output), in an RNN the connections also 

point in the backward direction. This results in data being propagated over time, which means 

that the data received at one time step is stored and then is utilized in the next time step. This 

propagation of data across time can be visualized as shown in Fig. 9.   

 

 

Figure 9. Recurrent neuron (left), unrolled through time (right) 

The figure shown above consists of one neuron with an activation function A which takes an 

input X and produces an output Y. Next, the output is sent back to itself so that it can be used 

for training the neuron in the next time step along with the new input in the new time step. This 

way it is made sure that experiences learnt previously are not lost in subsequent time steps. 

This process is elaborated further on the right-hand side of Fig. 9. in a rolling manner where 

the process of carrying output from the previous steps to the next time step is visualized. For 

example, the 3rd neuron from the left receives an input in its time step X(t-1) and also the output 

from the previous time step Y(t-2) and produces the current output in Y(t-1) which is 

propagated further. Numerous neurons such as this can be fit into a layer called an RNN layer. 

In this case the layer would receive a vector of inputs and a vector of outputs from the previous 

time step and produce a vector of outputs in the current time step. This nature of data handling 

by RNNs makes them suitable for sequential data. Despite, their suitability they do posses a 

few disadvantages such as long times for training and vanishing of gradients. This means that 

over timesteps, the experiences learnt as a result of training at the earlier time steps are lost. 

This could lead to inaccurate forecasts [1], [12].    

In order to overcome the disadvantages of the RNN cell described earlier, numerous models 

were proposed one of which is the LSTM. The LSTM has quicker training times and is capable 

of identifying long-term dependencies in data which means it can retain learnt experiences over 



numerous time steps [1]. The structure of a memory cell of the RNN and the LSTM are shown 

in Fig. 10 and the differences are explained below.  

 

Figure 10. Simple RNN cell (left), LSTM cell (right) 

In Fig. 10, tanh and Sig represent activation functions. X(t) and Y(t) represent inputs and 

outputs at the time step t. In the simple RNN cell, h(t) and h(t-1) represent the output at t and 

t-1 respectively. In the LSTM cell, h(t) and h(t-1) represent the short-term state, c(t) and c(t-1) 

describe the long-term state. f(t), g(t), i(t) and o(t) are gate controllers where f(t) controls the 

forget gate, g(t) and i(t) control the input gate and o(t) controls the output gate. All the gates 

receive both the input X(t) and the short-term state vector h(t-1) from the previous time step. 

Only the forget gate and the output gate receive additionally the long-term state vector c(t-1).  

The difference in complexity between the two structures is immediately visible, in the simple 

RNN structure there is only one output which is then propagated to the next time step and the 

combined input at any time step includes the input signal at that time step and the output from 

the previous time step. In contrast the LSTM cell is quite complex and consists of h(t) and c(t). 

In case of the long-term state vector, information is received from the previous time step c(t-

1), this vector contains the representations learnt not only in the previous time step but from a 

longer time horizon. This vector is manipulated by the forget gate where certain experiences 

are dropped and new experiences are added to it by the input gate. This modified vector is then 

sent to the next time step. A copy of the same is made and is sent to the output gate where it is 

manipulated further by the output gate which also takes an additional input from o(t). The final 

output from this gate represents the new short-term state h(t) and the output at the current time 

step.   

The above-mentioned structure enables the LSTM to store inputs and manipulate them over 

both the long-term and short-term which solves the problem of vanishing gradients as seen 

with the simple RNN structure. This makes the LSTM useful in handling sequential data with 

long term dependencies.  

The entire process mathematically can be explained as follows:  

i(t) =  𝜎(𝑊𝑥𝑖
𝑇 𝑥(𝑡) + 𝑊ℎ𝑖

𝑇 ℎ(𝑡 − 1) + bi)                                              (7) 

f(t) =  𝜎(𝑊𝑥𝑓
𝑇 𝑥(𝑡) + 𝑊ℎ𝑓

𝑇 ℎ(𝑡 − 1) + bf)                                             (8) 

o(t) =  𝜎(𝑊𝑥𝑜
𝑇 𝑥(𝑡) + 𝑊ℎ𝑜

𝑇 ℎ(𝑡 − 1) + bo)                                             (9) 

g(t) =  tanh(𝑊𝑥𝑔
𝑇 𝑥(𝑡) + 𝑊ℎ𝑔

𝑇 ℎ(𝑡 − 1) + bg)                                          (10) 

c(t) =  𝑓(𝑡)𝑐(𝑡 − 1) + 𝑖(𝑡)𝑔(𝑡)                                                   (11) 

y(t) = h(t)  =  𝑜(𝑡) 𝑡𝑎𝑛ℎ (𝑐(𝑡))                                                  (12) 

 



where X(t), Y(t), c(t), h(t), c(t-1), h(t-1), g(t), i(t), o(t), f(t), tanh and σ (sigma activation 

function) are the same as described previously. Wxi, Wxf, Wxo, Wxg, represent weights of the 

layers i(t), f(t), o(t) and g(t) respectively for the input signal x(t). Whi, Whf, Who, Whg 

represent weights for the same layers with for the short-term state h(t-1); bi, bf, bo and bg are 

biases. The right-hand side of equations 5 and 6 represent element wise multiplications. 

For machine learning purposes there are numerous LSTM architectures available. An 

architecture is recognised by its unique arrangement of LSTM layers, encoding and decoding 

of data and its combination with other existing deep learning models such as the CNN 

explained earlier. The issues faced while using CNN based deep learning models for 

forecasting are long training times and variability of the evaluation metrics when the model is 

run several times. Keeping this in mind a specific architecture of the LSTM, namely L-AE was 

chosen since it has the reputation of being the quickest when it comes to fitting a forecasting 

model which is also verified by the results that will be shown. Moreover, the principle behind 

the L-AE enables formation of accurate forecasting models. The principle is as follows, the L-

AE has two parts which are the encoder and decoder. The encoder manipulates the input vector 

and creates an encoded vector that contains the complex dynamics within the temporal ordering 

of the input. While doing so it also reduces the dimensionality of the input vector. This 

particular vector is then decoded by the decoder in order to recreate the input vector. The 

encoded vector can also be used to train other machine learning algorithms which provides 

added flexibility in its usage.  

The encoding and decoding process is shown in equations (13) and (14).  

𝑦 =  𝜎(𝑊1𝑥 + b1)                                                                       (13) 

𝑥′ =  𝜎(𝑊2𝑦 + b2)                                                                      (14) 

Here, the weights associated with encoding and decoding are W1 and W2 whereas, their biases 

are b1 and b2. The activation function is represented by σ and the encoded vector is represented 

by y, the input vector is x and x’ is the recreated input vector after decoding. 

The L-AE model used in this thesis is shown in Fig. 11. The encoder part of the model consists 

of the input layer and an LSTM layer whereas the decoder part of the model includes an LSTM 

layer and a DNN. An important part of the model which links both the encoder and the decoder 

is the RepeatVector. It enables the decoder part of the model to read the encoded vector.  

As it can be seen from the figure, the input given to this model has to be in the form of [samples, 

steps, features]. The number of samples is “none” because the model is able to calculate the 

total number of samples fed to it automatically. The number of steps is 1, since at any time one 

row of data is fed to the model and the number of features is 6 which are module temperature 

(0C), output power (W) and irradiation (W/m2) from the previous two time-steps. The first 

LSTM layer receives the input data in the above-mentioned form and creates an encoded vector 

with 1 feature. This is repeated 15 times since there are a total of 15 LSTM cells in the layer. 

This vector is then manipulated by the RepeatVector to a form that can be utilised by the 

decoder. The LSTM layer of the decoder takes the output of the RepeatVector and attempts to 

recreate the input vector by ascertaining the relationship between the input and output data. 

This layer is then followed by a DNN which prints the output.   

 



  

Figure 11. L-AE architecture 

The data pre-processing and the evaluation metrics used are the same as described previously.  

2.5 ARIMA  

A forecasting model that is quite often employed for short term forecasts is the ARIMA model. 

As explained in the introduction chapter it is utilised not only for the short term but also 

medium and long term. It also serves as a benchmark in this study to compare the results with.  

The ARIMA model can be defined as a regression model characterizing a linear relationship 

between a variable and its past values[13], [14]. For the ARIMA model to be utilised certain 

conditions have to be fulfilled such as stationarity of the input signal and determination of the 

Autoregressive (AR) and Moving Average (MA) coefficients. These determinations for the 

input signal in this study will be explained later on. The mathematical basis of the model is as 

follows:  

𝑦𝑡
′𝐴𝑅 =  ∑ ∅𝑖𝑥𝑡−𝑖

𝑚

𝑖=1

+  𝜔𝑡 =  ∅1𝑥𝑡−1 +  ∅2𝑥𝑡−2 + ⋯ +  ∅𝑚𝑥𝑡−𝑚 +  𝜔𝑡  (11) 

𝑦𝑡
′𝑀𝐴 =  ∑ 𝜃𝑗𝜔𝑡−𝑗

𝑛

𝑗=0

=  𝜔𝑡 +  𝜃1𝜔𝑡−1 + 𝜃2𝜔𝑡−2 + ⋯ + 𝜃𝑛𝜔𝑡−𝑛 (12) 



𝑦𝑡
′𝐴𝑅𝑀𝐴 =  ∑ ∅𝑖𝑥𝑡−𝑖

𝑚

𝑖=1

+  ∑ 𝜃𝑗𝜔𝑡−𝑗

𝑛

𝑗=0

 (13) 

 

where 𝑦𝑡
′𝐴𝑅, 𝑦𝑡

′𝑀𝐴, and 𝑦𝑡
′𝐴𝑅𝑀𝐴 are the autoregression (AR), the Moving average (MA), and the 

Autoregression moving average (ARMA) time series values respectively. ∅𝑖 is the 

autoregressive coefficient and 𝜃𝑗 is the moving average coefficient. 𝜔𝑡 is the noise. 

 

The autoregressive (AR) value characterizes the current value in a linear relationship with its 

past values and the noise 𝜔𝑡. It is represented in Equation (13). The Moving average part is a 

combination of previous individual noise components, which is used to create a time series, as 

shown in Equation (4). ARMA is a combination of both AR and MA [15].  

 

The parameters of the model represented by m and n determine the number of past values that 

should be taken into account for the AR and MA parts of the model. The Partial Autocorrelation 

Function (PACF) and Autocorrelation Function (ACF) are used to determine the appropriate 

number of lags for the AR and MA parts of the model. The PACF provides a correlation 

between a value of the time series and its lag whereas the ACF provides a correlation between 

an error of the value and lagged error values of the time series. Another parameter to be 

determined for the ARIMA model is the differencing. This is done to ensure that the signal is 

stationary. If the input time signal has a trend, it can be differenced one or more times until a 

stationary signal is obtained. The stationarity can be confirmed in many ways. It can be done 

visually wherein a clear absence of a trend indicates stationarity, it can be ascertained through 

the ACF and PACF plots where the subsequent values are low and oscillate around zero and 

finally it can be determined through stationarity tests such as the Augmented Dickey Fuller 

(ADF) test and others.  

Fig. 12 gives a plot of the entire data set of the output power from the monocrystalline solar 

panel available at the Wroclaw University of Science and Technology. It also presents the ACF 

and the PACF plot for 20 lags of the time series data. While the PACF plot reduces to zero 

after 2 lags, the AFC plot never reaches zero. It can also be seen that the output power in the 

plot has a clear trend to it. Hence, it can be concluded that the signal is non-stationary.   

 

Figure 12. Solar panel output data with an auto correlation function (ACF) and a partial auto correlation 

function (PACF) analysis. 



 

Figure 13. Differentiated output with ACF and PACF analysis 

Fig. 13 provides that same analysis as Fig. 12 but with the differentiated time series input. 

Firstly, visually the output signal now does not have a trend and moreover it can be seen 

that the ACF and the PACF definitively reduce to zero and stay close to it after 2 lags. 

Furthermore, the ADF test performed with the differentiated signal resulted in a p-value 

of 0.001 which confirms stationarity. Hence, an ARIMA model with a maximum AR lag 

of 2, MA lag of 1 and 1 differencing can be chosen for short-term solar forecasts.   

2.6  Results 

2.6.1 10 – min ahead forecasting 

Previously, the training time for one run (fitting the model, prediction and evaluation) of the 3 

above mentioned models for the input data of the same size were 1min 14 secs, 2 min 50 secs 

and 2 min 10 secs for the CNN, multi – headed CNN and CNN – LSTM models respectively. 

When the same training time was calculated for the input data of the same size for the L-AE 

model, it was 37 seconds making is significantly faster than the earlier models explored. The 

ARIMA model is the quickest of all as expected and the data of the same length as the other 

models is fit in 14 seconds.  

Due to the quick training times of the L-AE and the ARIMA, it becomes possible to conduct 

extensive analysis on its variability. The model was run 1000 times with the training and 

validation data changing every time. This was possible by randomly sampling the data set used 

for validation and keeping the rest for model training. This process of evaluating the reliability 

of the model is the same as what was performed with the CNN based models.  

For the L-AE, mean values for the RMSE and MAE over all the runs are 0.224 kW and 0.089 

kW respectively, these represent 4.48% and 1.78% of the nominal power of the panel under 

consideration. Moreover, it is evident from Fig. 14 (left) and (right) that the frequency 

distributions of the evaluation parameters are near gaussian enabling the calculation of 

confidence parameters. The standard deviations of both parameters are 0.053 kW and 0.021 

kW representing 1.06% and 0.42% of the nominal power which shows that the variability of 

the error value is not significant. Hence, the results are consistent. The 95% confidence 

intervals for the RMSE and MAE parameters are [0.113, 0.33] kW and [0.047, 0.131] kW 

respectively. This indicates that whenever such a model is run, it can be said with 95% 

confidence that the best model would have an RMSE of 0.113 kW and an MAE of 0.047 kW 



and the worst model would have an RMSE of 0.33 kW and an MAE of 0.131 kW. In general, 

it can be seen that the RMSE is higher than the MAE values due to the nature of the RMSE to 

punish bigger errors more severely than the MAE which has the tendency to treat all errors 

equally. 

 

Figure 12. Frequency distributions of RMSE (left) and MAE (right) 

For the ARIMA, the same underlying data was fit, and it was run 1000 times with changing 

test and validation data sets. The parameters of the model are (2,1,1) where 2 is the 

Autoregressive (AR) coefficient, 1 represents the fact that the time series was differenced once 

in order to obtain stationarity and 1 is the Moving Average (MA) coefficient. It must be 

mentioned that the coefficient values of the ARIMA model were changed in every run 

according to the data, but the order of the model (2,1,1) remained the same. This was kept for 

the purposes of fair comparison since different deep learning models are not used for different 

seasons and a similar approach is used with the ARIMA model. The mean RMSE and MAE 

values are 0.374 kW and 0.181 kW respectively, these are 7.48% and 3.6 % of the nominal 

power of the panel which is higher than the corresponding values of the LSTM – autoencoder 

model. The standard deviations for the same are 0.22 kW and 0.105 kW at 4.4% and 2.1 % 

implying that the spread of the error values is also higher than that of the LSTM – autoencoder 

model. The 95% confidence intervals for the RMSE and the MAE are [0.36, 0.38] kW and 

[0.16, 0.20] kW which are higher than the intervals for the LSTM – autoencoder model but 

with a lesser spread.  

 Fig. 13 presents the forecasting made every 10-mins for the entire day for 3 models under 

consideration. These are the L-AE model, the ARIMA and the best performing model from the 

CNN based models (CSS-LSTM). 4 random days of the year are considered for this purpose. 

The days are quite representative with regards to the different seasons in a year seen in 

Wroclaw. The figure on the upper left and lower left are typical for the summer and days with 

high availability of sunlight since the peak power during the day reaches 4 kW and above. The 

figures on the upper and lower right are more typical for the winter and low sunlight days when 

the power output remains quite low. The models achieved are able to work reliably despite the 

change in seasons hence not requiring training different models based on different seasons of 

the year. The accuracy of all models reduces around the peak values irrespective of the day 

under consideration but it can be seen that the L-AE (LSTM_ae) performs slightly better when 

compared to the ARIMA and the CNN-LSTM models at the peak.  



 

 

Figure 13. 1-day forecasts for 4 random days of the year with the forecasts made every 10-min 

2.6.2 1 – hour ahead forecasting 

To obtain an appropriate ARIMA model for the 1-hour averaged output data, analysis must be 

carried out to obtain the AR, MA and the differencing orders. To do so, the ACF and PACF 

plots must be obtained and the ADF test performed. Fig. 14 shows the 1-hour averaged data 

and its associated ACF and PACF plots. It is clearly visible that the output data and the ACF 

plot have a trend. The PACF plot, while not having a clear trend shows minor oscillation about 

the x-axis.  

To remove the trend and obtain a stationary signal, the output is differentiated, and the results 

are shown in Fig. 15. In this case the differentiated output now does not posses a clear trend 

and mainly oscillates about the x-axis. The ACF function now does not possess a trend and the 

outputs reduce to 0 after 2 lags hence the MA coefficient can be a maximum of 2. The PACF 

plot reduces to a zero after 1 lag but it is seen that a minor trend does exist like the case when 

the signal was not differentiated. More differencing did not result in the removal of the 

mentioned trend hence an order of 1 for the differencing is adopted. The maximum value of 

the AR order is taken as 1.  The final model used to fit the data is (1,1,2).  

Like what was done previously with the CNN based models, both the L-AE and the ARIMA 

models were applied for the 1-hour ahead forecasting. In this case both models were run 100 

times with the training and test data changing in every run. The mean RMSE values for the L-

AE and ARIMA models are at 0.271 kW and 1.10 kW which are 5.42% and 22 % of the peak 

value. In case of the MAE the L-AE model has a mean value of 0.146 kW which is 2.92 % of 

the peak value and the ARIMA model has a mean MAE value of 0.630 kW which is 12.6 % of 

the peak value. From the previous section the metrics for the CNN-LSTM model are 0.282 kW 



and 0.152 kW for the RMSE and MAE, respectively representing 5.64% and 3.04 % of the 

peak value. 

 

Figure 14. Solar panel output data (1hr) with an ACF and PACF analysis. 

It can be said that for all models, compared with their performance for the 10-min ahead 

forecasting, the error metrics have become worse which is expected since the horizon of 

forecasting has been increased. The L-AE model performs the best out of all models in terms 

of evaluation metrics values for both forecasting horizons. It is noticeable that the performance 

of the ARIMA model has been significantly affected in the 1-hour ahead forecasting. A reason 

for this could be the use of a single model for all seasonal variations. This was left unchanged 

since the deep learning models used have been fit with nearly the entire data set in every run 

and not season specific data for each season. This is a question to be tackled during future work 

under this research topic.  

 

 

Figure 15. Solar panel output data (differentiated) with an ACF and PACF analysis. 



Fig. 16 presents 2 figures from the 1-hr ahead forecasting for the CNN-LSTM, L-AE and the 

ARIMA model for two randomly selected days of high and low solar availability. It can be 

seen in general that the performance of all forecasting models has dropped when compared to 

the 10-min ahead forecasting results. From the figure in the left it is seen that the CNN-LSTM 

and the L-AE model perform better than the ARIMA model with the L-AE model performing 

the best. Inaccuracies are observed more when the output power moves towards the peak than 

away from it for all models used. The ARIMA model overshoots at the peak, the CNN-LSTM 

underestimates the peak whereas the L-AE model is the closest to the actual peak with some 

underestimation. For the figure on the right, it represents a day with lower solar availability 

with considerable changes in irradiation. All methods are inaccurate at the peaks again with 

the ARIMA overpredicting whereas the others underpredicting. Inaccuracies again are more 

prominent during the increase of output power than decrease of the same. 

 

Figure 8. 1-day forecasts for 2 random days of the year with the forecasts made every 1 hour 

Conclusions 

In this chapter a total of 4 deep learning models and 1 conventional model for forecasting were 

considered for the 10-min ahead and the 1-hour ahead forecasting. Each deep learning model 

and the ARIMA, its structure and the associated data processing have been explained 

comprehensively. It is noticeable that the accuracy for all the models reduce as the time horizon 

increases from 10 minutes to 1 hr. It is also clear that amongst all the models for both the 10 – 

minute and 1 – hour ahead forecasts the L-AE model is not only the most accurate but also the 

fastest except the ARIMA which is faster but less accurate. It is also more reliable since the 

metrics were obtained as a result of the running the program for 1000 times for the 10-minute 

ahead forecasts and 100 times for the 1-hour ahead forecasts with changing test and train data 

in every run. It is noticeable from the figures that the CNN based models may not be suitable 

for the 1 hour ahead forecasts but the L-AE model is able to show better performance with 

regard to the 1 hour ahead forecasts. The area of deep learning is ever expanding and 

intensively researched.  
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3. Energy Management (Optimal Power Flow) 
Energy management is related to the optimization process mentioned in the introduction 

section. The foundation of modern energy management systems rooted in solving ED and OPF 

problems can be traced back to an older and traditional power flow in energy systems. Power 

flow also known as load flow represents a steady state analysis of the power system which 

helps in both continuously monitoring the system and plan for future activities related to the 

same such as capacity expansion[1]. It determines various AC power parameters of the network 

such as voltage magnitudes, voltage angles, active power and reactive powers in every bus or 

node of the power system. It provides a summary of the system in terms of the one-line diagram 

of the network, electrical parameters of all elements that are taken into account to determine 

the steady state solution such as generators, load centres, impedances of transmission and 

distribution lines, shunt compensation and transformer tap changers amongst others and also 

provides information about line losses occurring in the system. Overtime, this study has been 

developed in many ways and has resulted in numerous approaches to not only obtain the steady 

state solution of the network but also to optimize it. Descriptions of these approaches have been 

given in the introduction section.  

In this chapter, a brief approach to power flow, a detailed explanation of OPF, a comprehensive 

description of a hybrid meta-heuristic optimizer developed to solve the OPF, a comparative 

analysis of the performance of the optimizer developed with other approaches and finally 

application of the same for ED problems of microgrids will be presented. 

3.1 Power flow 

Power flow is an important tool for power system analysis and provides a plethora of 

information for the operator of the power system. At present there are numerous commercial 

and academic software that provide power flow analysis but at the heart of all these tools are 

common mathematical approaches based on commonly used numerical methods that are used 

to solve for the steady state of the power network.   

The description of the power flow problem along with the commonly used numerical methods 

and their application to the problem are as follows.  

3.1.1 Mathematical description of the problem  

Power flow or load flow analysis involves solving for certain AC parameters at every node or 

bus of the power system. These parameters are the voltage magnitudes (𝑉𝑖), voltage angles (𝛿𝑖), 

active power (𝑃𝑖) and reactive power (𝑄𝑖) where 𝑖 =  1,2, … , 𝑛 denotes the number of buses 

in the power system [1], [2]. It can be noticed immediately that with an increase in the size of 

the network (number of buses), the number of variables to be solved increases 4folds making 

the problem computationally intensive with scale. 

The problem usually involves categorizing the buses present in the power system which define 

the electrical parameters are known at the bus and the parameters that are to be determined. 

This process reduces the total number of variables to be determined while finding a steady state 

solution to the network [1], [2]. The bus types are as follows:    

Load bus (PQ): In this category of buses mainly representing load centres, the total active and 

reactive power generated and consumed is known. From this information the net active power 

(𝑃𝑖) and reactive power (𝑄𝑖) are obtained which are the known variables and the variables to 

be determined are the voltage magnitude (𝑉𝑖) and voltage angle (𝛿𝑖). 



Generator bus (PV): In this category of buses mainly representing generating stations, the net 

active power (𝑃𝑖) and the voltage magnitude (𝑉𝑖) are known. The voltage is maintained at a 

specified level by the generating station by means of reactive power control and other methods. 

The variables to be determined include the reactive power (𝑄𝑖) and the voltage angle (𝛿𝑖).  

Swing bus/slack bus/reference bus: Known by different names, this bus is usually reserved for 

the largest generating station in the power system. It is in fact a reference created by a power 

system professional to aid the process of finding a steady solution to the power network. In 

theory this bus is deemed capable of supplying active and reactive power according to the needs 

of the power system to keep it in balance. The variables known are the voltage magnitude (𝑉𝑖) 

and voltage angles (𝛿𝑖) whereas the ones to be determined are active power (𝑃𝑖) and reactive 

power (𝑄𝑖).   

A table denoting the type of bus and its respective known and unknown variables is shown 

below. 

Table 1: Types of buses and their variables characteristics 

Bus type  Active Power (𝑃𝑖) Reactive Power (𝑄𝑖) Voltage Magnitude 

(𝑉𝑖) 

Voltage Angle (𝛿𝑖) 

Load bus (PQ) Known Known Unknown Unknown 

Generator bus (PV) Known Unknown Known Unknown 

Swing bus (Vδ) Unknown Unknown Known Known 

Once the types of buses are decided, the power flow equations along with the operational and 

system constraints are defined as shown below 

𝑃𝑔𝑖 = |𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘|cos (𝜃𝑖𝑘 + 𝛿𝑘 − 𝛿𝑖)
𝑛
𝑘=1 + 𝑃𝑑𝑖                                      (1) 

𝑄𝑔𝑖 = |𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘| sin(𝜃𝑖𝑘 − 𝛿𝑘 − 𝛿𝑖)
𝑛
𝑘=1 + 𝑄𝑑𝑖                                     (2) 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of nodes                                              (3) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of nodes                                             (4) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of nodes                                              (5) 

𝛿𝑖
𝑚𝑖𝑛 ≤ 𝛿𝑖  ≤ 𝛿𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of nodes                                              (6) 

Equations (1) and (2) are the power balance equations for both active and reactive power which 

must be always maintained in a power system. In (1), |𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘|cos (𝜃𝑖𝑘 + 𝛿𝑘 − 𝛿𝑖)
𝑛
𝑘=1  

represents active power losses whereas in (2), |𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘| sin(𝜃𝑖𝑘 − 𝛿𝑘 − 𝛿𝑖)𝑛
𝑘=1  represents 

reactive power losses. Equations (3)-(6) maintain system parameters like voltage magnitude 

(Vi), reactive power (Qi), voltage angle (𝑖) and active power (Pi) within mandatory operational 

bounds. 𝑉𝑖   and 𝑉𝑘 represent the voltages at nodes 𝑖 and 𝑘 respectively; 𝑌𝑖𝑘  and 𝜃𝑖𝑘  are the 

admittance and admittance angle between buses 𝑖 and 𝑘; 𝑃𝑔𝑖, 𝑃𝑑𝑖 , 𝑄𝑔𝑖  and 𝑄𝑑𝑖  represent active 

power and reactive power supply and demand at nodes 𝑖; 𝛿𝑖 and 𝛿𝑘 represent voltage angles at 

buses i and k. (3) constraints the active power output of all generators in the system between 

their minimum and maximum. (4) constraints the reactive power of the same within their limits 

and (5) and (6) constraints the voltage magnitudes and voltage angles within their minimum 

and maximum.  

3.1.2 Numerical methods for power flow in meshed networks 

A. Gauss – Seidel method (GS) 



This approach to solving a set of non-linear equations is one of the simplest and earliest. The 

process begins with an assumption of a solution vector and then it moves towards the actual 

solution in an iterative manner. The assumption of a solution vector is very significant for this 

approach and determines both convergence and its speed. In every iteration an updated value 

of a variable is obtained through substitution of the remaining values in equation (1) and (2). 

The solution vector is then updated with this new value. This process continues until the final 

solution is within acceptable limits. This method is not computationally intensive since it does 

not involve storing of data from one iteration to the next and since there is no computation of 

a gradient. The application of the method to obtain a solution for the power flow problem is as 

follows:  

• All buses other than the swing bus are assumed as load (PQ) buses. This results in both 

the net active power (𝑃𝑖) and reactive power (𝑄𝑖) to be known at (𝑛 − 1) buses where 

𝑛 is the total number of buses. At the slack bus representing the largest generator in 

the system, the voltage magnitude and angle are known while the active and reactive 

power are allowed to vary.  

• The bus admittance matrix is calculated using the line and shunt admittance data 

• The iterative process is initiated with a flat voltage start where the voltage magnitude 

and angle at all buses are set to 10o. The voltages at all buses except the slack bus are 

then recalculated with equations (1) and (2). This process is carried on until the next 

iterative voltage value is smaller than a pre-determined small value. 

 

𝑣𝑖
𝑝+1

− 𝑣𝑖
𝑝

<  𝜀                                                      (7) 

• Once the voltage values are determined the active power and reactive power values at 

the slack bus are determined.  

• The process is completed with calculation of line losses with the system line and shunt 

admittance data together with the new voltage values.  

The above described process is one of many approaches to obtaining the steady state solution 

of the power system. It begins with an assumption that all buses except slack are PQ or load 

buses. If the buses were assumed to be PV or generator buses instead the process would change 

as the information that is known at the beginning are 𝑃𝑖 and 𝑉𝑖 whereas 𝑄𝑖 and 𝛿𝑖 would need 

to be determined.  

B. Newton-Raphson method (NR) 

This method represents an approach which is quite popular in the field of mathematics to solve 

a set of non-linear equations. It is efficient and fast when compared to the earlier described 

Gauss-Seidel method. This is because the method involves computation of a gradient that 

directs the solution searching process towards the actual solution. The method is not sensitive 

to the choice of an initial solution vector and has a higher rate of convergence than the Gauss-

Seidel method. Despite its advantages, it poses challenges with regard to the computational 

burden imposed since values of the previous iteration have to be calculated and Jacobian 

matrices need to be formed [1], [2].  The Jacobian consisting of partial derivatives of different 

variables after inversion is the gradient that ensures that the solution is obtained in a few 

iterative steps. Similar to the previous method the iterations continue until the new voltage 

values obtained have a change smaller than that of a pre-defined value.  

The application of this method for obtaining the steady state solution of the power system is as 

follows:  



• For load or PQ buses, the active and reactive power values are known whereas 

assumptions of voltage magnitude and voltage angle values are made. Utilising these 

values and equations (1) and (2) correction values of 𝑃𝑖 and 𝑄𝑖 are obtained. The 

correction values are nothing but the difference between the known values of 𝑃𝑖 and 𝑄𝑖 

and values of the same obtained from the assumed 𝑉𝑖 and 𝛿𝑖 utilising equations (1) and 

(2).  

 𝛥𝑃𝑖  =  𝑃𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑   −  𝑃𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑                                        (8) 

                                          𝛥𝑄𝑖  =  𝑄𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑  −  𝑄𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑                                      (9) 

 

Utilising the corrected values and the Jacobian, updated 𝑉𝑖 and 𝛿𝑖 values can be 

obtained. 

• At the swing bus the 𝑉𝑖 and 𝛿𝑖 values are set to 10o. Hence, equations pertaining to 

the same are not included in the Jacobian.  

• Once the delta 𝑉𝑖 and 𝛿𝑖 values are obtained using the Jacobian, they are added to the 

assumed 𝑉𝑖 and 𝛿𝑖 values and the above-mentioned steps are repeated. This iterative 

process is repeated until the improvement in voltage magnitude values is smaller than 

a pre-defined small value.  

• For PV buses, the process is similar except for the fact that the known values for them 

are 𝑃𝑖 and 𝑉𝑖whereas the 𝑄𝑖 and 𝛿𝑖 values are assumed.  

 

C. Fast Decoupled Load Flow (FDLF) 

3.1.3 Power flow (meshed networks) – example and comparison  

 

 

 Figure 1: Meshed microgrid network 

In power systems, there is an interdependence between active power and voltage angle (𝑃 − 𝛿) 

and reactive power and voltage magnitude (𝑄 –  𝑉). This results in a weak coupling between 



the pairs of variables that enables the power system analyst to solve for the pairs of variables 

independently thereby simplifying the solution finding process. It reduces the computational 

burden significantly. This approach utilizes the same procedure as the Newton-Raphson 

method with the exception of the Jacobian which is now simplified with the elimination of 

elements with weak coupling. This results in the matrix being sparse. This approach could 

affect convergence to the true solution but represents a trade-off between accuracy and 

computation burden which seems to make it acceptable [1], [2]. 

It has to be mentioned that the above-mentioned approaches to load flow are applicable mainly 

to meshed networks. For radial networks another set of approaches exist which are explained 

later on and why they are to be used is also explained. Below an example of the different 

methods explained above for energy management in a simple microgrid is presented. More 

complex microgrid models will be utilised later on while describing meta-heuristics and 

combined optimizers. The power flow in this cases is run every 10 minutes corresponding to 

the sampling of the load and generator data.  

The above microgrid model consisting of numerous sources and loads was chosen to carry out 

power flow simulations. It consists of 6 generators, 5 of which are solar panels and 1 Battery 

Storage System. There is a total of 7 loads. The underlying data for all are taken from the real 

world such as from the PV system at Wroclaw University of Science and Technology and loads 

from a nearby village. Other loads and PV panels in the model were obtained by using different 

data manipulation techniques. The battery storage system was modelled according to the 

recommendations of [3]. While a simple model for the BSS is chosen at this moment, a far 

more updated model of the same is used later on. The algorithm of battery management in the 

microgrid is shown in Fig. 2.   

The functioning can be split into two cases, when generation within the microgrid is greater 

than the load within the same and when it is lesser. The BSS is programmed to charge when 

additional power exists within the microgrid. This usually happens during mid-day when 

availability of solar irradiation is high. The BSS is programmed to discharge when there is a 

deficit of power within the microgrid. This usually happens when availability of solar 

irradiation is low. It must be mentioned that the BSS is programmed to maintain a minimum 

State of Charge (SOC) of 20% and a maximum of 95%. Discharging below the lower limit and 

charging higher than the upper limit is prohibited.   

The impedances represented by Z of the lines between all nodes of the microgrid have 

parameters as shown in Table 2. They are aluminium cables with PVC outer sheath with XLPE 

insulation having 1 core with 120mm2 cross-section. 

Table 2: Cable data 

 

From To Distance (m) r + jx () (10-1) 

node 1 node 2 200 0.5060 + 0.1630j 

node 2 node 3 110 0.2780 + 0.0900j 

node 3 node 4 135 0.3420 + 0.1100j 

node 4 node 1 215 0.5440 + 0.1760j 

node 2 node 4 150 0.3790 + 0.1230j 

 



 

Figure 2: Battery management algorithm 

 

  
Figure 3: Total renewable power generation and load in the microgrid (left) and exchange of power with the 

main grid (right) 

The total load within the microgrid and the total renewable power generation within the same 

are shown in Fig. 3 (left) whereas Fig. 3 (right) shows the total amount of power imported 

through node 1 or PCC of the microgrid. During mid-day, the total renewable power produced 



exceeds the load demand of the microgrid and correspondingly it is seen in Fig. 3 (right) that 

during the same time period power is exported from the microgrid through the PCC. During 

other times the excess load is satisfied by importing power.  

 

Fig. 4 shows the storage device characteristics during the day of analysis. It can be seen that 

the device charges when there is excess power available in the microgrid and discharges when 

there is a deficit. 

 
Figure 4: Storage device characteristics 

 

All the above figures were obtained by running power flow at every time step using the NR 

algorithm. Below, information is provided regarding the run-time when all GS, NR and FDLF 

are used. Since the network under consideration is small, the 3 algorithms ‘GS’, ‘NR’ and 

FDLF were run on a week’s data with data sampled every 10 minutes. This resulted in the 

following performance: the GS method ran the entire schedule in 3.82 s, the NR method ran 

the same in 2.818 s and the FDLF in 3.145 s. It can be seen that the NR method is the quickest 

of all for the system presented in Fig. 1 whereas the slowest is the GS. This is mainly because 

of the gradient that is used for finding the solution in the former and not in the latter. The FDLF 

is closer in its performance to the NR method but it has to be remembered that the memory 

needed to run the FDLF is lesser when compared to the NR. Given advances in computer 

hardware and processing power and the fact that the system under consideration is small, this 

improvement that the FDLF offers is not significant.  

 

3.1.4 Methods for power flow in radial networks 

While the methods mentioned above are suitable for meshed networks, they are not quite suited 

for radial networks. Radial networks are weakly meshed and have (R/X) ratios that are high, 

this causes divergence during the iterative process and can result in not reaching the solution. 

The methods described earlier are also not suitable when there are numerous unbalanced loads 

within the networks and distributed energy sources [4]. Hence, to overcome the above-

mentioned problems another set of methods called the forward/backward methods are utilised. 

They are of the following types:  

 

• Current summation method [4]–[6] 

• Power summation method [5], [6] 

• Admittance summation method [5] 

The methods discussed are in reference to figure shown below.  



 

Figure 5: Branch representation: sending bus and branch identified by i, receiving branch identified by 

k 

 

A. Current Summation (CS) method 

• The method is initiated with a flat voltage start wherein the voltage value at iteration 1 

at all the nodes is set to 10o.  

• The current flow in branch i is calculated as a sum of the currents due to the load 

demand at the receiving end and the admittance of the elements at the same. It is 

described mathematically in (10) 

𝐼𝑖  =  
𝑆𝑘

𝑉𝑘  +  𝑌𝑘. 𝑉𝑘                                              (10) 

 

• Backward sweep: Current summation is now carried out across all branches starting 

from the back end and moving towards branch 1 of the network. Taking example of the 

figure shown above, if the current in branch i is 𝐼𝑖 and the current in branch k after node 

k can is 𝐼𝑘 then the summation of currents across the two branches are described by the 

equation shown below.  

𝐼𝑠𝑢𝑚  =  𝐼𝑖  +  𝐼𝑘                                              (11) 

 

• Forward sweep: Now that the branch current values, impedance values and the sending 

node voltage at node 1 are known. The receiving node voltages across all nodes in the 

network can be calculated as shown in equation (12).  

𝑉𝑘  =  𝑉𝑖  – 𝑍𝑠
𝑖  . 𝐼𝑖                                            (12) 

 

• Once the voltage values are determined throughout the network an iteration is complete 

and the entire is process is repeated again and the difference in voltage values between 

successive iterations is calculated. If the difference between the voltage values in 

successive iterations is less than a pre-determined small value, the process is stopped, 

and the values obtained are taken to be the final values. Equation (13) presents the 

stopping criteria where p is the number of iteration and n represents branch number and 

the maximum difference is calculated amongst the differences of the voltages between 

successive iterations which is then compared to the pre-determined small value ε.   

𝑀𝑎𝑥 (𝑉𝑝+1
𝑛  – 𝑉𝑝

𝑛)  <  𝜀                                        (13) 

 

B. Power Summation 

• The method as in the previous approach begins with a flat voltage start with values set 

at 10o.  



• In this approach the branch power is calculated instead of the branch current as in the 

previous approach and it is written as a sum of the load demand at the receiving node 

and the power drawn by the admittances connected to the same. This process is 

described in (14)  

𝑆𝑘1   =  𝑆𝑘  +  
𝑌𝐾

(𝑉𝑘)
2                                          (14) 

 

• Backward sweep: Power summation is now carried out across all branches starting from 

the back end and moving towards branch 1 of the network. Taking example of the Fig. 

5, if the total power in branch i is 𝑆𝑖𝑡 and the total power in branch k after node k can 

is 𝑆𝑘𝑡 then the summation of currents across the two branches are described by the 

equation shown below.  

𝑆𝑠𝑢𝑚  =  𝑆𝑖𝑡  +  𝑆𝑘𝑡                                              (15) 

 

The branch total powers are calculated as a sum of the power shown in (14) plus the 

line losses due to impedance in the same branch. It is described in (16) for total power 

in branch i.  

𝑆𝑖𝑡  =  𝑆𝑘1  +  𝑍𝑠
𝑖  . (

𝑆𝑘

𝑉𝑘)
2

                                               (16) 

 

• Forward sweep: Now that the branch impedance values, and the sending node voltages 

are known. The receiving node voltages across all nodes in the network can be 

calculated as shown in equation (17).  

𝑉𝑘  =  𝑉𝑖  – 𝑍𝑠
𝑖  . (

𝑆𝑘

𝑉𝑖)                                               (17) 

 

• Once the voltage values are determined throughout the network an iteration is complete 

and the entire is process is repeated again and the difference in voltage values between 

successive iterations is calculated. If the difference between the voltage values in 

successive iterations is less than a pre-determined small value, the process is stopped, 

and the values obtained are taken to be the final values. Equation (18) presents the 

stopping criteria where p is the number of iteration and n represents branch number and 

the maximum difference is calculated amongst the differences of the voltages between 

successive iterations which is then compared to the pre-determined small value ε.   

𝑀𝑎𝑥 (𝑉𝑝+1
𝑛  – 𝑉𝑝

𝑛)  <  𝜀                                        (18) 

 

C. Admittance Summation 

 

• The process is initiated by defining a driving point admittance (𝑌𝑒
𝑘) in addition to the 

existing shunt admittance (𝑌𝑘). Apart from which an equivalent current generator (𝐼𝑒
𝑖 ) 

is also introduced in order to represent the current at the node. This current is a sum of 

all the load currents at the node.  

• The above mention step is followed by a flat voltage start with values set at 10o.  

• Once all admittances are defined in the network including the driving point, branch and 

shunt admittances, a summation is carried out of the admittances from the last node to 

the first. The process, keeping Fig. 5 as a reference, is shown in (19) and (20) 

𝐷𝑏
𝑘 =

1

1+𝑍𝑠
𝑖 .  𝑌𝐾

                                                 (19) 



𝑌𝑠𝑢𝑚 = 𝑌𝑖 + 𝐷𝑏
𝑘 . 𝑌𝑘                                          (20) 

• Backward sweep: The equivalent current generator (𝐼𝑒
𝑖 ) is calculated at all nodes after 

which current summation is carried out. This is shown in (21)  

𝐼𝑠𝑢𝑚 =  𝐼𝑖 + 𝐷𝑏
𝑘 . 𝐼𝑘                                           (21) 

• Forward sweep: The voltages at the receiving nodes can now be calculated with the 

available information on voltages at the sending nodes and the current generators.  

• Once the voltage values are determined throughout the network an iteration is complete 

and the entire is process is repeated again and the difference in voltage values between 

successive iterations is calculated. If the difference between the voltage values in 

successive iterations is less than a pre-determined small value, the process is stopped, 

and the values obtained are taken to be the final values. Equation (22) presents the 

stopping criteria where p is the number of iteration and n represents branch number and 

the maximum difference is calculated amongst the differences of the voltages between 

successive iterations which is then compared to the pre-determined small value ε.   

𝑀𝑎𝑥 (𝑉𝑝+1
𝑛  – 𝑉𝑝

𝑛)  <  𝜀                                     (22) 

Much of the studies and analysis carried out so far have been done so utilising MATPOWER. 

The same academic power analysis tool will also be used for carrying out radial load flow 

studies. While numerous methods have been described so far, the current summation method 

will be used to carry out analysis in the examples shown below. In order to successfully employ 

the radial power flow, oriented branch ordering is used. It imperative to utilise the 

nomenclature described in the ordering to carry out analysis. The ordering requires that all the 

branches of the system are oriented from the sending to the receiving bus and that no receiving 

bus can have an index less than that of a sending bus. It is clearly explained in [5].  

In this study the generator at node 1 also representing the PCC of the radial microgrid will be 

chosen as the swing/slack/reference bus.  

The impedances represented by Z of the lines between all nodes of the microgrid have 

parameters as shown in Table 3. They are aluminium cables with PVC outer sheath with XLPE 

insulation having 1 core with 120mm2 cross-section. 

Table 3: Cable data 

 

From To Distance (m) r + jx () (10-1) 

Bus 1 Bus 2 155 0.392 + 0.127j 

Bus 2 Bus 3 150 0.379 + 0.123j 

Bus 2 Bus 4 210 0.531 + 0.172j 

Bus 4 Bus 5 190 0.481 + 0.155j 

Bus 5 Bus 6 260 0.658 + 0.212j 

Bus 5 Bus 7 170 0.430 + 0.139j 
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The above microgrid model consisting of numerous sources and loads was chosen to carry out 

power flow simulations. It consists of 9 generators, 7 of which are solar panels and 1 Battery 

Storage System. There is a total of 11 loads. The underlying data for all are taken from the real 

world such as from the PV system at Wroclaw University of Science and Technology and loads 

from a nearby village. Other loads and PV panels in the model were obtained by using different 

data manipulation techniques. The battery storage system was modelled according to the 

recommendations of [3]. While a simple model for the BSS is chosen at this moment, a far 

more updated model of the same is used later on. The algorithm of battery management in the 

microgrid is shown in Fig. 2 and is the same as used previously.  

 

 

Figure 7: Total renewable power generation and load in the microgrid (left) and exchange of power with the 

main grid (right) 

The load of the microgrid and the total renewable power generation of the same are shown in 

Fig. 7 (left) whereas Fig. 7 (right) shows the total amount of power imported through the PCC 

of the microgrid. During mid-day, the total renewable power produced exceeds the load 

demand of the microgrid just for a moment and correspondingly it is seen in Fig. 3 (right) that 

during the same moment power is exported from the microgrid through the PCC. During other 

times, the excess load is satisfied by importing power.  

 

Fig. 8 depicts the storage device characteristic during operation for the day under consideration. 

It can be seen that the storage charges when there is more renewable power produced in the 

microgrid than the load and discharges when the load is greater than the renewable energy 

produced in the microgrid.  

 

Figure 8: Storage device characteristics 

 

3.2 Optimal Power flow 

In the previous sections, power flow for both meshed and radial networks was introduced 

briefly with examples and in this section OPF will be introduced. Firstly, conventional methods 

of OPF will be introduced with a few examples followed by the meta-heuristic and hybrid 

algorithms to solve the OPF problem. A brief introduction to both approaches was provided in 

the introduction section.  



3.2.1 OPF problem formulation  

While the main task in power flow is to balance active and reactive power while maintaining 

operational and system technical parameters there is no optimization. While OPF was 

introduced over half a century ago for economic dispatch, it has evolved since then in numerous 

ways due to introduction of renewable energy sources, electricity markets, prosumer concept, 

changing objectives and others. The existing OPF problem is highly complex, nonlinear, 

nonconvex and is large scale problem which necessitates continuous improvement of solvers 

used to solve the OPF problem [7], [8]. It is important because with increased complexity 

comes increased time of computation to find an optimal solution and the quality of the solution 

itself which is further away from the true solution.     

In general, it can be said that OPF attempts to achieve an objective set by the user such as 

operational cost minimisation by controlling power flow within an electrical network while at 

the same time maintaining different technical and operational constraints of the network. The 

similarity with power flow lies in the fact that OPF also solves for active power and reactive 

power injections at all nodes along with voltage magnitudes and angles in the same. The 

improvement over power flow is the fact that it recognizes the existence of numerous steady 

state conditions of the network where every above-mentioned value can exist within a certain 

defined range. [7], [8] 

A review of numerous objectives functions used are as follows:  

• Operational cost minimisation [9]–[12] 

• Cost minimisation considering capital cost of RES [13], [14] 

• Minimisation of losses (Active Power) [15]–[17] 

• Minimisation of losses (Reactive Power) [8], [18] 

• Cost minimisation considering VAR devices [19] 

• Optimal voltage profile [20]–[22] 

• Emissions minimisation [23], [24] 

• Optimal rescheduling and shifting of controls [25] 

• System loadability [25] 

• Load shedding [15], [26] 

Apart from the objective functions shown above, it is also quite regularly observed that 

combinations of objective functions are used in a multi objective manner. [27] presents a study 

in which a multi-objective function considering minimisation of operational costs and network 

losses are considered. Whereas, [28] presents a study where a multi-objective function 

considering operational costs and dynamic thermal rating of the line is considered.   

For any optimization problem decision variables are chosen carefully. This is done so in-order 

to improve the performance of the optimization process in terms of speed so that premature 

solving for all variables can be avoided. The selection of such variables quite often depends on 

domain knowledge. The OPF problem is no different, it can be split into two groups of state 

and control variables [8], [29]. The control variables also known as independent variables are 

the set which is controlled by the optimization algorithm. These values are varied continuously 

while the state variables are solved once the values of the control variables are decided. The 

state variables are also known as dependent variables. Different OPF formulations utilise 

different control and state variables [8], [29], [30].  



Quite often for the OPF problem the control variables are active power generation of all buses 

except the slack bus, voltage magnitudes of all generating buses, transformer tap setting and 

reactive power injections into the network [8], [29]. The other variables constitute state 

variables some of which are power outputs of the reference/slack bus, line loadings, voltages 

at the load buses etc.  

The variables mentioned above usually are allowed to exist within a range and are not fixed 

unchangeable values. This is especially true in case of control variables which are varied by 

the optimization algorithms. The range of the variables is usually defined with the help of 

inequality constraints and a few examples are as follows:  

• Active/reactive power limits of generators and VAR compensators  

• Load demand constraints (controllable loads)  

• Voltage magnitude limits  

• Line current/power limits  

• Reserve power limits  

• Transient stability/voltage angle limits  

The equality constraints are typically power balance equations for both active and reactive 

power in the system.  

3.2.1 Mathematical model of the OPF problem  

The objective function, equality constraints and inequality constraints make up the 

optimization problem. When applied to OPF with adequate knowledge of the types of objective 

functions, control variables, state variables, equality, and inequality constraints it becomes an 

effective tool for control of power flow in the system and it mathematically described as 

follows:  

 

3.2.1.1 General optimization problem  

𝑀𝑖𝑛 𝑓(𝑢, 𝑥)                                                        (23) 

𝑔(𝑢, 𝑥) = 0                                                       (24) 

ℎ(𝑢, 𝑥) ≤ 0                                                       (25) 

 

Where, 𝑓(𝑢, 𝑥) represents the goal of the problem to be minimised or in some cases maximised 

where it is simply written as negative of the minimisation. It is usually a continuous function 

but can be a vector too depending upon whether there is a single objective or there are multiple 

objectives. 𝑔(𝑢, 𝑥) and ℎ(𝑢, 𝑥) represent the problem’s equality and inequality constraints 

which cannot be in violation while obtaining the final optimized solution. (23), (24) and (25) 

together describe the complexity of the problem and give information about the type of 

optimization problem that has to be solved whether it is a linear programming, non-linear 

programming, mixed integer non-linear programming etc.  

3.2.1.2 Objective functions 

The objective function in OPF problems can be of many types as described earlier. A few of 

them are described here. 



• Quadratic cost (operational cost) 

𝑀𝑖𝑛(𝐹𝑐𝑜𝑠𝑡)  =  ∑ 𝛼𝑖𝑃𝑔𝑖
2 +  𝛽𝑖𝑃𝑔𝑖 +  𝛾𝑖

𝑛
𝑖=1                                      (26) 

Where, 𝑖 represents the number of the generator. 𝑃𝑔 represents the real output power of 

the generator and 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 represent the cost coefficients of the generators. 𝐹𝑐𝑜𝑠𝑡 

representing the total cost of producing power across the network is the function to be 

minimised.  

• Linear cost (operational cost) 

𝑀𝑖𝑛(𝐹𝑐𝑜𝑠𝑡)  =  ∑ 𝛽𝑖𝑃𝑔𝑖 + 𝛾𝑖
𝑛
𝑖=1                                           (27) 

 

Certain approaches simplify the cost function making it linear as shown in (27), here 𝑖 

represents the number of the generator. 𝑃𝑔 represents the real output power of the 

generator and  𝛽𝑖, 𝛾𝑖 represent the cost coefficients of the generators. 𝐹𝑐𝑜𝑠𝑡 representing 

the total cost of producing power across the network is the function to be minimised. 

• Active power loss  

                   𝑀𝑖𝑛 (𝑃𝑙) =  ∑ 𝑔𝑘
𝑛𝑙
𝑖=1 (𝑉𝑖

2 + 𝑉𝑗
2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝛿𝑖𝑗)                           (28) 

 

Where, 𝑃𝑙 is the power loss of the system to be minimised, 𝑔𝑘 is the conductance of the 

𝑘𝑡ℎbranch, 𝑛𝑙 is the number of lines in the system, 𝑉𝑖 and 𝑉𝑗 are the voltage magnitudes 

at bus/nodes 𝑖 and 𝑗 and 𝛿𝑖𝑗 represents the voltage phase angle difference between buses 

𝑖 and 𝑗.  

• Voltage profile improvement 

𝑓 =  ∑ |𝑉𝑀(𝑖) − 1|
𝑁𝑃𝑄

𝑖=1
                                            (29) 

 

Where, 𝑉𝑀 is the voltage magnitude at every node of the power system and one 

represents the fact that the voltage magnitude in p.u. should be maintained ideally at 1. 

𝑁𝑃𝑄 is the number of load/PQ buses in the network.  

• Emissions  

 𝑀𝑖𝑛(𝐸) =  ∑ 𝛼𝑖 +  𝛽𝑖𝑃𝑔𝑖 + 𝛾𝑖𝑃𝑔𝑖
2 + 𝛿𝑖 exp(𝜖𝑖𝑃𝑔𝑖)

𝑁𝑔

𝑖=1
                   (30) 

 

Where, 𝑁𝑔 is the number of generators, 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝛿𝑖 𝑎𝑛𝑑 𝜖𝑖 are the emission coefficients 

for the generating unit 𝑖. 𝑃𝑔𝑖 is the power generated by every unit 𝑖 and 𝐸 is the total 

emission of the system that is to be reduced.  

 

3.2.1.2 Equality constraints  

The equality constraints of the OPF problem are usually power balance equations for both 

active and reactive power. There are two major approaches to writing the power balance 

equations when it comes to AC OPF. This includes writing the equations either in polar form 

or rectangular form.  

• Polar form  

𝑃𝑔𝑖 − 𝑃𝑑𝑖 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗cos (𝑖 −  𝑗) + 𝐵𝑖𝑗 sin(𝑖 − 𝑗) = 0 𝑛
𝑗=1           (31) 

 𝑄𝑔𝑖 − 𝑄𝑑𝑖 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗sin (𝑖 −  𝑗) + 𝐵𝑖𝑗 cos(𝑖 − 𝑗) = 0 𝑛
𝑗=1           (32) 



Vi and Vj represent voltage magnitudes at buses i and j respectively. Pgi, Qgi represent 

active and reactive power generations at bus i, Pdi and Qdi represent active and reactive 

powers at bus i, δi and 𝛿𝑗  represents voltage angles at buses i and j respectively, 

𝐺𝑖𝑗 𝑎𝑛𝑑 𝐵𝑖𝑗 are the conductance and susceptance between buses i and j. n is the total 

number of buses.  

• Rectangular form 

In the rectangular form, the voltages are represented in terms of their real and imaginary 

parts instead of the magnitude and angle form (𝑉𝛿). This approach offers an 

advantage with regard to computation as trigonometric functions are eliminated from 

the constraints and instead constant second partial derivatives are used [8]. The 

equations are shown below: 

𝑃𝑔𝑖 − 𝑃𝑑𝑖 − ∑ 𝐺𝑖𝑗(𝐸𝑖𝐸𝑗 + 𝐹𝑖𝐹𝑗) + 𝐵𝑖𝑗 (𝐹𝑖𝐸𝑗 − 𝐸𝑖𝐹𝑗)𝑁
𝑗=1 = 0             (33) 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 − ∑ 𝐺𝑖𝑗(𝐹𝑖𝐸𝑗 − 𝐸𝑖𝐹𝑗) − 𝐵𝑖𝑗 (𝐸𝑖𝐸𝑗 + 𝐹𝑖𝐹𝑗)𝑁
𝑗=1 = 0             (34)     

 

Where, 𝑃𝑔𝑖 , 𝑄𝑔𝑖 , 𝑃𝑑𝑖 and 𝑄𝑑𝑖 have the same definitions as earlier. E and F represent the 

real and imaginary components of the bus voltages at their respective buses. 𝐺𝑖𝑗 𝑎𝑛𝑑 𝐵𝑖𝑗 

are the conductance and susceptance between buses i and j A few studies utilizing the 

rectangular form for OPF can be found in [31], [32]. 

3.2.1.3 Inequality constraints  

The inequality constraints have been explained earlier. They can be defined as operational 

parameters which are constrained within a range. It can be due to regulations defined by 

regulatory authorities or can be due to the physical limits of numerous elements that exist in a 

power system. Mathematically, they are defined as shown below.  

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of generators                               (35) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 ∀ 𝑖 𝜖 No. of generators                               (36) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of buses                               (37) 

𝛿𝑖
𝑚𝑖𝑛 ≤ 𝛿𝑖  ≤ 𝛿𝑖

𝑚𝑎𝑥 ∀ 𝑖 𝜖 No. of buses                               (38) 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥 ∀ 𝑖 𝜖 No. of Var compensators                  (39) 

𝑆𝑙𝑖  ≤ 𝑆𝑖𝑙
𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of lines                                      (40) 

Where, 𝑃𝑔𝑖  and 𝑄𝑔𝑖 represent the active powers and reactive powers generated at the generating 

stations and are constrained within the generators’ minimum and maximum capacity. 𝑉𝑖 and 𝛿𝑖 

represent the voltage magnitude and angles at all buses, they are constrained within their 

minimum and maximum values defined by regulations of power quality and system stability. 

𝑄𝑐𝑖 represents the reactive power compensation provided by VAR elements and they are also 

constrained within their maximum capacities. The line loading defined by 𝑆𝑖 is constrained 

within its maximum rated power carrying capacity.  

3.3 Hybrid meta-heuristic optimization approaches 

 

While both conventional and meta-heuristic optimization approaches to OPF were explained 

in the introduction. It was done only briefly, and a more detailed analysis will be dealt with in 



this section. Conventional methods of OPF such as interior point method, Newton’s method 

etc will not be discussed in this section since their results are widely available but will be used 

for comparison. All approaches adopted in this study are described as hybrid in nature since  

OPF solutions are obtained by algorithms that are meta-heuristic but have MATPOWER 

embedded in their solution searching process. This particular academic suite was chosen since 

it has been long established as a reliable power system simulation tool, is open source and is 

developed regularly [1], [5].     

3.4 Genetic – Algorithm (GA) 

GA was briefly explained in the introduction section but is explained in a more detailed manner 

in this section. The algorithm was developed in 1975 and then popularized by Goldberg in the 

late 80’s. GA was developed in parts with numerous features being added over time which 

improved both its solution searching capabilities and speed [33]. As explained earlier the 

algorithm is based on the Darwinian principal of the survival of the fittest. Where, individuals 

with a higher level of fitness due to a variety of reasons are able to survive when compared to 

the weaker individuals when faced with adversity. These traits that result in a higher fitness are 

then passed on to future generations making them fitter. During this evolutionary process 

random mutations also occur which could possibly increase the fitness of an individual that is 

also passed on to the next generation. In terms of finding a solution to an optimization problem, 

each individual also called a chromosome represents a potential solution. The chromosome 

consists of numerous genes which can be equated to the decision variables of the optimization 

problem. The values of these decision variables ultimately determine the fitness of the 

individual which can be equated to the quality of the solution. Higher the fitness, better is the 

solution. Every generation has a population of a fixed size and it consists of individuals from 

the previous generation with the highest levels of fitness and their children. A new generation 

is usually created in this manner using operations called selection, cross-over and mutation. 

The above-mentioned process continues and new generations are created until the improvement 

from one generation to the next is negligible or the max. time for running the algorithm is 

reached.  

Selection is the process of choosing individuals in a given population at a certain generation 

for producing children. They are called parents and there are different methods of selecting the 

right parents. Commonly used methods are the proportionate selection method, the ranking 

method and tournament selection method.  

In the proportionate selection method parents are chosen based on probabilities. The probability 

of each individual being selected is directly proportional to the fitness of the individual. Higher 

the fitness, higher the probability of being selected as a parent. Once probabilities of all 

individuals are decided they receive a place in a roulette, the area of which is proportional to 

their probabilities. The roulette is then spun as many times as decided by the user which equals 

the number of individuals being selected as parents [33]. An example roulette is shown in Fig. 

9 consisting of 5 individuals. Amongst all candidates, candidate 1 has the highest fitness hence 

largest portion of the roulette which gives it the highest probability to be selected when the 

roulette is spun. Conversely, the 5th candidate has the lowest fitness hence the smallest portion 

of the pie and therefore the least probability of being selected. 



 

Figure 9: Underlying probability for proportionate selection method 

The ranking solution method is quite straightforward and easy to implement. The candidate 

solutions are ranked according to their fitness values with the best solution getting rank 1 and 

the worst solution getting the last rank. Once the ranks are determined the candidate solutions’ 

probabilities are determined with the help of a linear function directly proportionate to their 

ranks.  

The tournament selection method involves randomly selecting a few candidates from the pool 

of all possible candidates then the solution with the highest fitness is selected. The number of 

randomly selected candidates is called as the selection pressure. Higher the number, higher is 

the selection pressure. 

Apart from the classical selection approaches mentioned above other approaches exist, such as 

stochastic universal sampling, truncation selection etc.  

Crossover can be described as a process of obtaining  new chromosomes in a future generation 

from two chromosomes in the previous generation. It involves the exchange of genes between 

two chromosomes of the previous generation (parents). In short, the decision variables between 

two possible solutions are exchanged. There are different approaches to crossover such as one-

point, two point and uniform crossover. These approaches are shown in Fig. 10.  

In the one-point crossover approach a point is randomly selected on the chromosome 

representing the parents and then a part of the child is taken from one side of the point to the 

end and the other part of the child is taken from the other side of the point to the end. It is 

represented by the first crossover operation in Fig. 10. In the two-point crossover, two points 

are selected at random on the chromosomes representing both parents and the child is obtained 

by swapping out the genes apart from the ones located within the boundary of both the points. 

This is represented by the second crossover operation in the figure[33]. In case of the uniform 

crossover, points are selected at random where the genes are exchanges amongst the parents to 

create children. This is represented by the 3rd crossover operation in the figure.  

 

Selection probabilities

1st candidate 2nd candidate 3rd candidate 4th candidate 5th candidate



 

  Figure 10: Different crossover approaches  

 

                                              Figure 11: Genetic algorithm 

 



The 3rd operation while creating a new generation is the mutation. As already explained before 

it is a random act (introduction of a random new genetic material) which might improve the 

fitness of the new solution obtained. In this case it involves swapping out a decision variable 

from the solution for a random unknown value. There are two approaches for mutation called 

uniform and non-uniform mutation. In the uniform approach a decision variable is replaced 

with a value from the feasible space of solutions whereas in the non-uniform approach a 

localised value is chosen to replace the gene and this local search space for a random value 

keeps reducing at the number of generations increase[33]. The process described above can be 

visualised in terms of an algorithm as shown in Fig.11. 

For application to the OPF problem, GA is embedded with MATPOWER and the algorithm of 

the search solution process for OPF is shown in Fig. 12. The process is initiated with the 

declaration of all variables describing the characteristics of all elements in a power network 

such data pertaining to generators, loads, transmission lines etc. This is followed by declaration 

of the objective function, the constraints and the control variables. The control variables used 

in this study will be discussed in the results section of this chapter while evaluating the 

performance of this algorithm in the IEEE 30 bus system.  Once the control variables are 

initialized, the state variables are solved for using MATPOWER after which the value of the 

objective function is computed. In the next iteration these control and state variables are 

updated once again and a new objective function value is calculated. This iterative process 

keeps repeating until an improvement in the final objective function value is negligible or until 

a max time for running the program is met.  

 

              Figure 12: Genetic algorithm embedded with MATPPOWER for OPF 

 



3.5 Particle Swarm Optimization (PSO) 

Swarm intelligence is a concept modelling the behaviour of animals in large groups. It models 

their way of living and interaction with one another. It characterizes for example the manner 

in which fishes interact in a school of fishes or how birds behave in a flock of birds or even the 

behaviour of humans in large groups [34]. The advantages of using PSO are that, it can be 

implemented easily and also can be applied to numerous engineering problems with relative 

ease. It is one of the most powerful meta-heuristic optimization algorithms when it comes to 

speed of convergence to a solution [34]. The reason for this is the manner in which the solution 

searching process is carried out. Unlike GA which has operators for evolution such as mutation 

and cross-over, the PSO adopts a rather simple approach of simply moving particles (potential 

solutions) across a search space based on the location of the previously known best solutions. 

This approach significantly reduces memory requirements for running the optimization 

algorithm and increases the speed of convergence but the trade-off comes in the form of 

reduced accuracy and increased unreliability [34]. 

 

Figure 13: Particle Swarm optimisation  



While there are numerous variants and upgrades made to the PSO [35]. The classical algorithm 

works in the following manner. The process is initiated by deploying a swarm of particles 

representing potential solutions randomly in a solution search space. The particles then move 

around the specified search space looking for new improved solutions. The movement of 

particles is determined by their position and velocity. It should be mentioned that the movement 

is not only influenced by the previously known best position of the particular particle but also 

the best positions found by all the particles within the search space. In this manner all particles 

move towards the best global solution [35]. Mathematically, the process is described by the 

equations shown below.  

𝑉 =  𝑐1 ×  𝑟𝑎𝑛𝑑 ×  (𝑝𝑏𝑒𝑠𝑡 – 𝑋𝑝𝑟𝑒𝑠𝑒𝑛𝑡)  +  𝑐2 ×  𝑟𝑎𝑛𝑑 ×  (𝑔𝑏𝑒𝑠𝑡 – 𝑋𝑝𝑟𝑒𝑠𝑒𝑛𝑡)  (41) 

𝑋_𝑛𝑒𝑤 =  𝑉 +  𝑋𝑝𝑟𝑒𝑠𝑒𝑛𝑡                                                (42) 

Where, the velocity of each particle is 𝑉, the learning rates are 𝑐1 and 𝑐2 and is usually a 

number between 1 and 4, 𝑟𝑎𝑛𝑑 represents a random number, the best position of a particle is 

represented by 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡 represents the best fitness of all particles in an iteration, 𝑋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

is the current position of a particle and 𝑋𝑛𝑒𝑤 is the new calculated position of a particle. 

Algorithmically, the process is described in Fig. 13.  

 

                         Figure 14: PSO embedded with MATPPOWER for OPF 

For application to the OPF problem, PSO is embedded with MATPOWER and the algorithm 

of the search solution process for OPF is shown in Fig. 14. The process is initiated with the 



declaration of all variables describing the characteristics of all elements in a power network 

such data pertaining to generators, loads, transmission lines etc. This is followed by declaration 

of the objective function, the constraints and the control variables. Once the control variables 

are initialized, the state variables are solved for using MATPOWER after which the value of 

the objective function is computed. In the next iteration these control and state variables are 

updated once again and a new objective function value is calculated. This iterative process 

keeps repeating until an improvement in the final objective function value is negligible or until 

a max time for running the program is met. 

3.6 Mixed Integer Distributed Ant Colony Algorithm (MIDACO) 

Ant colony optimization (ACO) was introduced initially by Marco Dorigo [36]. It is a robust 

and highly researched meta-heuristic optimization algorithm based on the foraging behaviour 

of ants. In nature, initially the ants move randomly about their colony searching for food. Once 

a food source is located, food is brought back and while doing so a pheromone trail down for 

identification of the food source by all ants. This pheromone trail evaporates over time. The 

food source that is located closest to the colony is associated with the strongest pheromone trail 

since it is frequented by the greatest number of ants all of which lay down a pheromone trail to 

the same source. In this manner all the ants converge to a single food source. The food sources 

can be equated to possible solutions and the associated pheromone trails determine the fitness 

of the solution. Hence, stronger the pheromone trail better is the fitness of the associated 

solution.  

Traditional implementation of the ACO is done through a construction graph 𝐺𝑐(𝑉, 𝐸) where, 

𝑉 and 𝐸 are the vertices and the edges of the graph respectively. 𝑉 represents the food sources 

(solutions) and E represents the pheromone trails (fitness). Artificial ants move across the graph 

from one vertex to another and update the pheromone values. This way they create an optimal 

path to the best solution [36], [37]. During this process information about the vertices 

(solutions) and their associated pheromones (fitness) is shared with the other ants so that 

eventual convergence to a food source can be achieved. While the vertices and pheromones 

ensure search for a global optimal solution, the optimization problem under consideration 

might contain certain local constraints to be fulfilled which is achieved with the help of daemon 

actions. The daemon actions appropriately adjust the pheromone values (fitness) associated 

with a food source based on whether local constraints of the optimization problem are satisfied 

or not. The stopping criteria for ACO can either be the maximum run time or amount of 

improvement seen over subsequent best solutions. This process is described in Fig. 15.  

MIDACO represents an extension over the traditional ACO because unlike the traditional 

ACO, MIDACO is able to handle both integer and continuous variables [37]. Moreover, it 

builds incremental solutions using probabilistic choices based on Probability Distribution 

Functions (PDFs). A PDF is defined as follows:  

∫ 𝑃(𝑥) = 1
∞

‒∞
                                                      (43)  

MIDACO uses a weighted sum of individual PDFs since a single PDF is centred around one 

mean only which implies that it cannot represent different points in the solution search space. 

This approach of using numerous PDFs in a weighted manner to search for a solution can be 

represented as shown in the equation (44).  



 

Figure 15: Traditional Ant Colony Optimization   

𝐺𝑖(𝑥) =  ∑ 𝑤𝑚
𝑖 . 𝑔𝑚

𝑖 (𝑥) =  ∑ 𝑤𝑚
𝑖 1

𝜎𝑚
𝑖 √2𝜋

𝑘
𝑚=1

𝑘
𝑚=1 𝑒−(𝑥−𝜇𝑙

𝑖)
2

/2𝜎𝑙
𝑖2

                 (44) 

Where, 𝐺𝑖(𝑥) is the weighted sum of individual PDFs (𝑔𝑖(𝑥)) and 𝑤𝑖, 𝜎𝑖 , 𝜇𝑖 represent weights, 

standard deviations, and mean of the individual Gaussian functions of the weighted cumulative 

representation in 𝑖 dimensions of the search domain.  𝑙 is the kernel of the individual function 

in the PDF.  

The parameters described above characterizing a PDF can be equated to the pheromones of the 

ACO. They are responsible for guiding the ants all across the search space. The best solutions 

that are arrived at are usually stored in a Solution Archive (SA). It has k kernels specified by 

the user hence, if k has a value of 50 then the 50 best solutions obtained in an iteration are 

stored. Along with the best solutions in the kernel, the SA also has information regarding 

penalties that should be added to the objective function in case of violations such as inequality 

constraints violations. This ensures that only those objective functions having the best solution 

and following all constraints remain in the SA while others are discarded.  

Mathematically, these weights representing pheromones are calculated as shown in (45), the 

weights are stored in the SA and a priority is established amongst all the possible weight values 

ascertained by the algorithm in its solution searching process.  



  𝑤𝑚
𝑖 =

(𝑘−𝑚+1)

∑ 𝑗𝑘
𝑗=1

                                                       (45) 

In (45), 𝑤𝑚
𝑖  represents one of the weights used. Prioritization of other weights follows the same 

approach. k represents the kernel size hence, the number of solutions ranked from best to worst 

and are stored in the SA.  𝑚 is the index according the rank of each solution hence the solutions 

with a small m value are preferred by the algorithm. 𝑗 is simply used to denote the solution 

under consideration out of all solutions available. As an example, the best solution is 𝑠1 with 

index 1 whereas the worst solution is 𝑠𝑘 with the last index k. While moving from iteration-to-

iteration new solutions are explored and the SA is updated. For every new solution, a 

comparison is made between its penalty function value and the penalty function values that 

exist in the SA from the previous iteration. If there is a solution in the SA at the 𝑗𝑡ℎ position 

whose penalty function value is much higher than that of the current solution, the current 

solution replaces the 𝑗𝑡ℎ solution and the 𝑗𝑡ℎ solution is moved up by one index and so are all 

the other solutions moved up by one position until the 𝑘𝑡ℎ solution which is simply kicked out.  

The way a new solution is explored in the search space is as follows. Based on (45) a mean 𝜇𝑖 

is calculated for all decision variables. Then a mean 𝜇𝑖 corresponding to a particular decision 

variable is selected at random. During this selection the probability that 𝜇1, corresponding to 

the mean of the decision variable of the best solution in the SA, is selected is the highest 

whereas 𝜇𝑘 corresponding to the mean of the decision variable of worst solution in the SA is 

the lowest. Once a mean is selected randomly, utilizing a standard deviation 𝜎 calculated using 

the SA a new part of the search space from which a new solution can be obtained is created. 

The process of determining the standard deviation is shown below.  

𝜎𝑚
𝑖 =

𝑑𝑖𝑠𝑡 max(𝑖) − 𝑑𝑖𝑠𝑡 min(𝑖)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
                                              (46) 

𝑑𝑖𝑠𝑡 max(𝑖) = {|𝑠𝑔
𝑖 − 𝑠ℎ

𝑖 |: 𝑔, ℎ ∊  {1. . , , 𝑘}, 𝑔 ≠ ℎ                         (47) 

𝑑𝑖𝑠𝑡 min(𝑖) = {|𝑠𝑔
𝑖 − 𝑠ℎ

𝑖 |: 𝑔, ℎ ∊  {1. . , , 𝑘}, 𝑔 ≠ ℎ                          (48) 

In this manner, new spaces in the search space are explored, then best possible solutions are 

chosen and over numerous iterations these solutions are improved until a stopping criterion of 

the maximum number of iterations is reached. The process is also stopped if a solution obtained 

cannot be improved more than a pre-determined negligible value.   

A robust penalty method called Oracle is utilised for handling constraints in MIDACO [37], 

[38]. With regard to penalty methods in optimization algorithms certain approaches such as 

death or static are easier to implement whereas others such as annealing and adaptive are more 

difficult to implement but it should be mentioned that the latter has a significantly higher 

performance than the former. The latter is also associated with a higher computation burden. 

Hence, MIDACO was embedded with a penalty approach that has both a high performance and 

less computational burden in comparison with other penalty approaches mentioned. Oracle 

utilises a single parameter and is unaffected by the choice of the initial solution. A more 

comprehensive analysis of the penalty function is described in [38]. Further explanation about 

the penalty method and MIDACO can be obtained from [37], [38].  

For application to the OPF problem, MIDACO is embedded with MATPOWER and the 

algorithm of the search solution process for OPF is shown in Fig. 16. The process is initiated 

with the declaration of all variables describing the characteristics of all elements in a power 

network such data pertaining to generators, loads, transmission lines etc. This is followed by 



declaration of the objective function, the constraints and the control variables. Once the control 

variables are initialized, the state variables are solved for using MATPOWER after which the 

value of the objective function is computed. In the next iteration these control and state 

variables are updated once again and a new objective function value is calculated. This iterative 

process keeps repeating until an improvement in the final objective function value is negligible 

or until a max time for running the program is met. 

 

Figure 15: MIDACO embedded with MATPPOWER for OPF 

 

3.7 Political Optimizer (PO) 

While the above-mentioned approaches are quite popular, they can be classified as traditional 

in the world of meta-heuristic approaches to optimization. GA, PSO and MIDACO though 

improved in many ways were still developed over a long time ago. In recent times a gamut of 

new meta-heuristic optimization approaches is being proposed. This section discusses one such 

approach called the Political Optimizer developed in 2020.  

PO is an approach that mimics the working of various political institutions and actors. It 

considers numerous procedural activities carried out in order to form and run a government 

such as election campaigns, intra-party and inter-party elections, defection to opposition 

parties, constituency elections and parliamentary affairs [39]. It comes under the category of 

meta-heuristic algorithms that are inspired by human behaviour and interaction.  



The idea behind PO is thought to be appropriate for a global optimization algorithm because it 

incorporates two perspectives. One representing the candidates (potential solutions) who try to 

win the election (objective function) and another where political parties try to gain a majority 

in the parliament.  

A comprehensive description to locating the global minimum solution is as follows, initially a 

population of candidates are generated. The population size 𝑝 is decided by the user. This 

population is then further divided into 𝑛 political parties consisting of 𝑛 members. It has to be 

mentioned that every candidate representing a possible solution is a vector consisting of as 

many elements as the decision variables in the problem. An assumption is made at this point 

with regard to the number of constituencies and for PO it is always 𝑛, equal to the number of 

political parties. The purpose of a constituency is to select the best candidate of all available 

candidates with the same index in a political party. An example is shown in Fig. 16.  

 

  Figure 16: Constituency winner allocation  

Assuming a population of 9 solution candidates. 3 parties 𝑃1, 𝑃2 and 𝑃3 each consisting of 3 

members is shown in Fig. 16. Firstly, an assumption is made with regard to the number of 

constituencies which is the same number as that of the number of political parties, in this case, 

3. Then for constituency C1, the best solution candidate is chosen from amongst the first 

member of each party in this case from either P11, P21 and P31. Similarly, the best candidates 

are chosen for C2 and C3. At this point the party leader is also chosen who is the best candidate 

in each party. The best candidate for each party and constituency is chosen based on its fitness 

(objective function value). The constituency winners together form the parliamentarians. This 

concludes the initialization of the PO following which are 4 phases that improve all the 

candidate solutions. They are described in brief as follows.  

The exploratory and exploitation phase of the algorithm is called as the election campaign. It 

involves improving the solution candidates position in the search space so that they move 

towards the global optimal solution. Every candidate has a new proposed position based on 3 

considerations which are their recent past position in the previous election, the position of the 

constituency winner and the position of the party leader [39].  

In parallel to this phase is another phase called the party switching phase. The user of PO is 

allowed to change the parameter regulating this phase freely. The parameter fades towards zero 

as the number of iterations of the algorithm keeps increasing. The process involves switching 

a member of a political party to another party where this member replaces the member of the 

lowest fitness in the new party. The probability of choosing a member of a political party for 

switching depends on the value of the probability parameter at that iteration [39].  



The election phase is run again, wherein new fitness functions of all candidates are calculated 

and again party leaders and constituency winners are determined.  

 

Figure 17: Political optimizer  

Once the government is formed, in every iteration the next phase is called parliamentary affairs. 

In this phase every member of the parliament updates his/her position based on a randomly 

chosen parliamentarian. If there is an improvement in fitness the new position is recorded. The 

flow from one phase to another and selection of the best solution is shown in Fig. 17. The 

integration of PO to MATPOWER to solve OPF is similar to what has been done with the 3 

traditional algorithms before with the exception being that the PO is used to solve for control 

variables instead of the traditional meta-heuristics.  

3.8 Lichtenberg Algorithm (LA) 

This algorithm is inspired by Lichtenberg Figures (LF). Based on the natural phenomena of 

lightning formation amongst clouds, it exploits fractal power and is significantly different from 

numerous other meta-heuristic optimization algorithms found in the literature [40]. This 



approach was introduced in 2020 and represents another recent introduction to already existing 

pool of modern meta-heuristic algorithms.  

The natural phenomena the algorithm is based on in particular is intra-cloud lightning 

formation. Lightnings arise due to electric discharge from electrical fields that are created due 

to the friction that arises because of cloud movement with respect to one another. Different 

types of lightning include inter cloud, intra cloud, cloud to ground, ground to cloud and from 

cloud to atmosphere. Amongst all the possible options, the intra-cloud lighting discharge is the 

most suitable to model an optimization algorithm since it is radial in nature and scans a wide 

area. While the intra-cloud lighting is a natural phenomenon that produces an LF. It can be 

created in dielectric materials by observing the propagation of an electric discharge on the 

material. This was demonstrated by Lichtenberg in 1777 [40].  

Recently, it was proposed that LFs can be created via cluster forming random growth  

processes. Two popular approaches in the literature include Dielectric Breakdown Model 

(DBM) [41] and the Diffusion Limited Aggregation (DLA) [42]. The LA used in this study 

utilises the DLA model. It is a numerical approach which results in a random growth structure 

that is used to study the breakdown of resistance in dielectric materials. The principal of solid 

particles is used as the basis for the growth of clusters. The algorithm for DLA has two inputs 

namely the number of particles within the cluster and its size. Once the algorithm is run the 

output is completely random and complex and can only be defined by fractal geometry. More 

recently, a stick coefficient was introduced to this algorithmic approach which determines the 

speed of creation of the cluster and its density.  

Mathematically, a binary matrix with entries one and zero is created in a map like manner. At 

the centre of the matrix is a particle with index 1 and is considered to be the centre of matrix. 

The cluster or the LF is built incrementally by the spaces of the matrix that have the entry 1 

and the empty spaces have a value of zero. It must be mentioned that every entry 1 represents 

a particle and the total number of particles for creating the LF is defined by the user at the 

beginning. The overall space within which the LF is to be created is also defined by the user at 

the beginning in the form of a creation radius 𝑅𝑐. This process continues until the defined 

number of particles have found their position in the cluster or the limits of construction of the 

LF has been reached [40]. 

The particles begin from the centre and move across the search space constrained by the 

creation radius. If they reach a reach a position that is greater in distance from the centre than 

𝑅𝑐 that particle is eliminated and another particle starts moving in a different direction in a 

random manner. It is important to remember that every LF generated this way in different runs 

can be completely different. This kind of random stochastic exploration of a given search space 

makes it a suitable candidate for optimization problems with non – convexity. Two Lichtenberg 

figures are shown in Fig. 18. Both figures are created with a stick parameter of 1 and 1 × 108 

particles. It can be seen that even though both figures were created with the same parameter 

settings they are significantly different.  



 

Figure 18: Lichtenberg optimizer 

It can also be seen from the above figures that there is a significant difference between points 

and branches of the figure which could compromise the accuracy of optimization algorithms 

during solution searching. In order to combat this problem, the developers took 4 different 

measures as explained below.  

The first measure was the introduction of a random value between 1 and 0 at every iteration. 

This randomly generated value is then multiplied with the LF’s size. This is done to ensure that 

the distance between different points and branches does not remain large throughout the 

iterative process and more of the search space can be covered. It is allowed to vary between its 

max. allowed size to less than 1% of the maximum.  It has shown to improve the efficiency of 

LA [40]. 

The second measure includes introducing a random angle at every iteration. Then with regard 

to this angle the entire LF is rotated. This process is especially useful for optimization problems 

with a high number of decision variables. It results in efficient exploration of the search space 

and ensures that repetition of branches in the same direction does not take place.  

The third measure was the introduction of a refinement parameter which is a value between 0 

and 1. This parameter creates another LF with a size equal to the original size of the LF 

multiplied with the refinement parameter. The main purpose of this new LF is to enable search 

for local optimization problems that need to be solved.  

The fourth measure introduced resulted in another parameter called M in order to keep the 

search space continuous and not discretize it. This parameter takes on 3 possible values [0,1,2] 

where zero indicates that one figure is generated during the iterative process and it remains the 

same throughout, 1 indicates that a new figure is created at every iteration and 2 is a case where 

no figure is created but a previously saved figure from the archives is utilised.  

At the beginning of the optimization process, the population and the number of particles is 

defined. The two values remain separate since not all particles are used for fitness evaluation 

but only the number of particles that are determined by the size of the population. Usually, the 

population size is 10 times the number od decision variables for this algorithm. Apart from this 

the value for the reference parameter, M parameter, 𝑅𝑐 value and the number of iterations are 

defined. There is also a Sticky parameter S that determines the speed at which the LF is 

generated along with its density.  



The LA during its search process denotes different parts of the search space with a number of 

points equal to the population size. While other particles do exist and randomly generate the 

LF, it is these particles for which the fitness function is evaluated and the point with the highest 

fitness serves as a trigger point for further exploration. The entire process is algorithmically is 

shown in Fig. 19.  

 

Figure 19: Lichtenberg optimizer 

The integration of LA to MATPOWER to solve OPF is similar to what has been done with the 

3 traditional algorithms before with the exception being that the PO is used to solve for control 

variables instead of the traditional meta-heuristics.  

 

 

3.8 Performance evaluation of meta-heuristic approaches to OPF  

3 traditional and 2 recent algorithms were explained in detail in the preceding sections. It was 

also explained how every approach was modified and incorporated with MATPOWER for 

solving OPF problems related to power networks. In all the literature explored in this chapter 

and the introduction chapter a valid and popular approach is to test any proposed optimization 



algorithm in a standard IEEE 30 bus system. The objective function is minimisation of cost 

and the same approach is adopted in this work to compare all above-mentioned algorithms.  

First the IEEE 30 bus system is explained. It is an open-source model representing an actual 

power system which is used to test the performance of optimization algorithms and carry out 

steady state analysis. As the name suggests it has in total 30 bus bars. It also has a total of 6 

generators at bus numbers 1, 2, 5, 8, 11 and 13 respectively, 4 transformers whose tap settings 

are allowed to change within a specified range between buses 6 and 9, 6 and 10, 4 and 12 and 

28 and 27 respectively. Shunt var compensation is provided at buses 10, 12, 15, 17, 20, 21, 23, 

24 and 29 [12].  

 

Figure 20: IEEE 30 bus system 

Source: https://labs.ece.uw.edu/pstca/pf30/pg_tca30fig.htm (open source) 

The control variables chosen for this work is similar to many in the literature already described. 

They are the active power output of the generators except slack bus, voltage magnitude values, 

transformer tap settings and reactive power compensation. These control variables form the 

decision variables of the optimization algorithms used. They are the variables that are allowed 

to vary in order to minimize the cost for the IEEE 30 bus system. Rest of the variables are 

solved with MATPOWER. It is also important to mention that while the generators maximum 

and minimum active and reactive power output limits along with VAR compensation limits are 

a part of the data that would be provided later.  

 

Table 4: Control variables, cost and computation time comparison of meta-heuristics applied to OPF  

https://labs.ece.uw.edu/pstca/pf30/pg_tca30fig.htm


*not a control variable but included in the table for reference since it is the power output of the biggest generator 

The voltage limits are maintained between 0.95 – 1.05 p.u. and the transformer tap settings are 

also allowed to vary between 0.9 and 1.1. A single line diagram of the IEEE 30 bus system in 

shown in Fig. 20.  

 A detailed comparison of the control variables decided by different meta-heuristic approaches 

is presented in table 4. This comparison involves only the 5 meta-heuristic algorithms that were 

investigated in this study but in the literature, there are numerous other approaches and also a 

comparison with conventional algorithms has to be made. A table with conventional algorithms 

for OPF and some found in literature are presented in table 5 after which wholesome 

Control variable 

values 
GA  PSO  MIDACO  PO LA 

*PG1 (MW) 176.45 176.76 177.09 177.39 180.45 

PG2 (MW) 48.75 49.36 48.83 48.84 47.59 

PG5 (MW) 21.09 21.76 21.49 21.40 22.99 

PG8 (MW) 23.20 25.73 21.73 21.69 18.30 

PG11 (MW) 12.21 11.12 12.24 12.19 12.86 

PG13 (MW) 10.95 13.81 11.31 11.20 10.98 

V1 (p.u.) 1.06 1.06 1.06 1.06 1.06 

V2 (p.u.) 1.04 1.04 1.05 1.04 1.05 

V5 (p.u.) 1.01 1.01 1.01 1.01 1.01 

V8 (p.u.) 1.01 1.01 1.01 1.01 1.01 

V11 (p.u.) 1.08 1.08 1.08 1.08 1.08 

V13 (p.u.) 1.07 1.07 1.07 1.07 1.07 

T11 0.94 1.03 0.94 1.01 0.95 

T12 1.07 0.96 1.05 0.93 1.01 

T15 0.97 0.96 0.95 0.94 1.09 

T36 0.94 0.95 0.93 0.93 1.00 

Qc10 (MVAr) 3.26 4.77 4.98 4.61 0.23 

Qc12 (MVAr) 4.30 4.10 4.99 5.00 3.39 

Qc15 (MVAr) 4.00 0.13 4.99 4.32 2.97 

Qc17 (MVAr) 4.85 0.04 4.86 4.92 3.55 

Qc20 (MVAr) 4.58 3.23 4.96 4.56 4.56 

Qc21 (MVAr) 4.65 4.26 4.97 5.00 2.56 

Qc23 (MVAr) 3.27 0.28 3.19 2.71 0.81 

Qc24 (MVAr) 1.39 4.27 3.41 3.65 3.75 

Qc29 (MVAr) 3.06 1.37 2.10 2.72 3.89 

Run time (s) 34.20 7.89 3.45 4.48 54.15 

Cost ($/h) 801.6 801.7 801.5 801.6 802.8 



conclusions are drawn regarding the performance of all the algorithms being discussed. A part 

of these results are published and a similar comparison made in [43]. The thesis adds to that by 

introducing more algorithms.  

Table 5: Comparison of performance of different optimization algorithms for the ieee 30 bus system 

Algorithm Computational 

Time (seconds) 

Generation 

Cost ($/hr) 

MIDACO  3.45 801.5 

NOPF* < 1  805.45 

PSO 7.89 801.70 

GA  34.20 801.60 

PO 4.48 801.60 

LA 54.15 802.80 

EDOPF* < 1 813.74 

MDE* 23.25 802.37 

GSA* 10.75 798.67 

MVPA* 8.97 799.12 

 

Taken from the literature include conventional approaches such as the Newton OPF (NOPF) 

and Extended Dommel – Tinney OPF (EDOPF). Meta-heuristic approaches such as the 

Modified Differential Evolution (MDE) algorithm, Gravity Search Algorithm (GSA) and Most 

Valuable Player Algorithm (MVPA).   

It can be seen that in the literature there are results that show a minimized cost lower than that 

of all the algorithms explored in this thesis but it is important to keep in mind that for ED 

problems of microgrids not only is the final solution important but also the computational time 

since optimisation will be made numerous times in every time step to prepare a schedule. 

Hence, approaches adopted in this thesis focus on finding a balance between the quality of the 

global minimum solution achieved and the run time.  

It can be seen that the conventional algorithms have the least run time of all with less than a 

second to solve the problem but their final solution remains quite high, north of 805 ($/hr). In 

case of conventional algorithms, the GSA has the best solution at 798.67 ($/hr) but a high run 

time of 10.75 seconds. A similar performance is provided by the MVPA. Amongst the 

algorithms explored in this thesis the worst performance is by LA which has high run time and 

high cost whereas MIDACO has the best run time and the lowest cost. The others are in 

between.  

PO and LA were the algorithms that were introduced in 2020 and it can be seen that while LA 

is not a suitable candidate for OPF, PO is very much suitable. Its performance is very close to 

that of MIDACO and it is important to keep in mind that PO is new and not developed to the 

extent of MIDACO which is a traditional approach to which numerous elements have been 

added over time. Hence, a development of PO could provide improved results when compared 

to all algorithm. Despite this fact this thesis will adopt MIDACO for ED analysis in the next 

chapter since it has the best performance of all algorithms explored in this thesis and it 

represents a good balance between run time and cost. It is higher in speed compared to GSA 

and MVPA and is cost-effective when compared to conventional optimization algorithms. The 

data of the IEEE 30 bus system needed to obtain the results are provided in the appendix to the 

book.  

Conclusions  

This chapter began with describing the power flow problem in order to obtain the steady state 

solution of the power system. The focus was mainly geared towards microgrids wherein two 



different architectures were considered. One is the meshed network and other is the radial. The 

steady state solution for each architecture was obtained using different methodologies and 

numerical approaches. For the meshed network the GS, NR and FDLF methods were utilised 

whereas for the radial networks the current summation, power summation and admittance 

summation methods were used.   

This was succeeded by definition of the OPF problem structure and exploration of numerous 

objective functions available and the constraints. Appropriate control variables of the problem 

was chosen based on literature. Once the problem was defined 5 meta-heuristic algorithms were 

used to solve the same 3 of which were traditional meta-heuristic approaches (GA, PSO and 

MIDACO) and 2 were novel optimization algorithms introduced in 2020. These approaches 

were used to optimize the IEEE – 30 bus system and a comparison was made with the 

subsequent results. It was found that with regard to both the quality of the final solution and 

the speed of finding the solution MIDACO presented the most balanced solution of all and it 

was selected for further solving the ED problems of modern microgrids described in next 

chapter.  
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4. Energy Management (Economic Dispatch) 
It was shown in the previous chapter that the optimization algorithm chosen to carry out energy 

management activities for the economic dispatch problems in microgrids will be MIDACO 

integrated with MATPOWER. The reason for this as already explained before is its 

performance with regard to both the quality of the global minimum solution and speed of 

convergence to a solution. 

The modern microgrid, its typical components and complete architecture was presented in the 

introduction section. This chapter will begin with mathematical modelling of the various 

components. This is necessary since data pertaining to all components are not available and the 

study enables analysis before future expansion of the microgrid at Wroclaw University of 

Science and Technology.  

4.1 Generators  

4.1.1 Solar PV outputs 

In the microgrid model the data from the solar PV panels remain as they are and are not varied 

by the optimization algorithm. This data is obtained every 10 minutes from the installation at 

the Faculty of Electrical Engineering in the University. The description of the installation 

already mentioned is also repeated here. In total there are 3 different modules which are 

polycrystalline, monocrystalline and CIGS that consist of 27, 21 and 56 panels. The setup is 

quite elaborate and numerous variables are measured which are the PV module temperatures 

(oC), wind speed (m/s), irradiation (W/m2) and ambient temperature (oC).  

4.1.2 Battery storage system (BSS) 

The algorithm by which the battery storage system operates in the microgrid is the same as 

explained in the microgrid in the previous chapter. It is modelled according to the 

recommendations of [1], [2]. The algorithm is shown in Fig. 1. The equations representing its 

mathematical model are as follows.  

Battery charging:  

𝐸𝑠(𝑡) =   (1 − 𝜎) × 𝐸𝑠(𝑡 − 1) + (𝐸𝑔(𝑡)–
𝐸𝑙(𝑡)

ηconv
) × ηcc  × ηrbat           (1) 

Where, 𝐸𝑠(𝑡) and 𝐸𝑠(𝑡 − 1) represent the storage system energy levels at time steps 𝑡 and 𝑡 −

1 respectively. The self-discharge rate of the battery is represented by 𝜎. The total energy 

generated within the microgrid is represented by 𝐸𝑔 whereas the total energy demand withing 

the microgrid is represented by 𝐸𝑙. The efficiencies of the converter and charge controller are 

represented by  ηconv and ηcc. The round-trip efficiency of the battery is represented by ηrbat. 

The charging of the battery usually takes place when there is excess energy in microgrid 

whereas discharging of the battery takes place when there is excess demand in the microgrid.  

Battery discharging:  

𝐸𝑠(𝑡) =   (1 − 𝜎) × 𝐸𝑠(𝑡 − 1) + (
𝐸𝑙(𝑡)

ηconv
− 𝐸𝑔(𝑡)) /ηrbat            (2) 



 

Fig. 1 Battery management system 

4.1.3 Fuel Cell (FC) & Hydrogen storage system (HSS) 

The HSS consists of numerous elements such as a fuel cell, storage tanks for hydrogen and an 

electrolyser. The trigger for this system remains similar to that of the storage system. When 

there is excess energy within the microgrid the electrolyser operates utilising the excess energy 

and converting water into oxygen and hydrogen. This hydrogen is then compressed via 

compressors and is then stored in hydrogen tanks. Mathematically, the stored hydrogen can be 

expressed in terms of energy equivalents by the equation shown below [2].  

𝐸ℎ𝑠(𝑡) =  𝐸ℎ𝑠(𝑡 − 1) + (𝐸𝑔(𝑡)–
𝐸𝑙(𝑡)

ηconv
) × ηEL                                (3)  

Where, the amount of energy in the hydrogen storage tanks at time steps 𝑡 and 𝑡 − 1 is 

represented by 𝐸ℎ𝑠(𝑡) and 𝐸ℎ𝑠(𝑡 − 1). The efficiency of the electrolyser is represented by ηEL.  

When there is excess demand in the microgrid, similar to the BSS the HSS produces power. In 

this case this operation is performed by the fuel cell. The fuel cell consists of two electrodes 



situated on either side of the electrolyte. During discharge a potential difference is created 

between the anode and the cathode when hydrogen is supplied to the anode and Oxygen is 

supplied to the cathode. During this process electricity, heat and water are produced which can 

be utilised. The chemical equation is quite simple and is shown as follows: 2𝐻2 + 𝑂2  →

2𝐻2𝑂 + 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 + ℎ𝑒𝑎𝑡.  A simple illustration of the process is shown in Fig. 2.  

 

                                                                       Fig. 1 Fuel cell mechanism  

Source: http://www.fchea.org/h2-day-2019-events-activities/2019/8/1/fuel-cell-amp-hydrogen-energy-basics 

 

 

 

Fig. 2 Hydrogen storage system with fuel cell 

The discharging process is described by equation (4):  



𝐸𝑠(𝑡) =   (1 − 𝜎) × 𝐸𝑠(𝑡 − 1) + (
𝐸𝑙(𝑡)

ηconv
− 𝐸𝑔(𝑡)) /ηFC                    (4) 

Where the efficiency of the fuel cell is represented by ηFC .  

The entire process of charging the hydrogen storage tanks, functioning of the electrolyser and 

the fuel cell is shown in a workflow in Fig. 2.   

4.1.4 Diesel Generator (DG) 

DGs represent a crucial component in microgrids especially stand-alone microgrids. When 

there is no connection with the main grid the stability of the microgrid becomes precarious as 

it will be subject to all the uncertainties concerned with renewable energy sources such as solar, 

wind etc. While batteries can provide a steady stream of power their integration into the 

microgrid is often expensive and cannot provide stable reliable power for extended time 

periods. Hence, the DG comes into the picture to improve the stability of the grid as it is also 

able to handle quick changes in power demand within its capacity.  

The DG fuel consumption can be calculated using a linear function as shown below [2].  

 𝐹𝐷𝐺(𝑡)   = (𝑎𝐷𝐺  ×  𝑃𝐷𝐺𝑔𝑒𝑛(𝑡)  +  𝑏𝐷𝐺  ×  𝑃𝐷𝐺𝑟𝑎𝑡) 𝑙/ℎ                     (5)   

Where, 𝑎𝐷𝐺 and 𝑏𝐷𝐺 are the coefficients concerned with fuel consumption. Whereas 𝑃𝐷𝑔𝑔𝑒𝑛 

and 𝑃𝐷𝐺𝑟𝑎𝑡 are the hourly power produced and rated power of the DG set [3].  

The CO2 emissions associated with the DGs is be expressed by (6) 

𝐶𝑂2(𝑡)  =  𝑆𝐸𝐶𝑂2
(𝑘𝑔/𝑙) × 𝐹𝐷𝐺(𝑡) (𝑙/ℎ)                              (6) 

4.1.5 Micro hydro power plant (WT) 

Micro hydro plants are waterpower plants with capacities lower than 0.5 MW, in recent times 

their adoption has increased [4]. Unlike traditional mega hydro power plants, they do not 

require a significant amount of capital investment and changes to landscape. They operate 

efficiently in smaller streams with low heads and average discharge of water.  

The electric power produced by a waterpower plant can be defined by equation (7) and (8):  

 𝑃ℎ𝑔𝑒𝑛  =  η ×  ρ × g × h × Q                                               (7) 

𝑄 =  𝐴 × 𝑉                                                             (8) 

Where, 𝑃ℎ𝑔𝑒𝑛 is the electrical power output generated by the plant. η is the efficiency of the 

turbine used. This study utilises a Francis turbine that for micro hydro plants has an efficiency 

from 80 – 90%. The efficiency taken in this study is 80%, similar to others found in the 

literature[4].  ρ is the density of water at 998 𝑘𝑔/𝑚3, g is the acceleration due to gravity at 9.8 

𝑚/𝑠2, h is the head of the water resource measure in 𝑚 and for this study the head is at 12 𝑚 

and Q is the discharge of water measure in 𝑚3/𝑠. For discharge calculation, 𝐴 is the cross-

sectional area of the stream measured in 𝑚2 whereas the velocity of the stream is measured in 

𝑚/𝑠.  

For this study it is assumed that the discharge of the water is fully controllable and that water 

is available in the stream year-round. The range of discharge is maintained between 0.7 and 



0.11 𝑚3/𝑠. This allows the energy management system to take power from the waterpower 

plants as decided by the optimization algorithm based on its objective function.  

4.2 Economic analysis 

In order to ensure profitability and feasibility of the microgrid setup it is imperative to conduct 

an economic analysis of the entire installation. In this direction the study has decided to use the 

Levelized Cost of Energy (LCOE) metric for comparing costs from different sources of energy 

present in the microgrid. The LCOE is a widely adopted benchmark in order to compare the 

cost-effectiveness of generators from different sources of energy. It’s popular since it is able to 

remove biases associated in cost comparison of different energy technologies [2], [5]–[7]. It is 

important to mention that the LCOE includes numerous costs incurred throughout the lifetime 

of the project and considers the total energy produced over its lifetime to arrive at a price per 

unit of energy produced for a particular generator. It does not include calculations from various 

financial instruments and risks that might be part of a particular project. The LCOE is a metric 

that is static in nature. It does not vary overtime while it is very well known that electricity 

prices in the market are very dynamic. Moreover, the metric is calculated based on 

extrapolations of the total energy produced and costs over long time periods such as 20, 25 and 

30 years and it is important to keep in mind that there can be significant changes and events 

during such time periods. Also, the LCOE itself varies from region to region and from project 

to project since renewable energy generators vary in performance from region to region and 

also their associated efficiencies. Hence, it is a metric that is more accurate when determined 

by the project proponents themselves.    

The LCOE is defined in (9):  

𝐿𝐶𝑂𝐸  =  
∑ 𝐶𝑡/(1+𝑟)𝑡 𝑇

𝑡=0

∑ 𝐸𝑡/(1+𝑟)𝑡 𝑇
𝑡=0

                                                                (9) 

Where, 𝐶𝑡 represents the total costs per year and the numerator represents the sum of the present 

value of the costs incurred over the lifetime of the project whereas 𝐸𝑡 represents the total energy 

produced in a year and the denominator represents the sum of the present value of the energy 

produced over the lifetime of the project. T is total number of years; t represents the year under 

consideration whereas r is the discount rate. It is interesting to note that the summation begins 

from zero in the above formula, this is done to include any down payment or initial costs at the 

beginning of the project. These are costs that should not be discounted and be kept out of the 

summation. It is a manner of representation [5]. A more comprehensive breakdown of the 

above formula is shown below.  

The LCOE includes cash outflows such as the capital costs of the components in the microgrid, 

costs associated with their installation, fuel costs for the generators utilising fuel and operation 

and maintenance costs. Out of these for this study the capital and installation costs are treated 

as one-time costs whereas fuel and operation and maintenance costs are yearly and are 

discounted over the lifetime of each component. The extended version of (9) with all costs is 

shown in (10). 

𝐿𝐶𝑂𝐸  =  
    𝐶𝑐 + 𝐼𝑐 + ∑ (𝐹𝑐𝑡+𝑂&𝑀𝑐𝑡)/(1+𝑟)𝑡   𝑇

𝑡=1

∑ 𝐸𝑡/(1+𝑟)𝑡 𝑇
𝑡=1

                                     (10) 

Where, 𝐶𝑐 is the total capital cost, 𝐼𝑐 is the installation cost, 𝐹𝑐 is the fuel cost per year, 𝑂&𝑀𝑐 

is the operation and maintenance cost per year, 𝐸 is the energy produced in a year, 𝑡 is the year 

under consideration, T is the total number of years and 𝑟 is the discount rate.  



It is important to keep in mind that even though from (9) and (10) it looks as if the energy 

produced is being discounted, it is actually the LCOE that is discounted. The equations are just 

rearranged in a convenient manner.  

4.2.1 Capital costs 

The microgrid to be considered in the succeeding section consists of all types of generators 

previously described. The capital cost calculation for all the generators are as follows.  

 𝐶𝑐𝑝𝑣 = 𝑁𝑝𝑣  × 𝐶𝑝𝑣                                                      (11) 

𝐶𝑐𝑏𝑠𝑠 = 𝑁𝑏𝑠𝑠  × 𝐶𝑏𝑠𝑠                                                      (12) 

𝐶𝑐𝑓𝑐 = 𝑁𝑓𝑐  × 𝐶𝑓𝑐                                                      (13) 

𝐶𝑐𝑑𝑔 = 𝑁𝑑𝑔  × 𝐶𝑑𝑔                                                      (14) 

𝐶𝑐𝑤𝑡 = 𝑁𝑤𝑡  × 𝐶𝑤𝑡                                                      (15)  

Where, 𝐶𝑐𝑝𝑣, 𝐶𝑐𝑏𝑠𝑠, 𝐶𝑐𝑓𝑐 , 𝐶𝑐𝑑𝑔, 𝐶𝑐𝑤𝑡 are the total capital costs of the solar PV panels, the battery 

storage system, the fuel cell apparatus, the diesel generators and the water turbines. The capital 

cost calculations for the solar pv panels are quite straightforward where 𝑁𝑝𝑣 represents the total 

number of pv panels installed whereas 𝐶𝑝𝑣 is the cost per pv panel. Similarly, the cost of a dg 

unit and a water turbine are represented by 𝐶𝑑𝑔 and 𝐶𝑤𝑡 and the number of units are represented 

by 𝑁𝑑𝑔 and 𝑁𝑤𝑡. The cost of the fuel cell (𝐶𝑐𝑓𝑐) is more elaborate since it includes the capital 

cost of not only the fuel cell but also the hydrogen storage tank and the electrolyser. 𝑁𝑓𝑐is the 

total number of such units. 𝐶𝑏𝑠𝑠 and 𝑁𝑏𝑠𝑠 represent the cost of a storage unit and  the total 

number of units respectively. 

4.2.2 Installation, operation and maintenance costs and fuel costs  

The installation cost (𝐼𝑐) is taken as 20%, 5%, 3%, 3.5% and 10% of the total capital cost for 

the solar pv panels, BSS, FC, DG and WT.  

The operation and maintenance costs are quite different for different energy technologies. 

Generating systems such as DGs which have numerous moving parts have higher maintenance 

costs. Moreover, the microgrid is setup with a lifetime of 25 years in mind hence, certain 

components need to be replaced.  

For the solar pv panels, the calculations are quite straightforward. Per panel the maintenance 

costs come to about 6.5 $/yr [2]. Since the inverters associated with the panels have a life span 

of about 10 years they have to be replaced twice. Hence, the O&M costs include twice 

replacement of inverters as well.  

The O&M costs for the BSS are little to none since it has not got any moving parts but the 

standard Li-ion battery has a life span of 5000+ cycles. In order to determine the life of the Li- 

ion BSS in this study, simulations were run for an entire year and the number of cycles were 

calculated. The authors are aware that since the BSS runs of excess energy produced within the 

microgrid this value can change year after year since the energy produced is very much weather 

dependent. Overall analysis from the 5-year solar pv data available at the Wroclaw University 

of Science and Technology has shown that yearly power produced by all solar panels does not 

vary significantly. Apart from this the waterpower plants have a more stable power output 

throughout the year. From the analysis it was seen that yearly the Li – ion BSS has a total of 



671.5 cycles. With this number in mind and assuming a minimum of 5000 cycles before 

replacement. The lifespan of the BSS comes out to be 7.4 years. Hence, the BSS would be 

replaced 3 time within the span of 25 years. The fuel costs for the BSS would be based on the 

power used for charging the BSS [8].   

The yearly O&M costs for the fuel cell based generating system is a sum of the O&M costs for 

the fuel cell, electrolyser and the HST. The costs are 120 $/kw/yr, 16$/kw/yr and 5 $/yr 

respectively for the FC, electrolyser and the HST respectively [2]. The life of a stationary fuel 

cell can be as high as 40,000 hours. Hence, given that it works on the same principle as the 

BSS the total number of cycles are much higher than the 25 years for which the LCOE 

calculations are made. Therefore the FC will not be replaced but the electrolyser has a lifespan 

of 15 years [2] and will be replaced once. The fuel costs for the FC would be the power used 

for conversion of excess power into hydrogen by the electrolyser and storing it in HST. [8].   

The DGs used in this study are 2 Hyundai 5.2 kW/ 6.5 kVA diesel generators. The generator 

has a 16-litre fuel tank and the minimum output power in this study is 30% of the rated power 

which is 1.56 kW. Due to the unpredictable nature of energy sources in the microgrid the DG 

provides stability and security in terms of its operation. Due to this fact the DG is run 

throughout the year and is allowed to vary between its minimum and maximum output power. 

This results in significant fuel costs, O & M costs and replacement costs. The O&M costs are 

taken as 510 $/unit/yr. Since the life of a DG unit is about 20,000 hrs, the DG’s are replaced 

every 2 years up to 25 years. The fuel cost was calculated looking at the operation of DG for 

an entire year and using the formula (5).  

The O&M for the Francis turbine of the water power plant is taken as 8% of the capital cost 

per year [4]. The life of such a turbine is about 30 years hence, it does not need a replacement.  

4.3 Microgrid Layout 

The microgrid layout is shown in Fig 3. There are a total of 13 loads and 10 generators. The 

generators are a mix of both renewable sources of energy, energy storage systems and diesel 

generators. There is a total of 4 solar pv modules with a peak power of 12 kW, 15 kW, 6 kW 

and 15.9 kW. They are located of nodes 1, 2 and 3. There are 2 DG units with a 5.2 kW/6.5 

kVA rating. One each is located at node 2 and node 5 respectively. A li – ion BSS is located at 

node 3 with a capacity of 9.8 kWh and a fuel cell with a hydrogen storage tank with an 

equivalent capacity of 4.2 kWh is located in node 5. A micro – hydro power plant with a max 

power output of 11.63 kW is located at node 4. While the power produced by the solar panels 

remain fixed, other sources of energy can be controlled. There are a total of 13 loads, two of 

which represent the power consumed by the BSS and the FC + HST. This is usually observed 

during their charging process. Other loads are distributed across all nodes and have a varying 

power factor. The source for reactive power in the microgrid are only from the main grid and 

the DG sets.    



 

Fig. 3 Microgrid layout 

The line data of the cables used are shown in table 1. They are aluminium cables that have an 

XLPE insulation with a PVC outer sheath having a single core with 120𝑚𝑚2 cross-section. 

Table 1: Cable data 

 

From To Distance (m) r + jx () (10-1) 

node 1 node 2 200 0.5060 + 0.1630j 

node 2 node 3 110 0.2780 + 0.0900j 

node 3 node 4 135 0.3420 + 0.1100j 

node 4 node 5 215 0.5440 + 0.1760j 

node 5 node 1 150 0.3790 + 0.1230j 

node 2 node 5 250 0.6330 + 0.2040j 

 

4.4 Problem Formulation 

The objective function used for the EMS of the microgrid is shown in (18). It attempts to 

minimise the overall cost of energy in the microgrid. 𝑇𝑐 is the total cost, 𝐶𝑖 represents the LCOE 

of each generator in the microgrid and 𝑃𝑖 represents the power produced by each generator. 

𝑁𝑔𝑒𝑛 is the total number of generators in the microgrid. It should be mentioned here that for 

the power taken from the main grid (𝑃1) there is no LCOE but hourly grid prices (𝐶1) are taken 

from the European Network of Transmission System Operators (ENTSO-E) website.  

𝑀𝑖𝑛(𝑇𝑐) =  ∑ 𝐶𝑖𝑃𝑖
𝑁𝑔𝑒𝑛

𝑖=1
+ 𝑃1𝐶1                                                  (16) 

∑ 𝐶𝑖𝑃𝑖
𝑁𝑔𝑒𝑛

𝑖=1
 when expanded looks like the equation (17).  

∑ 𝐶𝑖𝑃𝑖
𝑁𝑔𝑒𝑛

𝑖=1
= 𝐶𝑠𝑜𝑙𝑎𝑟𝑃𝑠𝑜𝑙𝑎𝑟 + 𝐶𝐵𝑆𝑆𝑃𝐵𝑆𝑆 + 𝐶𝐹𝐶𝑃𝐹𝐶 + 𝐶𝐷𝐺𝑃𝐷𝐺 +  𝐶ℎ𝑦𝑑𝑟𝑜𝑃ℎ𝑦𝑑𝑟𝑜           (17) 



Where, 𝐶𝑠𝑜𝑙𝑎𝑟 , 𝐶𝐵𝑆𝑆, 𝐶𝐹𝐶  , 𝐶𝐷𝐺 , 𝐶ℎ𝑦𝑑𝑟𝑜 are the LCOE for solar panels, BSS, FC + HST, DG and 

micro hydro plant respectively. 𝑃𝑠𝑜𝑙𝑎𝑟 , 𝑃𝐵𝑆𝑆, 𝑃𝐹𝐶 , 𝑃𝐷𝐺 , 𝑃ℎ𝑦𝑑𝑟𝑜 are the total output power from 

the solar panels, BSS, FC + HST, DG and micro hydro plant respectively. 

The minimisation of the objective function in (16) is subject to numerous equality and 

inequality constraints as shown below. (18) and (19) representing the power balance equations 

for both active and reactive power are the equality constraints whereas (20), (21) and (22) are 

the inequality constraints. (20) and (21) represents the fact that the amount of active and 

reactive power produced in every node is constrained within its minimum and maximum 

whereas (22) represents the fact that the voltage magnitude in every node is constrained within 

a specified range.   

𝑃𝑔𝑖 = |𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘|cos (𝜃𝑖𝑘 + 𝛿𝑘 − 𝛿𝑖)
𝑛
𝑘=1 + 𝑃𝑑𝑖                               (18) 

𝑄𝑔𝑖 = |𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘| sin(𝜃𝑖𝑘 − 𝛿𝑘 − 𝛿𝑖)
𝑛
𝑘=1 + 𝑄𝑑𝑖                              (19) 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of nodes                                    (20) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of nodes                                   (21) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 No. of nodes                                    (22) 

Where, 𝑃𝑔𝑖 and 𝑄𝑔𝑖  represent the active and reactive power generated in each node. 𝑃𝑑𝑖 and 𝑄𝑑𝑖  

represent the active and reactive power demand in every node. Term |𝑉𝑖| ∑ |𝑉-𝑛
𝑘=1

𝑘||𝑌𝑖𝑘|cos (𝜃𝑖𝑘 + 𝛿𝑘 − 𝛿𝑖) represents the total active power loss in the system and the term 

|𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘| sin(𝜃𝑖𝑘 − 𝛿𝑘 − 𝛿𝑖)
𝑛
𝑘=1  represents the total reactive power losses in the system. 𝑉𝑖 and 

𝑉𝑘 are the voltage magnitudes at nodes 𝑖 and 𝑘 respectively. 𝑌𝑖𝑘 is the admittance between nodes 

𝑖 and 𝑘. 𝜃𝑖𝑘 is the admittance angle between nodes 𝑖 and 𝑘 whereas 𝛿𝑘, and 𝛿𝑖 are the voltage 

angles at nodes 𝑘 and 𝑖 respectively. 𝑃𝑔𝑖
𝑚𝑖𝑛 is the minimum active power that can be produced 

in node 𝑖 whereas 𝑃𝑔𝑖
𝑚𝑎𝑥  is the maximum active power that can be produced in a node. 𝑄𝑔𝑖

𝑚𝑖𝑛 is 

the minimum reactive power that can be produced in node 𝑖 whereas 𝑄𝑔𝑖
𝑚𝑎𝑥 is the maximum 

reactive power that can be produced in a node. 𝑉𝑖
𝑚𝑖𝑛 is the minimum voltage magnitude 

permissible in node 𝑖 whereas 𝑉𝑖
𝑚𝑎𝑥 is the maximum voltage that permissible in a node.  

Vital to solving the above-mentioned set of equations is to identify appropriate state and control 

variables [9]. The control variables also called as independent variables serve as the decision 

variables for MIDACO whereas the state variables are determined by MATPOWER. The 

methodology of searching the solution has been discussed in detail in chapter 3. In this study 

the control variables are the voltage magnitudes at all nodes and active power injections at all 

nodes. The state variables include reactive power outputs at all nodes, voltage angles and slack 

bus power.  

4.5 Economic dispatch 

In order to make a wholesome analysis about the functioning of the microgrid and its associated 

costs, clustering was used to identify representative days across the year. For this purpose, k-

means clustering was used and applied to the yearly hourly recorded load data. In order to do 

so, first the right number of clusters had to be identified which was done with the help of the 

elbow method. The results are shown in Fig. 4 (a) and it can be seen that the ideal number of 

clusters for this data set is 3 after which the Within Cluster Sum of Squared Errors (WCSS) 

does not reduce significantly. The k-means clustering is a well-documented and well-



established clustering algorithm hence, it will not be explained in detail in this section. More 

on the same can be found in [10]. 

                  

    
 

Fig. 4: (a) elbow method (b) load cluster – 1 (c) load cluster – 2 (d) load cluster - 3 

The load demand on representative days as a result of clustering can be seen in Fig. 4(b), Fig. 

4(c) and Fig. 4(d). It can be seen that over the year the load demand does vary significantly. 

Fig. 4(b) represents the load demand typical of autumn or spring months where it is in between 

the load demand seen during the winter and the summer. Fig. 4(c) represents the load demand 

typically observed during winter wherein it is quite high as the winters are cold. Fig. 4(c) is 

typical of the load demand observed during the summer months when the weather is pleasant 

and not too hot. It is important to mention here that the load curves were taken from a nearby 

village and multiplied by a suitable constant for the purpose of analysis in the microgrid. Hence, 

the underlying characteristic is from the real world.  

Fig. 5 presents the renewable energy sources power output on the same representative days as 

decided by the clustering algorithm. It can be seen that Fig. 5(a) is characteristic of the spring 

and autumn where the renewable energy output of the microgrid is in between that of the 

summer and winter. This is also because the major renewable energy component of the 

microgrid are the solar panels. Fig, 5(b) is representative of the winter where the output power 

throughout the day is quite low. Fig. 5(c) is characteristic of the summer where the renewable 

energy output in the microgrid peaks. In general, the characteristic of the load demand and the 

renewable energy output seem to be inversely correlated which makes power balancing within 

the microgrid a complicated issue. Hence, the presence of DGs and connection to the grid are 

of paramount importance and provide stability. 

 



    

    
 

Fig. 5 : renewable energy output  (a) cluster – 1  (b) cluster – 2  (c) cluster - 3 

Analysing the above results brings 3 scenarios to mind.  

Scenario 1: When the renewable energy produced in the microgrid is at par with the load 

demand.  

Scenario 2: When the renewable energy produced in the microgrid is lower than that of the 

load demand.  

Scenario 3: When the renewable energy produced in the microgrid is higher than that of the 

load demand.  

The characteristics of the system and the price signal for each scenario is now discussed.  

Scenario 1:  

For this scenario, the charging of the BSS and HST are shown in Fig. 6 (left) and Fig. 6 (right) 

respectively. Both the storage systems operate on the same principal with the exception that 

during charging the priority is given to the BSS. Hence, during situations when the excess 

power in the microgrid is less than the maximum charging power of the battery, the entire 

excess power is sent to the BSS. This is the reason why the BSS charges to a small amount at 

the beginning and not the HST. Later in the day when the renewable energy sources peak in 

the microgrid both systems charge to their maximum capacity.  

Fig. 7 has two figures depicting the exchange of power with the grid (left) and the price per 

unit of energy consumed (right). It is quite clear from comparing the two figures that when the 

power imported from the main grid is low or power is being exported to the main grid the price 

per unit of energy remains low. This is because there are time periods during which the power 

from the renewable energy sources remains high. Later in the day when the load peaks in the 

evening and the renewable energy sources’ power output reduces, the amount of power 

imported from the main grid increases due to which the price per unit of energy also increases. 

The peak at hour 17 of the day is mainly due to the FC + HST, amongst all LCOE, FC + HST 

has the highest price.  



    

Fig. 6 : storage system characteristics – BSS (left), HST (right) 

    

Fig. 7: Exchange of power with the grid (left), price signal (right) 

Scenario 2: 

During scenario 2 it is clear that the BSS in Fig. 8 (left) and the HST Fig. 8 (right) struggle to 

reach full capacity, it can even be observed that the HST does not even reach half capacity. 

This is typical of winter, in fact during many days in the winter the BSS and the HST do not 

charge at all since the renewable energy produced in the microgrid remains very low due to the 

low output power from the solar panels.   

    

Fig. 8 : storage system characteristics – BSS (left), HST (right) 

It can be observed in comparison with scenario 1 (Fig. 7 (right)) that the price per unit of energy 

in scenario 2 (Fig. 9 (right)) is around the same. In general, it can be seen that the price remains 

around 0.1 USD/kWh in scenario 1 and scenario 2. The similar price performance in both 

scenarios is due to the fact that during the day on scenario 1 the price of the grid is very close 

to the cost-coefficient of the energy produced by the solar panels and the fact that the renewable 

energy produced in the microgrid is still not close to its maximum capacity. In comparison with 

scenario 1 (Fig. 7 (left)), in this scenario there is little to no export of power to the main grid. 

From Fig. 9 (left) it can be seen that much of the load in the microgrid is satisfied by importing 

power from the main grid. This import of power increases throughout the day and peaks around 



the evening during which the price is increases significantly. The peak observed in the price is 

once again due to the FC + HST.   

    

Fig. 9 : Exchange of power with the grid (left), price signal (right) 

Scenario 3:  

In the earlier two scenarios it was noticed that the HST never charged earlier in the day when 

usually a small excess in renewable generation is observed. This was because the priority is 

always given to the BSS over the FC + HST. In this scenario it is observed that there is enough 

excess energy to charge both the BSS and the FC + HST. It is because this scenario is typical 

of days in the summer when availability of sunlight is maximum and the total energy produced 

by the microgrid is quite high. It can be seen from Fig. 10 (left) and Fig. 10 (right) that both 

storage devices reach maximum charge quite early in the day and stay at full charge for a long 

time before they discharge when the load demand is greater than the energy produced in the 

microgrid. 

    

Fig. 10: storage system characteristics – BSS (left), HST (right) 

From Fig. 11 (left) it can be seen that for a major portion of the day power is being exported to 

the main grid. The reason for this is the increased renewable energy production during the 

summer and also the reduced load demand during the same. Around 20:00 the import of power 

begins due to increasing load and reduced renewable energy generation. Compared to both 

scenarios the export of power is higher. Moreover, the price signal also remains well short of 

0.04 USD/kWh except for 2 peaks characterising the discharge of the FC + HST. The curve is 

at a lower position than the price curves at both scenarios since renewable energy produced 

during the summer is the highest.   



    

Fig. 11 : Exchange of power with the grid (left), price signal (right) 

In general, it can be concluded that scenario 1 is balanced with regard to the microgrid’s 

operation, scenario 2 makes it highly dependent on the main grid with regard to import of 

power and scenario 3 makes it highly dependent on the main grid with regard to export of 

power. The microgrid is partially real and a few elements such as the FC + HST is added with 

an expansion in mind. Based on this analysis decisions are to be made regarding the microgrid 

and its components and their sizing.  

Table 2: Parameters and values for calculating the LCOE for every generator type  

Parameters Value Parameters Value 

Capital cost of PV panels 0.6 $/kW  Annual O&M for entire 

installation  

141 $ 

Annual O&M cost of PV  6.5 $/module Erection cost of FC + 

HST + electrolyser 

5% of capital cost of 

entire FC installation 

Total installed capacity 48.9 kW Fuel cost of FC + HST 10.033 * Energy 

consumed 

Erection cost PV system 20% of capital cost of 

PV system  

Electrolyser replacement 

cost 

Cost of replacement at 

capital cost at discounted 

rate   

Capital cost of BSS 1500 $ Capital cost of DG 2099 $/unit 

Erection cost of BSS 5% of capital cost of 

BSS 

Total number of units  2 

Fuel cost of BSS 10.033 * Energy 

consumed 

Replacement cost  Cost of replacement at 

capital cost at discounted 

rate 

O & M cost of BSS  Cost of replacement at 

capital cost at discounted 

rate   

AO & M cost for DGs 1020 $ 

Capacity of BSS 9.8 kWh Fuel Cost of DG  Calculated based on 

yearly fuel consumption 

Capital cost of FC 2400 $/kW Capital cost of Francis 

turbine  

15200 $ 

Installed capacity of FC 3 kW Total installed capacity 11.6 kW 

Capital cost of 

electrolyser  

800 $/kW Erection cost for Francis 

turbine  

20% of capital cost of 

turbine 

Installed rating of 

electrolyser 

3 kW  Annual O&M costs  1216 $ 

Capital cost of HST 600 $ Replacement cost No replacement, life > 

25 years  

Table 2 presents the cost components of all microgrid elements and the LCOE for every 

generating type. 

Conclusions:  

This chapter attempts to solve the ED problems of the modern microgrid with the objective of 

reducing costs involving numerous components in the microgrid. It began with the 

mathematical modelling of numerous sources of energy in the microgrid including the Solar 

PV panels, BSS, FC + HST, DG and hydro plant. This was followed by determination of the 



LCOE for every source of energy which resulted in the micro hydro plant having the lowest 

LCOE and the FC + HST the highest. The LCOE includes the capital , erection, fuel and 

operation and maintenance costs and the calculations were made for a time period of 25 years. 

For obtaining a wholesome picture on the economic benefits of using microgrids the yearly 

load data was clustered using the k-means algorithms to obtain days representing the whole 

year. This resulted in 3 clusters which can be imagined as representing the summer, winter and 

spring and autumn. Based on this, 3 scenarios were created and it was shown clearly that the 

economic benefits remain high during days of high renewable energy production like in the 

summer and the benefits remain low during the winter months. This was done by plotting and 

analysing the price curve for each scenario.  
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5. Electrical Vehicle Charging Station (EVCS) and optimal location 
One of the planned additions to the microgrid apart from the FC + HST is the EVCS. Since 

already an economic analysis of the microgrid was performed. This section will deal with a 

model of the microgrid from the technical point of view. Faculty of electrical engineering in 

Wroclaw University of Science and Technology has been mulling the idea of eventually 

moving to a microgrid that is standalone. Hence, with that objective in mind the optimization 

algorithm’s objective function is changed. A slightly different architecture of the microgrid 

will be considered but the underlying data of the generators and the loads is the same. They are 

multiplied with suitable constants to achieve an appropriate scale of the microgrid.  

5.1 Microgrid layout 

 

Fig. 1: Microgrid layout 

The layout is shown in Fig. 1 and in total has 7 generators. The main grid is represented by G1, 

it is connected to the microgrid via the point of common coupling PCC. The solar panels that 

are situated at nodes 2, 3 and 4 are represented by G3 with a peak power of 11 kW, G4 with a 

peak power of 7 kW and G5 with a peak power of 13 kW respectively. There are 2 DGs in the 

microgrid located at nodes 2 and 5. They are identical to one another and have a rating of 5.2 

kW/6.5 kVA. The DGs as discussed in the previous chapter will be made to run year-round 

and will be maintained at a minimum of 30% of the rated power.  

Table 1. Line data. 

From To Distance (m) R + jX (·10-1) 

node 1 node 2 180 0.455 + j0.147 

node 2 node 3 98 0.248 + j0.080 

node 3 node 4 145 0.367 + j0.118 

node 4 node 5 205 0.519 + j0.167 

node 5 node 1 172 0.435 + j0.140 

node 2 node 4 245 0.620 + j0.200 



 

Fig. 2 Energy management procedure 

The BSS has a capacity of 9.8 kWh and is situated at node 5 in the Fig. 1 but its optimal position 

will be determined using the optimization algorithm. It is represented as G7/L5 since it is 

viewed as a generator during discharge and a load during charging. The line data utilised is 

shown in table 1. The lines used are of the same type as used earlier but they differ both in 

length and their interconnection with respect to the nodes in the microgrid. The EVCS in Fig. 



1 is located in node 5 but an appropriate node will be selected by running the EMS. This will 

be explained later in the chapter 

5.2 Energy management strategy 

The energy management strategy of the EVCS along with the storage in the microgrid is shown 

in Fig. 2.  The strategy can be explained by means of 2 conditions.  

Condition 1: When the energy produced in the microgrid is greater than the load demand 

within the microgrid.  

Under this condition firstly, the SOC of the storage device is checked and if it is not fully 

charged some of the excess power is used to charge the BSS. For the EVCS, the minimum load 

demand is ascertained. This is done by taking the total sum of the minimum charging power of 

all the chargers that are connected. If this demand from the EVCS is lower when compared to 

the excess power available minus the power consumed in charging the storage device, the 

chargers deliver power at a rate decided by the EMS limited by their individual maximum 

charging capacities. If the EVCS demand is higher than excess power available minus the 

power consumed by the storage device, all the chargers are set to deliver power at their 

minimum rated power.  

Condition 2: When the energy produced in the microgrid is lower than the load demand in the 

microgrid.  

Under this condition, first the operation of BSS is decided. In this case if the SOC is greater 

than 10% it starts discharging. With regard to the EVCS, the minimum load demand is 

calculated as it was done in the earlier condition and it is added to the overall demand of the 

system with the connected chargers charging at their minimum rated power.  

Once the demand and power produced of all components in the microgrid is decided. The EMS 

is run where the control variables are decided by MIDACO and the state variables by 

MATPOWER. The process is the same as the one described in chapter 3 and 4.  

5.3 Electrical vehicle charging station model 

The EVCS in this study is equipped with 5 Tesla level 2 chargers that can deliver power in the   

range of 3.7 to 17.2 kW per hour. There is always randomness involved in the operation of an 

EVCS. In this direction the arrival of EVs, their capacities, their level of charge, their maximum 

waiting time and the desired SOC input by each EV owner is modelled with the help of gaussian 

distributions. After which the values for each parameter is selected using the random number 

generator of MATLAB. The initial SOC for every is obtained from a gaussian curve that has a 

mean on 0.2 and a standard deviation of 0.2. The desired SOC input by every EV user is 

represented by a normal curve with a mean of 0.7 and a standard deviation of 0.3. The 

maximum waiting time has a mean of 6 hours with a standard deviation of 2 hours. The capacity 

of each EV is also taken from a normal distribution with a mean of 42 kWh and a standard 

deviation of 10 kWh. 42 kWh was chosen as the mean since it is the capacity of Nissan leaf 

which is the most popular EV in the city of Wroclaw.  

As mentioned earlier the charging rate of the EVs depends upon the two conditions mentioned 

in the previous section. This optimal charging rate is decided utilising ‘fmincon’ of MATLAB. 

The EMS is very flexible and the charging rate can also be manually determined by the users 

of the EMS. For this optimization algorithm the objective function is minimising the power 

imported from the main grid. As explained earlier this objective function is in line with 

objectives of the university to eventually move to a microgrid that is standalone. The 



minimisation of cost objective has already been discussed in chapter 3. The objective function 

is shown in (1)  

min (𝑃𝐺) =  𝑃𝑑 + 𝑃𝑙 − 𝑃𝑚𝑔 (1) 

Where, 𝑃𝐺  is the total power that is taken from the main grid. 𝑃𝑑 is the load demand within the 

microgrid. 𝑃𝑙 is the active power losses in the microgrid and 𝑃𝑚𝑔 is the power produced in the 

microgrid.  

Furthermore, the constraints and the mathematical equations describing the charging process 

are as follows.  

𝑁𝐸𝑉
𝑡  ≤ 𝑁𝑐

𝑡 (2) 

𝑃𝑐𝑚𝑖𝑛 ≤ 𝑃𝑐𝑡  ≤ 𝑃𝑐𝑚𝑎𝑥  (3) 

𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≤ 𝑆𝑂𝐶𝑖 ≤ 𝑆𝑂𝐶𝑖

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝑖 = 1,2 … . . 𝑁𝐸𝑉 (4) 

𝑎𝑑𝑑𝑆𝑂𝐶 =  ∆𝑡 ∗ 𝑃𝑐𝑡 (5) 

𝑇𝑐
𝑖   ≤   min (𝑇𝑚𝑎𝑥

𝑖 , 𝑇𝑑𝑒𝑠
𝑖 )     (6) 

Here, equation (2) represents the fact that the number of EVs connected (𝑁𝐸𝑉
𝑡 ) to the charging 

station are always lower than that of the total number of chargers (𝑁𝑐
𝑡). (3) ensures that power 

delivery of every charger is fixed within the range of their maximum (𝑃𝑐𝑚𝑎𝑥) and minimum rated 

power delivery (𝑃𝑐𝑚𝑖𝑛). The SOC of every EV 𝑖 is constrained within its initial SOC (𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

at arrival and the desired SOC value (𝑆𝑂𝐶𝑖
𝑑𝑒𝑠𝑖𝑟𝑒𝑑) input by the user. (5) describes the SOC that 

is added (𝑎𝑑𝑑𝑆𝑂𝐶) in every time frame which is equal to the length of the time frame ∆𝑡 

multiplied by the charging power (𝑃𝑐𝑡). The waiting time for every EV 𝑖 is constrained within 

the maximum waiting time 𝑇𝑚𝑎𝑥
𝑖  input by every user or the time taken to reach the desired SOC 

(𝑇𝑑𝑒𝑠
𝑖 ) whichever is shorter.   

It should be kept in mind that the above-mentioned process is only deciding the optimal 

charging scenario for the EVCS from available options. Apart from this the entire microgrid is 

also optimized by the EMS described in the previous chapter. The equality and inequality 

constraints remain the same. The only difference is the objective function which is the same as 

(1). 

5.4 Analysis and optimal location of the EVCS 

In general, from Fig. 3 the effects of controlled and uncontrolled charging on the load demand 

and power imported from the main grid can be seen. From Fig. 3 (left) it can be seen that when 

the charging is uncontrolled the load demand rises and falls rapidly and that at times the load 

demand is almost twice than when the charging rate is controlled. This puts tremendous 

pressure on the power system and would need significant changes to the power system before 

it is installed. It can be seen from Fig. 3 (right) that much of this excess demand from the EVCS 

is met by importing power from the main grid when it is in the uncontrolled mode.    



    

Fig. 3: Microgrid load characteristics (left) and power exchange with the main grid (right). 

In the uncontrolled mode the chargers are all charging at their maximum rated power delivery. 

Using the EMS, it is possible to monitor and track the increase in SOC of the incoming EVs. 

This process is shown in Fig. 4 wherein the data from 2 chargers are taken.  

    

Fig. 4: Charging characteristics of incoming vehicles at chargers 1 and 2. 

It can be seen that numerous EVs with different initial SOCs utilise the EVCS and they have 

different times for which they remain at the EVCS. This is decided either by the time taken to 

reach the desired SOC input by the user or the maximum waiting time that has been input. 

Which ever is shorter.  

One of the things that was noticed is that this approach represents two extremes. One where is 

the power delivery of the charger is maintained at its minimum rating (controlled) and one 

where it is maintained at its maximum rating (uncontrolled). It is seen that in the former case 

the burden on the grid is quite minimal but the waiting time for the EV users is very high. In 

the latter case it was observed that the waiting time for the users was very short but the impact 

on the power system was significant. With this in mind it was decided that controlled charging 

up to 25%, 50% and 75% of the charger’s maximum rated power delivery would be allowed 

and the effects on both the power system and the users waiting time would be explored.  

Fig. 5 (left) and (right) show the cases where the EMS can control the power delivery of the 

chargers and choose a value between 25%, 50% and 75% of the maximum rated power delivery 

of the charger as the minimum charging power. It can be noticed immediately that when the 

minimum charging power is set at 75 % of the maximum rated power the peaks and falls are 

frequent and high in magnitude but when it set to 25% of the maximum rated power the curve 

is smooth. Fig. 5 (left) shows the case for the load in the microgrid whereas Fig. 5 (right) shows 

the impact on the exchange of energy with the main grid. It can be seen that for all cases except 

during mid-time when the renewable energy production is high much of the excess demand 

due to the EVCS is fulfilled by importing power from the main grid.    



    

Fig. 5: Microgrid load characteristics (left) and power exchange with the main grid (right). 

The average waiting time for all cases: controlled, uncontrolled, controlled – 25%, controlled 

– 50% and controlled – 75% are tabulated in table 2. It can be immediately noticed that with 

over 3 hours the charging waiting time is too high for the consumer when the charging is 

controlled fully. In the uncontrolled mode while the time is quite low Fig. 3 has shown the 

adverse effects it has on the power system. Hence, in order to find a balance between the 

interests of the consumer and the power system, the charging power of 50% of max. rated 

power delivery as the minimum of the charger would be chosen as the optimal setting for this 

study and further analysis is based on it.   

Table 2. Charging scenarios’ average waiting time. 

Charging scenario Average waiting time (minutes) 

Charging rate – minimum (fully controlled) 208.30 

Charging rate – limited up to 25% of max. rating 183.66 

Charging rate – limited up to 50% of max. rating 74.90 

Charging rate – limited up to 75% of max. rating 42.78 

Charging rate – maximum (Uncontrolled) 31.27 

 

Fig. 6 shows the SOC of the incoming vehicles at chargers 1 and 2 of the EVCS. In comparison 

to Fig. 4 it can be seen that a much higher number of EVs visit the chargers 1 and 2 throughout 

the day. The data from all 5 chargers are not shown since the figure would be difficult to 

interpret. It can be seen in this figure as usual that numerous EVs with different capacities, 

different waiting times, different initial SOCs and different desired SOC’s come to the EVCS 

and charge until their individual stopping criteria is achieved. 

 

Fig. 6: Charging characteristics of incoming vehicles at chargers 1 and 2. 

In order to ascertain the optimal location for the EVCS in the microgrid its effect on the power 

system has to be studied throughout the whole year. Since the computational burden involved 

in doing this is significant a clustering approach as adopted earlier has been used. The load data 

available for the whole year has been clustered as done previously using the K-means clustering 

and the ideal number of clusters was decided using the WCSS. Since the underlying data 



remains the same as earlier the ideal number of clusters also remain the same at 3. Fig. 7 shows 

the 3 days representing each cluster which represent the 3 types of days that can exist in a year.  

    

    
 

Fig. 7: (a) load cluster – 1 (b) load cluster – 2 (c) load cluster – 3 

 

 

Fig. 8: Solar power output (a) cluster – 1 (b)  cluster – 2 (c) cluster – 3 

The day from cluster-1 is typical of the spring and autumn months when the load demand is 

between the minimum and maximum values observed during the year. Cluster-2 is more typical 

of summer when the load demand is usually lower and cluster – 3 is representative of the winter 

when the load demand usually peaks. The winter months are quite cold requiring the use of 

heaters whereas the summers are not typically harsh. This is the main reason for the load 

characteristic to behave the way it does.  



Corresponding to the days representing the load throughout the year the solar power outputs 

from the same days were obtained. These days are shown in Fig. 8 and it can be noticed that 

Fig. 8 (a) is typical of the output observed from the solar panels during the spring and autumn 

months where it is not at the highest and not at the lowest values observed in a year. Fig. 8 (b) 

representing cluster 2 is typical of the summer where the solar panels are at their highest 

productivity whereas Fig. 8 (c) representing cluster 3 is typical of the winter where the solar 

power output remains quite low.  

The total power imported from the main grid and the total line losses observed in the system 

when the EVCS is placed at different nodes is shown in Fig. 9. These figures are only for the 

cluster representing the summer months. The same metrics for days representing all clusters 

are tabulated in table 3 which will be used to derive wholesome conclusions about the optimal 

location of the EVCS.  

 

Fig. 9 Microgrid power exchange with the main grid (left) and total line losses (right) based on EVCS 

location. 

In Fig. 9 (left) it can be noticed that the exchange of power with the main grid remains almost 

the same with regard to the specific day under consideration. There are minor differences 

amongst different curves in the figure which cannot be seen easily but when the overall power 

exchanges are summed up over the entire day the differences are visible. In Fig. 10 (right) it 

can be seen that more or less the total line losses in the microgrid remain the same irrespective 

of where the EVCS is placed but amongst all lines it can be seen that when placed at node 5 

the overall line losses are the lowest. This is because node 5 is closest to the PCC of the 

microgrid and when the EVCS representing a massive load is placed at node 5 the overall line 

losses are slightly reduced.  

Table 3 presents the total line losses and the net – import of power for when the EVCS is placed 

at different nodes for different days representing all clusters. It can be seen that the net-import 

of power remains the lowest when it is placed on node 5 for days representing spring, autumn 

and winter, also the export of power is highest during the summer months when it is placed at 

node 5.  

Table 3. Total net - import of energy based on different location of the EVCS on different days. 

Node 

Cluster 1 Cluster 2 Cluster 3 

Net-import 

(kWh) 

Line losses 

Sum (kW) 

Net-import 

(kWh) 

Line losses 

Sum (kW) 

Net-import 

(kWh) 

Line losses 

Sum (kW) 

2 63.35 4.68 -24.61  4.02 304.93  9.03 

3 62.82 5.45 -25.00 4.63 303.37 10.13 

4 62.69 4.96 -25.10 4.21 303.20 9.52 

5 59.72 4.10 -26.06 4.14 300.58 7.06 

 



The line losses follow a similar pattern where they are the lowest when placed on node 5 for 

days when power is imported from the main grid. This is because node 5 is closest to the PCC 

and the EVCS has a big load demand. Only for the summer month the line losses are lowest 

when placed in node 2. In conclusion looking at the performance of these two metrics across 

different days representing different parts of the year it can be said that node 5 is the ideal 

position to place the EVCS. It should be remembered that these conclusions are made based 

on results obtained from cluster analysis. In all clusters there are days that are exceptions and 

outliers and differ from typical days representing that cluster where the results may not hold 

the same conclusions but having said that the above conclusions would be true for most days 

in a year.  

Conclusions 

This chapter presented an EVCS model consisting of 5 tesla level 2 chargers. Numerous 

charging scenarios were explored where the minimum setting of the chargers was varied, and 

the optimal power delivery of the charger was determined using ‘fmincon’ of MATLAB. The 

EVCS was integrated in microgrid consisting of renewable energy sources and DGs. The 

objective function considered in this chapter is different from the economic objective 

considered in the previous chapter. The power imported from the main grid was minimized in 

this case since it is in alignment with the objective of the faculty to eventually establish a stand-

alone microgrid. It was shown that the optimum setting for the charger was in the range 

between its maximum and minimum when it is set to 50% of its maximum rated power 

delivery. This setting was in favor of both the EV users and the electrical grid. This was 

followed by in-depth analysis where again clustering was performed using k-means algorithm 

to obtain clusters representing the whole year. This resulted in 3 clusters. A representative day 

for each cluster was selected and then the EVCS was cycled across all nodes of the microgrid 

for every one of the days during which the total imported energy and line losses of the system 

were calculated based on which it was decided that node 5 was the optimal location for the 

EVCS. For modelling the stochastic behavior of EVs, their capacities, initial SOCs, maximum 

waiting time, desired SOCs and time of arrivals were modelled as gaussian functions in order 

to keep them as realistic as possible.    

 

 

 

 

 

 

 

 

 

 

 



Summary  
The thesis provides research concerning 2 crucial parts of an energy management system for 

microgrids which are forecasting and optimization.  

With regard to forecasting it explores novel deep learning architectures for 10-min ahead and 

1-hour ahead forecasts. The models considered include the CNN, multi – headed CNN, CNN 

– LSTM and LSTM autoencoders. The results of all the approaches made were compared with 

each other and an ARIMA model for the specific data set. It was concluded that the LSTM 

autoencoder provided the most accurate and quickest forecasts. 

During this process numerous data processing techniques were incorporated, and a sliding 

window approach was utilized to feed data into the deep learning algorithms. Even during the 

time, the current thesis is being written, new deep learning models that are faster and more 

efficient are being introduced which could potentially pave way for improved solar forecasting 

models for EMS applications and others. Despite the accuracy being satisfactory with the 

current models, an increase in the horizon of forecasting the leads to deep learning models 

becoming less accurate. Hence, there is an imperative to explore appropriate models for the 

higher time horizons. There are also other data processing techniques to be considered such as 

clustering, principal component analysis and frequency-based transforms of the input data. All 

of which could be considered as a part of the future investigation.   

With regard to optimization, the gamut of approaches and algorithms is endless. This thesis 

focuses particularly on the meta-heuristic optimization approaches to OPF. It started with the 

description of power flow, numerical solvers for power flow and considered both meshed and 

radial networks for obtaining the steady state solution of the network. This was followed by 

application of traditional meta-heuristics for optimization such as the GA, PSO and MIDACO. 

Following this was the application of 2 novel optimization algorithms that were introduced in 

2020 such as the PO and LA.  

All the optimization algorithms were integrated with MATPOWER for improved performance. 

The results were compared with one another and conventional non heuristic optimization 

approaches. It was seen that the most balanced and effective algorithm was MIDACO. The 

conclusions were made based on the value of the final solution and the speed of convergence 

to a solution. The area of optimization is also being developed rapidly which results in new 

approaches and algorithms, the future work in this regard would be continuous exploration and 

application of the incoming optimization approaches to OPF and then subsequent application 

to ED.  

With regard to ED and their application to microgrids, their scheduling and energy 

management MIDACO with MATPOWER was chosen as the optimization algorithm. A 

comprehensive modelling of the components of the microgrid was made and the LCOE was 

calculated for every generator in the microgrid considering their capital costs, costs of 

installation, fuel costs and operational and maintenance costs. The generators included were 

the solar PV panels, BSS, FC + HST, DGs and micro hydro plants. It was seen that the LCOE 

of the micro-hydro was the lowest and that of the FC + HST was the highest. While importing 

and exporting power to the main grid actual grid prices were used. In order to make a thorough 

analysis the entire year was considered by clustering the load data. This resulted in 3 days 

representing the different types of days encountered annually. It was seen that the economic 

benefits were at maximum during the summer and minimum during the winter. This was 

directly correlated with the fact that during the summer the power exported to the grid is high 



whereas power imported from the grid is high during winter.  The future work in this section 

is concerned with updating the LCOE of the generators used in the microgrid since the costs 

involved keeps reducing especially with solar PV, BSS and FC + HST. Incorporate other 

generating sources and also, more complex microgrid networks need to be explored and multi-

objective functions for optimization can be considered which not only reduce the costs but also 

other objectives such as emissions and voltage profile improvements amongst others. 

In the final chapter an EVCS model was introduced consisting of 5 Tesla level 2 chargers. This 

chapter was introduced in order to study the effects of introducing an EVCS in the university 

campus. Several charging scenarios were introduced where the optimal power delivery was 

determined by ‘fmincon’ of MATLAB within the EMS of the microgrid. In this case the 

objective function was modified and the import of the power from the main grid was 

minimized. This was chosen since the university plans to convert the existing facility into a 

standalone one in the future and wanted to study the dynamics of the system by utilising internal 

generating capacities to their maximum. Different charging scenarios were considered where 

the minimum charging rate was set at 25%, 50% and 75% of the maximum rated power delivery 

of the charger. These scenarios were considered so that a balance between consumer interest 

and the power system can be obtained.  

From the results it was concluded that the range of power delivery between 50% of its 

maximum rated power delivery and maximum rated power delivery was optimal. Using this 

range, an analysis was performed where the entire year was clustered and days representing the 

whole year were chosen. In every one of these days the EVCS was placed in every node of the 

microgrid and the most optimal location of the same was chosen by looking at overall system 

loses and the energy imported from the main grid. For the microgrid layout used in chapter 5 

this was node 5. Future work in this regard would be the use of EVCS as both a generator and 

a load. Currently, in this study it only represents a load. Also, important would be obtaining 

the data of city traffic and study the behavioural patters of EVs in order to create an optimal 

plan for the EVCS. Since this data was unavailable much of the randomness involved in EV 

arrival, initial SOCs, desired SOCs, EV capacities and times of arrival were determined using 

gaussian functions.  

In general, the area of power system research is fast evolving especially considering renewable 

energy sources, microgrids and electrical vehicles. The once predictable and consistent power 

network is now becoming stochastic and much more complex. This has created the need for 

improved forecasting, optimization and control activities into managing the power system. This 

in turn has resulted in massive research into this domain.   

 

 

 

 

 

 



Appendix 
A1 Control variables and their limits 

 

A2 Generator cost coefficients  

Bus no. Cost coefficients   

 𝛼 𝛽 𝛾 

1 0.00375 2.00 0.00 

2 0.01750 1.75 0.00 

5 0.06250 1.00 0.00 

8 0.00834 3.25 0.00 

11 0.02500 3.00 0.00 

13 0.02500 3.00 0.00 

 

A4 Branch data 

Line 

no 

From 

bus 

To 

bus 

R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 

Tap 

settings 

Line 

no 

From 

bus 

To 

bus 

R 

(p.u.) 

X 

(p.u.) 

B 

(p.u.) 

Tap 

settings 

1 1 2 0.0192 0.0575 0.0264 - 22 15 18 0.1070 0.2185 0.0000 - 

2 1 3 0.0452 0.1852 0.0204 - 23 18 19 0.0639 0.1292 0.0000 - 

3 2 4 0.0570 0.1737 0.0184 - 24 19 20 0.0340 0.0680 0.0000 - 

4 3 4 0.0132 0.0379 0.0042 - 25 10 20 0.0936 0.2090 0.0000 - 

5 2 5 0.0472 0.1983 0.0209 - 26 10 17 0.0324 0.0845 0.0000 - 

6 2 6 0.0581 0.1763 0.0187 - 27 10 21 0.0348 0.0749 0.0000 - 

7 4 6 0.0119 0.0414 0.0045 - 28 10 22 0.0727 0.1499 0.0000 - 

8 5 7 0.0460 0.1160 0.0102 - 29 21 22 0.0116 0.0236 0.0000 - 

Control variables Min Max 

P1 (MW) 50 200 

P2 (MW) 20 80 

Ps (MW) 15 50 

P8 (MW) 10 35 

P11 (MW) 10 30 

P13(MW) 12 40 

V1 (p.u.) 0.95 1.1 

V2 (p.u.) 0.95 1.1 

Vs (p.u.) 0.95 1.1 

V8 (p.u.) 0.95 1.1 

V11 (p.u.) 0.95 1.1 

V13 (p.u.) 0.95 1.1 

T11 0.90 1.1 

T12 0.90 1.1 

T15 0.90 1.1 

T36 0.90 1.1 

Qc10 (MVAr) 0.00 5.0 

QC12 (MVAr) 0.00 5.0 

Qc15 (MVAr) 0.00 5.0 

QC17 (MVAr) 0.00 5.0 

Qc20 (MVAr) 0.00 5.0 

QC21 (MVAr) 0.00 5.0 

Qc23 (MVAr) 0.00 5.0 

Qc24 (MVAr) 0.00 5.0 

Qc29 (MVAr) 0.00 5.0 



9 6 7 0.0267 0.0820 0.0085 - 30 15 23 0.1000 0.2020 0.0000 - 

10 6 8 0.0120 0.0420 0.0045 - 31 22 24 0.1150 0.1790 0.0000 - 

11 6 9 0.0000 0.2080 0.0000 1.078 32 23 24 0.1320 0.2700 0.0000 - 

12 6 10 0.0000 0.5560 0.0000 1.069 33 24 25 0.1885 0.3292 0.0000 - 

13 9 11 0.0000 0.2080 0.0000 - 34 25 26 0.2544 0.3800 0.0000 - 

14 9 10 0.0000 0.1100 0.0000 - 35 25 27 0.1093 0.2087 0.0000 - 

15 4 12 0.0000 0.2560 0.0000 1.032 36 28 27 0.0000 0.3960 0.0000 1.068 

16 12 13 0.0000 0.1400 0.0000 - 37 27 29 0.2198 0.4153 0.0000 - 

17 12 14 0.1231 0.2559 0.0000 - 38 27 30 0.3202 0.6027 0.0000 - 

18 12 15 0.0662 0.1304 0.0000 - 39 29 30 0.2399 0.4533 0.0000 - 

19 12 16 00945 0.1987 0.0000 - 40 8 28 0.0636 0.2000 0.0214 - 

20 14 15 0.2210 0.1997 0.0000 - 41 6 28 0.0169 0.0599 0.0065 - 

21 16 17 0.0824 0.1932 0.0000 - 
       

 

A4 Load values (Active and Reactive power demand) 

Bus 

Active 

Power (MW) 

Reactive Power 

(MVAr) Bus 

Active Power 

(MW) 

Reactive Power 

(MVAr) 

1 0.00 0.00 16 3.50 1.80 

2 21.70 12.70 17 9.00 5.80 

3 2.40 1.20 18 3.20 0.90 

4 7.60 1.60 19 9.50 3.40 

5 94.20 19.00 20 2.20 0.70 

6 0.00 0.00 21 17.50 11.20 

7 22.80 10.9 22 0.00 0.00 

8 30.00 30.00 23 3.20 1.60 

9 0.00 0.00 24 8.70 6.70 

10 5.80 2.00 25 0.00 0.00 

11 0.00 0.00 26 3.50 2.30 

12 11.20 7.50 27 0.00 0.00 

13 0.00 0.00 28 0.00 0.00 

14 6.20 1.60 29 2.40 0.90 

15 8.20 2.50 30 10.6 1.90 
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