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Abstract

Background. At least 55 million individuals suffer from dementia globally, of which Alzheimer’s disease
(AD) accounts for 60—70% of cases. Alzheimer’s disease is the only major cause of death that s still growing.
However, the molecular mechanisms are largely unknown in the progress of AD.

Objectives. The goal of the study was to assess whether IncRNA brain-derived neurotrophic factor antisense
(BDNF-AS) could affect processes underlying the regulation of neuronal cell apoptosis in rat and cellular
models of AD by directing the expression of miR-125b-5p.

Materials and methods. The amyloid-p (AB);_s-induced rat and cellular models of AD were established.
(Changes in learning and memory in rats were detected with the use of the Morris water maze. Cell viability
and apoptosis were determined using the 3-(4,5-dimethylthiazol-2-y1)-2,5 dipheny! tetrazolium bromide
(MTT) test and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was
applied to detect the expression of INCRNA BDNF-AS and miR-125b-5p, and western blotting was utilized
to examine proteins. The correlations between IncRNA BDNF-AS and miR-125b-5p were demonstrated using
dual-luciferase reporter gene assays.

Results. Our results showed that BDNF-AS was upregulated and miR-125b-5p was downregulated in the rat
and cellular AD models. The addition of si-BDNF-AS and miR-125b-5p mimics shortened the escape latency
and swimming distance in the rat model. Furthermore, the knockdown of BDNF-AS or the administration
of miR-125b-5p mimic significantly suppressed cell apoptosis, cell inflammatory, and inflammatory pathway-
related proteins, while these cellular activities were promoted in rat and cellular models of AD. Additionally,
miR-125b-5p was found to be a BDNF-AS target gene that was linked negatively with BDNF-AS in AD.

Conclusions. Through requlation of miR-125b-5p, IncRNA BDNF-AS suppressed cell death, inflammation and
inflammatory pathway-related proteins in AD models, which provides a potential biomarker and therapeutic
target in the clinical treatment of AD.

Key words: IncRNA BDNF-AS, miR-125b-5p, AB;_s, apoptosis, Alzheimer’s disease


https://www.doi.org/10.17219/acem/168241

234

Background

Alzheimer’s disease (AD) is a common neurodegenera-
tive disease that results in progressive memory loss, neu-
rocognitive dysfunction, and personality and behavioral
changes that have a significant impact on disability-ad-
justed life years.'’? Neurodegeneration, the main pathologi-
cal feature of AD, is an irreversible and incurable process
in which neurons gradually atrophy and lose function
in specific parts of the brain, eventually leading to neuron
death.3-> Neuronal injury and death disrupt the connec-
tions between neuronal networks, causing multiple brain
regions to atrophy. In AD patients, the atrophy of the hip-
pocampal and medial temporal lobe areas is the structural
feature detected with magnetic resonance imaging (MRI).

Histopathologically, the progressive neurodegenerative
disorder is distinguished by amyloid-p (Ap) peptide and
tau.”® The toxic A aggregates and assembles into extracel-
lular amyloid plaques that are deposited in specific areas
of the brain and cause a reduction in synapses.”!® This
occurs first in the temporal cortex region, containing
the hippocampus, which is implicated in the formation
of memories.®!! The neuronal toxicity of Ap manifests it-
self by binding to a variety of receptors, including a7 nico-
tinic acetylcholine receptor (¢7nAChR), p75 neurotrophin
receptor (p75NRT) and N-methyl-D-aspartate receptor
(NMDAR).!1213 The interactions between AR and these
receptors have been proposed to cause hyperphosphoryla-
tion of tau, endoplasmic reticulum (ER) stress responses,
mitochondrial dysfunction and inflammatory responses,
and, ultimately, lead to synaptic dysfunction and neuronal
death.*!> Hyperphosphorylated tau constitutes neurofi-
brillary tangles (NFTs) that can initiate the disassembly
of microtubules in the medial temporal lobe, thereby play-
ing a significant role in episodic memory function.161
At the same time, the cytotoxicity of tau can lead to syn-
aptic dysfunction and neuronal cell cycle re-entry.”!¥ Many
studies focusing on AP and tau have had limited success,
indicating that the late timing of intervention and focus
on a single target are insufficient to block the cascade re-
sponses in the neural network system.

MicroRNAs (miRNAs) are a class of small non-coding
RNAs that play an important role in regulating the post-
transcriptional expression of target genes.!” Circulating
miRNAs are easily detectable and highly stable; thus, many
studies have investigated circulating miRNAs in human
body fluids such as serum, breast milk, saliva, bile, and
urine.?%2! In recent years, many studies have confirmed
the relevance of the aberrant expression of miRNAs
in a variety of diseases, such as cardiovascular disease
(CVD), diabetes, tumors, and neurodegenerative dis-
eases.?? Both the type and expression pattern of miRNAs
can be used as indicators of the type, progression and pa-
thology of disease.?>?* For example, overexpressed miR-
124 causes hyperphosphorylation of insoluble tau protein
by targeting PTPN1, while the tau protein shifts from axon
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to dendrite, resulting in AD-like tau pathology.? Further-
more, upregulated miR-146a promotes M2 polarization
of microglia stimulated by inflammation, inhibits the se-
cretion of inflammatory factors, and enhances the phago-
cytotic capacity.?® The miR-24-3p/STING pathway can
reduce neuroinflammation caused by excessive A deposi-
tion in the brains of patients with AD.?” MicroRNA-125b
has an irreplaceable role in many intracellular activities
or pathological states, but its effect on AD is, to date, rather
controversial.

Long non-coding RNAs (IncRNAs) play a significant
role in neurodegenerative illnesses such as AD, Parkin-
son’s disease (PD) and Huntington’s disease (HD). Simi-
lar to AD, the death of dopamine-secreting neurons and
the deposition of Lewy bodies formed by alpha-synuclein
are found in PD, and these trigger motor symptoms, in-
cluding slowness of movement, tremors, stiffness, and pos-
tural instability, as well as non-motor symptoms includ-
ing cognitive changes, fatigue, mood disorders, and sleep
disorders.28-32 A study by Guo et al. demonstrated that
low-level expression of brain-derived neurotrophic fac-
tor antisense (BDNF-AS) protected neurons from Afs_35
neurotoxicity by enhancing cell viability and inhibiting
apoptosis.3®* Meanwhile, in MPTP-induced PD models,
a low expression of BDNF-AS may improve cell viability
and suppress autophagy and apoptosis in the SH-SY5Y
cell line by modulating miR-125b-5p.3* However, the link
between BDNF-AS and miR-125b-5p in the pathological
processes of AD remains unknown.

Objectives

The current study aims to confirm the involvement
of BDNEF-AS and miR-125b-5p in the pathogenesis of AD,
focusing on inflammation and apoptosis. The influence
of BDNF-AS and miR-125b-5p on spatial learning and
long-term memory was assessed by constructing AD rat
models and conducting Morris water maze experiments.
The effects on inflammation and apoptosis were studied
at both the animal and cellular levels using AD rat tissues
and AD cell models.

Materials and methods
Animal model

A total of 120 male Sprague Dawley rats of specific
pathogen-free rank were obtained from the Shanghai
Laboratory Animal Center at the Chinese Academy of Sci-
ences (Shanghai, China) at the age of 8—12 weeks, weighing
22-30 g. The rats were raised in a standard environment
with a 21-22°C temperature, 60—70% relative humidity,
natural light, and free access to food and drink. The rats
had 1 week to acclimatize to the conditions. The animals
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were randomly assigned to one of 6 groups: sham, AD,
AD+siRNA-negative control (si-NC), AD+si-BDNF-AS,
AD+miR-NC, and AD+miR-125b-5p.

The AD rat model was constructed using human Af;_4,
peptide. With the use of phosphate-buffered saline (PBS),
AP,_4 peptides were dissolved at a concentration of 1 pg/
pL, and the solution was incubated at 37°C for 1 week
to generate AP aggregation. The prepared A;_4, solu-
tion (10 pL/rat) or PBS (3 pL/rat) was administered into
the brain ventricles through stereotactic injection us-
ing a Hamilton microsyringe (designated coordinates:
anteroposterior = 0.2 mm, mediolateral = 1.0 mm and
dorsoventral = 2.5 mm) under anesthesia. A week after
the AP,_4, injection, si-NC, si-BDNF-AS, miR-NC, and
miR-125b-5p mimics were injected into the tail vein
of the rats in the corresponding group. The tail vein
of the rats in the sham group or AD group received an in-
jection of PBS. All the experiments met the requirements
of Shanghai Eighth People’s Hospital’s Ethics Committee
(approval No. 2021-0510) for animal experiments.

Morris water maze

The Morris water maze experiment is used to mea-
sure spatial learning and memory in AD models.3%3¢
This test is divided into 2 sections: place navigation and
spatial probing. A circular pool (diameter: 120 cm) was
full of water, with a depth of 35 cm and at a temperature
of 22-25°C, and an escape platform (diameter: 9 cm) was
immersed approx. 1 cm below the surface of the water.
Rats were individually trained 3 times a day for 7 days after
the animal model was generated, and every time the rat
was put in the water at different starting points. Each
experiment lasted 90 s unless the rat touched the plat-
form, and the time of first reaching the platform (escape
latency) was recorded. In the probe trial (day 9), the rat
had 90 s to search for the escape platform that had been
removed. The amount of time the rat spent in the tar-
get quadrant, the previous location of the platform, and
the number of times the rat crossed the platform location
were recorded.

Primary cerebral cortex neuron culture
and PC12 cell culture

As previously stated, the primary cerebral cortex neu-
rons were isolated from the rat embryos (embryonic day
18 (E18)).%” To separate cells, the cerebral cortex was
taken from the E18 rat embryos, treated with papain (10
U/mL) for 10 min and rinsed with Dulbecco’s modified
Eagle medium (DMEM) containing 10% PBS. Neurons
were plated at 1x10° cells/mL on a poly-L-lysine-coated
dish with a neurobasal medium containing B27 supple-
ment, penicillin, streptomycin, insulin, and L-glutamine.
The cells were cultured in a B27-supplemented neuro-
basal medium (Gibco, Waltham, USA). The PC12 cells
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were cultured in DMEM with 5% horse serum and 10%
fetal bovine serum (FBS; Gibco). Additionally, 100 ng/mL
of nerve growth factor (NGF) (Sigma-Aldrich, St. Louis,
USA) was added to the medium of the PC12 cells to induce
neuronal differentiation. All cells were grown in a humidi-
fied atmosphere with 5% CO, at 37°C.

Primary cerebral cortex neurons (NEU) and PC12 cells,
stimulated by NGF, were cultured with different pro-
portions of aggregated AP_4, (0, 10, 20, and 40 uM) for
24 h to test cell viability.

Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

Total RNAs were separated from rat serum or cell sam-
ples using TRIzol Reagent (Invitrogen, Waltham, USA)
and quantified using Nanodrop (Thermo Fisher Scien-
tific, Waltham, USA). The PrimeScript™ RT Reagent Kit
(Takara, Kusatsu, Japan) was then implemented to reverse
transcribe RNA into complementary DNA. The PCR con-
ditions were 95°C for 5 min, followed by 40 cycles of 95°C
for 5 s and 60°C for 30 s. The RT-qPCR findings were
quantified using the 2744 method with U6 or GAPDH
as an internal reference.®® The primers were generated
by Sangon Biotech Co., Ltd. (Shanghai, China) and are
listed in Supplementary Table 1.

Western blot

Total protein samples were extracted from the tissues
or cells of each group using radioimmunoprecipitation as-
say (RIPA) lysis buffer (Sigma-Aldrich), and protein quan-
tification was performed with a bicinchoninic acid (BCA)
assay kit (Pierce Biotechnology, Waltham, USA). Protein
samples (20 pg) underwent electrophoresis in a 15% so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) before being transferred to polyvinylidene
fluoride (PVDF) membranes (Millipore, Burlington, USA).
After 2 h of blocking with 5% non-fat milk, the mem-
branes were incubated with the matching primary an-
tibody at 4°C overnight. Then, they were incubated for
2 h at room temperature with horseradish peroxidase
(HRP)-conjugated goat anti-mouse or goat anti-rabbit im-
munoglobulin G (IgG) as secondary antibodies. The ECL
Chemiluminescent Substrate Reagent Kit (Invitrogen) was
used to visualize the protein. The used rabbit monoclonal
or polyclonal primary antibodies were as follows: Bcl-2
(1:2000, ab182858; Abcam, Cambridge, UK), Bax (1:1000,
ab32503; Abcam), cleaved caspase-3 (1:500, ab2302; Ab-
cam), TLR3 (1:3000, ab137722; Abcam), TLR4 (1:300,
ab217274; Abcam), MyD88 (1:2000, ab133739; Abcam),
TRIF (1:1000, #4596; Cell Signaling Technology, Dan-
vers, USA), NF-kB p65 (1:5000, ab32536; Abcam), and
GAPDH (1:2500, ab9485; Abcam). Goat anti-rabbit IgG
H&L (1:2000, ab6721; Abcam) was used as a secondary
antibody.



236

MTT assay

The Cell Proliferation Reagent Kit I (3-(4,5-dimethyl-
thiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT))
(Sigma-Aldrich) was used to determine cell proliferation
according to the manufacturer’s protocol. Following suitable
transfections, the 2 cell lines were maintained in 96-well
plates. Each well received a total of 20 uL of MTT solution
(concentration: 5 mg/mL) and was treated in darkness for
4 h at 37°C. Then, 150 pL of dimethyl sulfoxide (DMSO)
was added to each well to dissolve the blue crystals. Finally,
the absorbance value of each well was assessed on a micro-
plate reader at 450 nm.

Cell apoptosis assay

The Annexin V-FITC kit (BD Biosciences, Frank-
lin Lakes, USA) was used to assess cell apoptosis. After
the transfection for 48 h, the 2 cell lines at a concentra-
tion of 1x10%/mL were collected and resuspended. Then,
the cells were treated with 200 pL of Annexin V-FITC
for 10 min, after which propidium iodide (PI) was added
to the mixture. Finally, flow cytometry (BD Biosciences)
was used to determine the cell apoptosis rate.

Enzyme-linked immunosorbent assay

Using an enzyme-linked immunosorbent assay (ELISA)
kit and following the manufacturer’s instructions, the ex-
pression of interleukin 6 (IL-6), interleukin-1p (IL-1p) and
tumor necrosis factor alpha (TNF-q) in tissues or cell su-
pernatant was assessed.

Cell transfection

Small interfering RNA (siRNA) was synthesized by Ge-
nePharma (Shanghai, China). The 2 cell lines were trans-
fected with si-NC, si-BDNF-AS, miR-NC, and miR-125b-
5p mimic, according to the manufacturer’s guidelines for
Lipofectamine™ 3000 (Invitrogen).

Luciferase reporter assay

StarBase 3.0 (http://starbase.sysu.edu.cn/) was utilized
to evaluate the targeted sites for potential interactions be-
tween BDNF-AS and miR-125b-5p. Full-length sequences
and fragments of BDNF-AS that contained the potential
binding site for miR-125b-5p were cloned into the pmir-
GLO vector (Promega, Madison, USA). The 2 cell lines
were co-transfected with the luciferase reporters, along
with the miR-125b-5p mimic and the miR-NC. After 48 h,
relative luciferase activity was measured using the Dual-
Luciferase® Reporter Assay System (Promega).
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Statistical analyses

The statistical analyses were conducted using IBM Statis-
tical Package for Social Sciences (SPSS) v. 26.0 software (IBM
Corp., Armonk, USA), with data presented as mean * stan-
dard deviation (M +SD). To confirm normality, we employed
the Shapiro—Wilk test, while Levene’s test was used to check
the homogeneity of variance (Supplementary Tables 2 and 3
present the statistical results). Student’s t-test was used
to compare data from 2 groups for normally distributed
and homogenous data, while one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test was applied
to analyze 3 or more groups (Supplementary Tables 4 and 5
present the statistical results). In cases where the data were
non-normal or violated homogeneity, or for small sample
sizes (such as n = 3), we used the Mann—Whitney (M-W)
U test for 2-group data analysis and Kruskal-Wallis (K—W)
test followed by Dunn’s post hoc test for analyzing 3 or more
groups (Supplementary Table 6 presents the statistical re-
sults). Repeated measures ANOVA (RM ANOVA) followed
by Tukey’s post hoc test were used for analyzing the data
related to escape distance and escape latency. A p-value
of less than 0.05 was deemed statistically significant.

Results

Effects of IncRNA BDNF-AS and miR-125b-5p
on spatial learning and long-term memory
in the AD rat model

Repeated measures ANOVA demonstrated that escape
distance and escape latency over 5 days varied substantially
across groups in the Morris water maze experiment (F = 14.29,
degrees of freedom (df) = 20, p < 0.001; F = 22.69, df = 20,
p < 0.001). The experiment also revealed that the swimming
distance and escape latency of rats in the sham group became
shorter as the number of training days increased, indicat-
ing that the rats had gradually acquired the ability to find
a platform during training (Fig. 1A,B). Compared to the sham
group, rats in the AD group displayed considerably greater
swimming distance and escape latency (p < 0.001). Com-
pared to the control groups, the addition of si-BDNF-AS and
miR-125b-5p mimics shortened the swimming distance and
escape latency by improving the learning ability and mem-
ory of rats (both p < 0.001). On day 9, a probe test was per-
formed to measure the time spent in the target area in order
to test memory maintenance. The AD group spent substan-
tially less time in the target quadrant than the sham group
(p < 0.001), and the time values for the AD+si-BDNF-AS and
AD+miR-125b-5p mimic groups were longer than for their
respective control groups (both p < 0.001) (Fig. 1C). The above
findings indicate that reduced expression of BDNF-AS and
higher expression of miR-125b-5p mitigated the learning and
memory impairment in the AD rat model caused by the in-
jection of AP;_4o.
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(A) - Sham -+ AD+si-NC AD+miR-NC (B)
#AD -+AD+s-BDNF-AS -6- AD+miR-125b mimic

-®-Sham -+ AD+si-NC
®AD -+ AD+si-BDNF-AS -e- AD+miR-125b mimic

Mauchly’s Test: p=0.355 80+ Mauchly’s Text: p=0.862
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Fig. 1. Effects of INncRNA brain-derived neurotrophic factor antisense (BDNF-AS) and miR-125b-5p on memory impairment in the amyloid-f3 (AR);_4-treated
Alzheimer’s disease (AD) rat model. Escape distance (A) and latency (B) to arrive at the platform, as well as the amount of time (C) spent in the target
quadrant and site within 60 s were automatically recorded. The expression levels of BDNF-AS (D) and miR-125b-5p (E) were examined in the sham, AD,
AD+si-NC, AD+si-BDNF-AS, AD+miR-NC, and AD+miR-125b-5p mimic groups. A,B. ***p < 0.001 (Tukey’s post hoc test following repeated measures analysis
of variance (RM ANOVA)); G-E. ***p < 0.001 (Tukey's post hoc test following ANOVA). Data are presented using the median value as the middle line, with
the 25™ to 75t percentiles represented by the box. The minimum and maximum values are indicated with whiskers

Effects of IncRNA BDNF-AS and miR-125b-5p
on the expression of BDNF-AS and
miR-125b-5p in the AD rat model

We discovered that the expression level of BDNF-AS was
2.66 times greater in the AD group than in the sham group
through the detection in the rat serum, while the expres-
sion level of miR-125b-5p was only 35% of the sham group’s
level (both p < 0.001) (Fig. 1D,E). The low-level expression
of BDNF-AS and high-level expression of miR-125b-5p
had a significant adverse effect on the expression levels
of the 2 RNAs, when compared with their corresponding
control groups (both p < 0.001) (Fig. 1D,E).

Effects of IncRNA BDNF-AS and miR-125b-5p
on apoptosis in the AD rat model

The hippocampus tissue from the AD group showed
a higher rate of apoptosis compared to the sham group
(p < 0.001) (Fig. 2A). In the AD+si-BDNF-AS and
AD+miR-125b-5p mimic groups, the apoptosis rate was
effectively suppressed, and the apoptosis rate in these
2 groups was only 60.38-72.62% of that of their corre-
sponding control group (both p < 0.001). At the same
time, the levels of expression of apoptosis-related pro-
teins differed among the groups (F (5,114) = 283.60,
p < 0.00L F (5,114) = 96.94, p < 0.001; E (5,114) = 94.06,
p < 0.001). The AD group had higher levels of Bax and
cleaved caspase-3 and lower levels of Bcl-2 when compared
with the sham group (both p < 0.001) (Fig. 2B). However,

compared with the respective control groups, the low-
level expression of BDNF-AS and high-level expression
of miR-125b-5p were able to successfully reduce Bax and
cleaved caspase-3 expression while increasing Bcl-2 ex-
pression (both p < 0.001).

Effects of IncRNA BDNF-AS and miR-125b-5p
on inflammation and inflammatory
pathway-related proteins in the AD

rat model

In terms of inflammatory factors, the AD group released
higher levels of IL-1p, IL-6 and TNF-a than the sham
group (both p < 0.001) (Fig. 3A). Conversely, these lev-
els were considerably suppressed in the AD+si-BDNF-AS
and AD+miR-125b-5p mimic groups when compared
to the control groups (both p < 0.001). The expression
levels of TLR3, TLR4, MyD88, TRIF, and NF-kB p65
were significantly increased in the AD group, and were
1.83-3.15 times higher than that of the sham group (both
p < 0.001) (Fig. 3B,C). Compared to the corresponding con-
trol groups, adding si-BDNF-AS or miR-125b-5p mimic
inhibited the production of these proteins (both p < 0.001).

Construction of AD cellular models

The MTT results revealed that in both the NGF-PC12
cells and primary cerebral cortex neurons, cell viability
was considerably reduced in the AP,_4, treated group com-
pared to the NC group, which reflects the cytotoxic effect
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of AP,_40, as well as a gradual decrease in cell viability with
increasing concentrations of AP;_4,, and reflects the exis-
tence of a dose-dependent effect (K-W: H = 9.97, p = 0.019;
H =10.39, p = 0.016) (Fig. 4A). The above results confirmed
the successful construction of 2 AD cellular models. Mean-
while, with an increase in AB;_4, concentration, the ex-
pression level of BDNF-AS increased and miR-125b-5p
level decreased (K-W: H = 10.39, p = 0.016) (Fig. 4B,C).
The NGF-PC12 cells and primary cerebral cortex neurons
were treated with a 20-uM dose of AP;_4, for 24 h to con-
struct 2 AD cellular models for the following experiments.

After the transfection with si-BDNEF-AS, the expres-
sion level of BDNF-AS was notably reduced compared
to the NC group, while the addition of miR-125b-5p mimic
promoted the expression of miR-125b-5p in both cellular
models of AD (M-W U: Z = -2.12, p = 0.034) (Fig. 4D,E),
reflecting successful transfections.

Effects of IncRNA BDNF-AS and miR-125b-5p
on cell apoptosis in the cellular models
of AD

In the 2 cellular models of AD, AP;_4, was capable
of significantly elevating the rate of apoptosis compared
to the NC group (PC12 cell: p < 0.05; NEU: p < 0.005).
However, both low-level expression of BDNF-AS and high-
level expression of miR-125b-5p were effective in inhibiting
apoptosis induced by A;_4, (both p < 0.05) (Fig. 5A). West-
ern blot results for apoptotic-related proteins revealed that
the expression of Bax and cleaved caspase-3 were reportedly
elevated, while the expression of Bcl-2 was dramatically low-
ered in the AP;_4; group compared to the NC group (both
p <0.05) (Fig. 5B). However, the treatment with si-BDNF-AS
or miR-125b-5p mimic suppressed the levels of Bax and
cleaved caspase-3, and elevated the level of Bcl-2 compared
to the corresponding control groups (both p < 0.05).

Effects of IncRNA BDNF-AS and miR-125b-5p
on inflammation and inflammatory
pathway-related proteins in the cellular
models of AD

The ELISA results showed that the AB;_4» group se-
creted higher IL-1p, IL-6 and TNF-a levels than the NC
group (both p < 0.05) (Fig. 6A), while lower expression
levels of inflammatory factors were detected in the AP;_4,
+si-BDNF-AS or AP;_4p+miR-125b-5p mimic groups com-
pared to the AP;_4+si-NC or AP;_s+miR-NC groups (both
p < 0.05).

In contrast, the treatment with AB;_4» promoted the ex-
pression levels of TLR3, TLR4, MyD88, TRIF, and NF-kB p65
inthe 2 AD cellular models significantly more than in the NC
group (both p < 0.05) (Fig. 6B,C). Both low-level expression
of BDNF-AS and high-level expression of miR-125b-5p in-
hibited the promotion of inflammatory pathway-related
proteins stimulated by A;_4, (both p < 0.05).
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miR-125b-5p is the target gene of IncRNA
BDNF-AS

Thebindinglocation for lncRNA BDNF-AS and miR-125b-5p
was predicted using StarBase 3.0 (http://starbase.sysu.edu.cn/)
(Fig. 7A). The luciferase activity in 2 AD cellular models
was lowered in the pmirGLO-BDNF-AS-Wt+miR-125b-5p
mimic group when compared to the pmirGLO-BDNEF-AS-
Wt+miR-NC group (M-W U: Z = -2.12, p = 0.034) (Fig. 7A).
Furthermore, the expression of miR-125b-5p was consider-
ably higher in the si-BDNF-AS group compared to the NC
group (PC12cell: U: Z = -2.14,p =0.032; NEU: U: Z = -2.12,
p = 0.034) (Fig. 7B).

Discussion

This study demonstrated that IncRNA BDNF-AS was
substantially upregulated, and miR-125b-3p was decreased
in an AD rat model. In addition, decreasing expression
of BDNF-AS inhibited neuronal apoptosis, inflamma-
tion and inflammatory pathway-related proteins. Further
evidence revealed that the knockdown of BDNF-AS could
exert a neuroprotective effect by targeting miR-125b-5p.

A massive loss of neurons is one of the characteristic
pathological changes in AD, especially in the cortex, hip-
pocampus, and other brain areas related to learning and
memory, and is closely associated with the onset of im-
pairments in memory and cognition.3**® The AP can
change the Bcl-2/Bax ratio and activate caspase-3, trig-
gering a downstream apoptotic cascade, promoting reactive
oxygen species (ROS) accumulation, and resulting in cell
death.*! In the study by Chu et al., the caspase family was
shown to directly participate in the cleavage of AP and,
after being cleaved by caspase-3, the Ap with an abnor-
mal C-terminal had a cytotoxic effect that could induce
cell apoptosis.*?> Meanwhile, caspase-3 is also involved
in the cleavage of tau protein into truncated amino acid
fragments, 19 of which are effectors of cell apoptosis. More-
over, caspase-3 is related to the cleavage of PS-1 and PS-2,
which promotes the hydrolysis of amyloid precursor protein
(APP) to release more A and leads to neuronal apoptosis.

The above results are consistent with the present study
demonstrating that cell apoptotic rates were promoted
after AP treatment in the rat and cell models, and this pro-
motion could be inhibited by si-BDNF-AS and miR-125b5p
mimics (Fig. 2A, Fig. 5A). The knockdown of BDNF-AS
has been shown to increase the mitochondrial membrane
potential and prevent the release of cytochrome c from
the mitochondria.*® Therefore, the Bcl-2/Bax ratio, cas-
pase-3 activation and apoptotic rate were reversed due
to the effect of BDNF-AS siRNA on protection against
mitochondrial damage. While miR-125b-5p regulates
the synaptic protein synapsin-2 (SYN-2) and 15-lipoxygen-
ase (15-LOX), it causes synaptic and neurotrophic deficits
that are linked to neuronal apoptosis.*+*
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Fig. 5. Effects of INcRNA brain-derived neurotrophic factor antisense (BDNF-AS) and miR-125b-5p on apoptosis in the 2 cellular Alzheimer’s disease (AD)
models. Cell apoptosis rate (A) and apoptotic-related proteins (B) were detected in the NC, amyloid-f (AB);_42, AB1_4x+5i-NC, AB;_4>+si-BDNF-AS, AB_s+miR-
NC, and ABy_s+miR-125b-5p mimic groups. A,B. ***p < 0.005 (Dunn’s post hoc test following Kruskal-Wallis (K-W) test); **p < 0.05 (Dunn’s post hoc test

following K-W test). Data are presented as median with range

NGF - nerve growth factor.

In the process of AD, AP deposition and abnormal phos-
phorylation of tau protein are the main mechanisms lead-
ing to microglial inflammation.*4” The AP can be rec-
ognized by complement receptors and cytokine receptors
on the membranes of microglia and astrocytes, thereby pro-
moting the synthesis and secretion of inflammatory factors
such as ROS, TNF-a, IL-1B, and IL-6.%8 As shown in Fig. 3A
and Fig. 6A, elevated expression of TNF-a, IL-1f, and IL-6

was found after stimulation of APB. Continuous microglial
activation and the release of inflammatory factors can ag-
gravate neuronal damage and lead to exacerbated NFTs.%
At the same time, this process can decrease the ability of mi-
croglia to clear AP, raise the levels of A, and aggravate path-
ological damage. On the other hand, AP can directly activate
TLRs to cause microglia-mediated inflammation.* Stud-
ies have found that in the AD model, the expression levels
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Fig. 7. miR-125b-5p is the target gene of the INcRNA brain-derived neurotrophic factor antisense (BDNF-AS). A. miR-125b-5p targeted BDNF-AS at specific
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Data are presented as median with range

NGF — nerve growth factor.

of TLR3 and TLR4 are increased, and these may be the main
subtypes of TLRs activated by AB.>! In the present study,
the expression levels of TLR3, TLR4, MyD88, TRIF, and
NF-kB p65 were all increased in the A} group but were de-
creased in the APB;_4y+si-BDNF-AS or AP;_4p+miR-125b-5p
mimic groups. Elevated TLR3 and TLR4 can trigger NF-xB
after activating the downstream signaling pathway by bind-
ing to MyD88 or TRIF.>

As the most common cause of dementia, there are no
specific, standard treatment options for AD, which is often
diagnosed late and has a significant impact on a patient’s
quality of life.5>* Compared to established diagnostic
methods, such as structural MRI of the hippocampal and
molecular neuroimaging utilizing positron emission to-
mography (PET), the detection of miRNAs in bodily fluids
is a relatively simple procedure. The ability of prospective
biomarkers to detect the disease at an early stage and
track the development of brain function would be a sig-
nificant contribution. Current drugs, such as donepezil,
rivastigmine and galantamine, can temporarily relieve
dementia symptoms, but cannot terminate the progres-
sion of the disease. The fact that miRNAs are implicated
in amyloid peptide aggregates, hyperphosphorylated
tau protein aggregation, synaptic loss, neuroinflamma-
tion, and defective autophagy favors the development
of miRNA-based therapeutic strategies.>

Limitations

Because of a limited budget, this study only focused
on cell apoptosis and inflammation. Therefore, limited
experiments were conducted on the AD rat and cellular
models. The effects of BDNF-AS and miR-125b-5p on neu-
rite outgrowth and oxidative stress are still unknown. Fur-
ther exploration of the relationship between molecular
regulation and neuropathological changes will be useful
in future AD research.

Conclusions

To conclude, IncRNA BDNF-AS siRNA represses cell
apoptosis and inflammation via targeting of miR-125b-5p
in AD, which suggests a strong association between BDNF-
AS and the pathological mechanism of AD. The inves-
tigation of BDNF-AS and its downstream targets helps
to expand our understanding of BDNF as a key molecule
involved in neuronal changes related to learning and mem-
ory, laying the groundwork for new biomarkers or promis-
ing therapeutic targets for AD treatment.
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Supplementary data

The supplementary materials are available at https://
doi.org/10.5281/zenodo.7990783. The package contains
the following files:

Supplementary Table 1. Primer sequences used in RT-qPCR
of this study.

Supplementary Table 2. The results of normality test
in the AD rat model.

Supplementary Table 3. The results of Levene’s test
in the AD rat model.

Supplementary Table 4. The means and 95% CI
of ANOVA in the AD rat model.

Supplementary Table 5. The results of ANOVA in the AD
rat model.

Supplementary Table 6. The statistical analysis results
of the AD cellular model.
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