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Abstract

Atherosclerosis is a complex process involving endothelial dysfunction, vascular inflammation, vascular smooth
muscle cell (VSMC) proliferation, angiogenesis, and calcification. One of the pathomechanisms of atheroscle-
rosis is the upregulation of Wnt signaling. This study aimed to summarize the current knowledge regarding
the role of Wnt signaling and sclerostin in atherosclerosis, vascular calcification, aneurysms, and mortality
based on the PubMed database. We followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) recommendation and identified 160 papers that were included in this systematic review.
The published data highlight that the upregulation of Wnt components facilitates the initiation and progres-
sion of atherosclerosis, arterial remodeling, VSMCs proliferation and phenotypic transition to the osteoblastic
lineage in the arterial wall. This results in protein secretion, cell migration, calcification, fibrosis and aneurysm
formation. The transformation of VSMCs into osteoblast-like cells that i observed in atherosclerosis results
in sclerostin expression inhibiting the Wnt pathway. Furthermore, it was shown that sclerostin, expressed
in atherosclerotic plaques, inhibits aneurysm formation in @ mouse model. However, in humans, while
the antisclerostin antibody romosozumab inhibits bone resorption, biochemical parameters of endothelial
activation and inflammation are not affected, and the incidence of aneurysms is not increased. It was sug-
gested that detecting sclerostin in the calcified aortic atherosclerotic plagues reflects a defense mechanism
against Wnt activation and inhibition of atherosclerosis, although this has only been shown in animal models.
Moreover, an increased number of vascular cells converted to osteogenic phenatypes results in increased
plasma sclerostin concentrations. Therefore, plasma sclerostin derived from bone limits its importance
as a global marker of vascular calcification.
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Introduction

Cardiovascular disease (CVD) is one of the most com-
mon causes of mortality worldwide,! the most frequent
form of which is coronary artery disease (CAD) associ-
ated with atherosclerosis, and its acute form (myocardial
infarction) is responsible for most deaths. Atherosclerosis
is a complex process that consists of several pathological
traits, including endothelial dysfunction, vascular inflam-
mation, vascular smooth muscle cell (VSMC) prolifera-
tion, plaque angiogenesis, and calcification.>* Moreover,
all these processes are associated with the Wnt signaling
pathway.?*

The process of arterial calcification stems from the trans-
formation of VSMCs localized in the intima-media into
osteoblast-like cells,>® thereby switching functions from
contractile to synthetic. The shift in VSMC phenotype
is primarily related to runt-related transcription factor
2 (RUNX?2) expression regulated by the Wnt pathway.®’
The increase in mechanical load within arteries likely re-
leases proteins to strengthen the action on the RUNX2
factor and facilitates the action of the Wnt-enhancing cal-
cification.® This process can be driven by soft tissue injury,
resulting in the disruption of homeostasis and the initia-
tion of bone matrix development, leading to ectopic cal-
cification and mineralization of soft tissues.’

The main functions of Wnt signaling are the regula-
tion of cell migration and polarity, organogenesis, fate de-
termination, and proliferation of cells during embryonic
development. Wnt signaling is also involved in the pro-
liferation of stem cells into progenitor cells, which can
subsequently differentiate into several cell types, including
cardiac muscle, VSMC and endothelial cells. Therefore,
the Wnt pathway is crucial during embryonic development
and plays a role in the homeostasis of the adult organism.
Moreover, the Wnt pathway is ubiquitous and controls
many fundamental cellular processes, including osteo-
genesis, integrating multiple receptors, growth factors and
cellular connections to transcription factors that affect
gene expression.*

Sclerostin (SOST), an inhibitor of bone formation and
calcification secreted by osteocytes,'®!! is also a soluble
inhibitor of the Wnt canonical signaling pathway. Scleros-
tin is involved in bone tissue homeostasis, inhibits osteo-
genesis and calcification, and is a modulator of bone ho-
meostasis.!%! Its mechanism of action is to bind the LRP5
receptors and disrupt the canonical Wnt pathway.

Numerous studies have reported the involvement
of sclerostin in the development of atherosclerosis''"'? and
its complications,'>* including arterial stenosis,'* and clin-
ical presentation in the form of ischemic heart disease,” ce-
rebral ischemia'®!'” and peripheral artery disease,' but also
more advanced complications such as vascular calcifica-
tion!*~?2 and aneurysm development.?? The results of some
studies suggest that sclerostin could potentially play a posi-
tive role and inhibit the progression of atherosclerosis.?3
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Moreover, it has been shown that sclerostin may be lo-
cally produced in calcified tissue and may act as a counter
mechanism against enhanced calcification in arterial beds.
It seems that sclerostin may constitute the intermediary
between bone homeostasis and the development of vessel
calcification and atherosclerosis.

Obijectives

As the induction of calcification is an important element
in atherosclerosis, we aimed to summarize the knowledge
on the role of Wnt signaling and sclerostin in the develop-
ment of atherosclerosis and vascular calcification.

Methodology

Data on the role of Wnt signaling and sclerostin
in the development of atherosclerosis, arterial aneu-
rysm and mortality presented in the article are based
on published studies available in the PubMed database.
Our search was based on the keywords “Wnt signaling”,
“sclerostin”, “atherosclerosis”, “vascular calcification”, “an-
eurysm’, and “cardiovascular mortality”, and we initially
identified 652 articles. Following a review by 2 of the au-
thors, 160 studies were included in the article. Duplicated
articles, as well as papers without full-text availability, were
excluded from the review. The review included a broad
range of articles, from basic molecular studies to clinical
outcome investigations. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram is presented in Fig. 1.

The Wnt pathway:
general overview

The ‘Wnt’ name comes from the combination
of the Wingless segment polarity gene name in Drosophila
and its vertebrate homolog int-1 (integrated). This highly
conserved signaling pathway is activated by membrane
receptors.?? The Wnt signaling pathway consists of at least
19 proteins and is involved in numerous biological pro-
cesses, including embryonic development, organogenesis,
stem cell development, cell proliferation, differentiation,
migration and polarity, tissue homeostasis, and glucose
and lipid metabolism.?*-%” Furthermore, Wnt signaling
participates in bone formation, vascular and valvular cal-
cification,>*1%282 and angiogenesis.?® In the process of an-
giogenesis, Wnt signaling regulates endothelial cell pro-
liferation and survival,® and proliferation, migration and
survival of VSMCs via the Wnt/B-catenin pathway.>28-30

Alterations in Wnt signaling appear to be directly in-
volved in the increase of cardiovascular risk. For example,
in mouse models, mutations of the co-receptors of Frizzled
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Fig. 1. Preferred Reporting
[tems for Systematic Reviews
and Meta-Analyses (PRISMA)
flow diagram
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(Fz), a receptor in the Wnt pathway (e.g., low-density li-
poprotein receptor-related protein 6 (LRP6)), are associ-
ated with an increase in morphogenesis and differentia-
tion of adipocytes,3? enhancement of monocyte adhesion
to endothelial cells, the proliferation of VSMCs,*° vascular
calcification,®® hypercholesterolemia and, consequently,
hypertension, type 2 diabetes mellitus (T2DM) and pre-
mature CAD.3* The current literature also shows that en-
hanced Wnt signaling, due to gain-of-function mutations
of all elements of this signaling pathway, is associated with
alterations in vascular development.3%3¢

The Wnt pathway:
mechanism of action

The Wnt proteins secreted by epithelial cells bind
to the extracellular domain of the Fz surface recep-
tor family. The Wnt ligand and the Fz receptor require
LRP5/6 as co-receptors for the transduction of the signal
into the cells.?* Other ligands that can activate LRP5/6

receptors include parathormone (PTH)?*” and G-protein-
coupled ligands such as isoproterenol (f-mimetic), ad-
enosine and glucagon.3® Furthermore, LRP5/6 are also
co-receptors for a platelet-derived growth factor (PDGF)
and the transforming growth factor-f (TGF-B) receptor.®
The complex of Wnt protein/Fz receptor with LRP5/6 co-
receptors transduces the signal to cytoplasmic phospho-
protein Dishevelled (Dsh/Dvl). Moreover, Wnt signaling
activates 3 different pathways: canonical, planar cell polar-
ity (PCP) and the Wnt/Ca.?*

The canonical pathway

The canonical pathway comprises Dsh signaling
to protein complexes which, in the absence of Wnt li-
gands, promotes the ubiquitination and finally degrada-
tion of B-catenin,?* while the Wnt ligand and activation
of the Fz-LRP5/6 receptor complex inhibits this degra-
dation, resulting in the translocation of B-catenin from
the cytoplasm into the nucleus. Finally, B-catenin interacts
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with T-cell factor (TCF)/lymphoid-enhancer binding
factor (LEF), which activates the transcription of Wnt-
related genes that encode cyclin D1, PPAR and c-Myc,
all of which are responsible for cell growth, proliferation
and survival.?

The non-canonical pathways

The non-canonical pathways comprise the PCP path-
way, which regulates the cytoskeletal organization and cell
polarization,?* and the Wnt/Ca pathway responsible for
the regulation of cell movement and adhesion.?* In these
pathways, the Wnt signal is mediated through Fz recep-
tors independent from the LRP5/6 co-receptor. The co-
receptors for this pathway are likely mediated through ty-
rosine-protein kinase transmembrane receptor (ROR2),*
neurotrophin-related protein 1 (NRH1),* receptor tyrosine
kinase (Ryk),*? and protein tyrosine kinase 7 (PTK).*3

The transduction of the non-canonical signaling leads
to the activation of cytoplasmic Dsh, which is similar
to the activation of the canonical pathway, but the PCP
pathway utilizes the PDZ and DEP domains of Dsh, and
ultimately activates the small GTPases Rho and Rac.**
One branch of this pathway acts through Daam 1 (Di-
shevelled-associated activator of morphogenesis 1), which
binds to the central PDZ domain of Dsh and activates
Rho GTPase through WGEF (weak-similarity GEF).%®

Fig. 2. Wnt signaling
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Active Rho GTPase can stimulate Rho-associated kinase
(ROCK)* and myosin,* resulting in the modification
of actin and cytoskeletal organization.

The other signaling branch depends on the C-terminal
DEP domain of Dsh and stimulates Rac GTPase activity.*8
Rac triggers c-Jun N-terminal kinase (JNK)* in a Daam-
independent manner. Both Rho and Rac GTPases can regu-
late transcription and alter cell organization and polarity.>

The 2" arm of non-canonical Wnt signaling, the Wnt/Ca
pathway, is responsible for an increase in intracellular
calcium levels through trimeric G protein signaling.>">2
Increased calcium stimulates calcium-sensitive kinases,
including phospholipase C, and protein kinase C (PKC).>
Moreover, the Wnt/Ca pathway is thought to stimulate
the canonical and PCP pathways®>** by utilizing the PDZ
and DEP domains of the Dsh protein. However, in the non-
canonical pathway, the Dsh protein is localized at the cell
membrane and not in the cytoplasm as in the canonical
Wnt signaling pathway.”® Finally, the Wnt/Ca pathway
is essential in embryonic development, cell adhesion, tis-
sue orientation, and organ formation.”

Numerous factors, such as secreted frizzled-related
proteins (sFRPs)>” and Wnt inhibitory factor-1 (WIF-1),%8
may inhibit the Wnt pathways by directly binding to Wnt
and preventing its connection with the receptor. In addi-
tion, sclerostin® and Dickkopf (Dkk) family members®®
inhibit the transduction of the signal by binding to LRP5/6.
The Wnt signaling pathways are highlighted in Fig. 2.
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Wnt signaling and bone formation

Wnt signaling participates in bone formation by in-
creasing the transformation of mesenchymal stem
cells (MSCs) to osteoblasts while inhibiting osteoclast
differentiation.®-¢2

Bone cells, including osteoblasts, osteocytes, chondro-
cytes and bone marrow cells, produce many Wnt ligands.®
In the mouse, these are secreted from osteoblasts in an au-
tocrine manner and participate in their mineralization and
maturation. Moreover, Wntl6 induces osteoprotegerin
expression in osteoblasts via the Wnt-p-catenin pathway®*
and inhibits osteoclasts formation independent from os-
teoprotegerin (OPG) action.®® Furthermore, the Wnt5a
ligand involved in the non-canonical signaling pathway
is responsible for osteoblast lineage formation from mes-
enchymal precursors and can inhibit adipocyte differen-
tiation.®® Even though the receptor for Wnt5a is the ty-
rosine kinase orphan receptor 2 (Ror2), its action results
in enhancement in LRP5/6, which activates 3-catenin and
enhances the expression of OPG, and promotes osteoblast
differentiation.®®

Wnt3a, a Wnt ligand in the canonical signaling path-
way, inhibits calcitriol-induced, but not Rankl-induced
osteoclast formation induced by OPG expression in osteo-
blasts.®” Moreover, Wnt16 secreted from osteoblasts inhib-
its human and mouse osteoclast formation by disrupting
Rankl in a Wnt-independent manner.®* This is achieved
through inhibiting Rankl-induced activation of NF-kB
and calcitriol-induced mice osteoclast formation.®® Wnt4
is also expressed in osteoblasts and inhibits osteoclasts
formation independently from the Wnt pathway by en-
hancing OPG expression.®’

Wnt5a enhances LRP5/6 expression in osteoblasts and
simultaneously promotes Wnt10b and activates the Wnt/{3-
catenin pathway to induce osteoclasts formation. The in-
terplay between Wnt5a and Wntl6 may also regulate
osteoclastogenesis and osteolysis, and it is known that
Wnt5a mediates osteoclast formation by binding to and
stimulating Ror-2 receptors.”® Conditions such as arthritis
with a high level of Wnt5a may reverse the inhibitory effect
of Wnt16 on osteoclast formation.*%7°

In summary, secreted Wnt signaling ligands regulate
osteoblast and osteoclast differentiation, and their inter-
play defines the balance between bone formation and bone
resorption. The surrounding environmental conditions
determine the induction of different Wnt ligands and
the regulation of bone homeostasis.

Wnt signaling and atherosclerosis

All aspects of Wnt signaling are closely associated
with the initiation and progression of atherosclerosis.26:3°
The upregulation of Wnt signaling (increased expression
of the components of Wnt signaling, including WNT5a,
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WNT5b and WNT11) was detected in human aortic cal-
cified atherosclerotic lesions and related aneurysms.?7!
Furthermore, shear stress appears to be the primary mech-
anism that triggers the upregulation of Wnt signaling.”?
In addition, upregulated Wnt signaling affects endothe-
lial cell proliferation and survival, enhances monocyte
adhesion and transendothelial migration,>”® and results
in dysregulation of proliferation and apoptosis of VSMCs.?8
Whnt signaling participates in bone formation by increasing
the transformation of MSCs to osteoblasts and inhibiting
differentiation to osteoclasts.®62 Therefore, inappropriate
activation of the Wnt signaling pathway may play a role
in osteoblastic transition into the arterial wall” and vascu-
lar calcification.? It appears that the link between athero-
sclerosis and bone loss is mediated through the canonical
Wnt signaling pathway.!!

Atherosclerosis development is associated with the pro-
liferation and migration of VSMCs and endothelial dys-
function.” The canonical Wnt/B-catenin signaling path-
way results in the upregulation of proliferation genes,
such as cyclin D1 responsible for VSMCs proliferation.”
Some of the WNT family genes encoding proteins such
as WNTI™" and WNT5a”” in VSMCs and macro-
phages from atherosclerotic plaques have been identified
as the initiators of VSMCs proliferation and release of pro-
inflammatory cytokines. Additionally, overexpression
of Wnt inhibitors like sFRPs has been shown to constrain
VSMC proliferation.” In contrast, Wnt3a exerts an anti-
inflammatory effect by modulating NF«kB-related gene
expression in a mouse model.”® Moreover, an increased
DKK-1 level promotes pro-inflammatory cytokine re-
lease,” and the Wnt co-receptor LRP5 is responsible for
enhancing lipid uptake, transforming macrophages into
foam cells, and macrophage migration through enhanced
regulation of Wnt-related proteins such as osteopontin
(OPN), bone morphogenetic protein 2 (BMP2), cyclin D1,
c-jun, lymphoid enhancer factor 1 (LEF1), and B-catenin.’°

The Wnt pathway regulates the expression of OPG and
OPN associated with extracellular matrix mineralization.®!
Osteopontin has pro-inflammatory properties® and acti-
vates the proteolytic activity of metalloproteinases,®® while
OPG expressed in endothelial cells and VSMCs®* plays
a role in the pathogenesis of atherosclerosis and the pro-
gression of aortic aneurysms.$®

Wnt signaling is also involved in the process of fibrogen-
esis through TGF- activation.®® Pathological activation
of the canonical Wnt pathway has been detected in pulmo-
nary,¥” dermal,®® renal,® and myocardial infarction-related
fibrosis,”® and in muscles of mice from a model of mus-
culoskeletal dystrophy.” The DKK proteins are thought
to play a significant role in inhibiting the Wnt canonical
pathway by either binding to the LRP5/6 receptor and its
co-receptor Kremen-1/2, internalizing the receptor and
facilitating its degradation, or by disrupting the interac-
tion between WNT and the LRP5/6 and Fz co-receptor
complex.”? In cultured human fibroblasts, TGF-p signaling
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led to lower DKK-1 expression, which in turn activated
the Wnt pathway. Both lower expression of DKK-1 and
the use of DKK-1-neutralizing antibodies resulted in ag-
gravation of fibrosis, whereas overexpression of DKK-1 pre-
vented the initiation of fibrosis in the skin obtained from
patients with systemic sclerosis.”* Overexpression of Wnt
proteins in fibroblasts has been detected in enhanced gen-
eralized dermal fibrosis mouse models.®! This evidence
demonstrates that the interrelation of the TGF-f pathway
and Wnt signaling plays a pivotal role in the pathogenesis
of fibrosis.”!

During atherosclerosis, fibrosis is present in the wall
of the artery and heart valves. WNT5b and WNT11 pro-
teins were detected in aortic valvular interstitial cells with
extensive fibrosis, underscoring the role of the canonical
Wnt pathway in the development and exacerbation of ath-
erosclerosis in humans.”

Wnt signaling and vascular
calcification

The involvement of Wnt signaling in physiological bone
turnover may be the herald of calcification, as the process
of calcifying smooth muscle cells resembles the process
of osteogenesis. Vascular calcification is one of the most
common locations of ectopic soft tissue calcification and
represents the congregation of hydroxyapatite preferen-
tially in the tunica media® during diabetes and chronic
kidney disease (CKD), and contributes to the develop-
ment of hypertension and cardiovascular complications.*®
The primary pathological process is that of the transition
of mesenchymal VSMCs into a single-lineage osteogenic
cell type.®® In the presence of calcified arterial plaques,
a loss of elasticity increases the constant strain exerted
on arteries resulting in VSMC proliferation and differentia-
tion.® In transformed VSMCs, osteogenic genes have been
found, albeit their mRNA expression is significantly lower
than in osteoblasts.”® Moreover, high plasma levels of cal-
cium and phosphate initiate the process of calcium depo-
sition in arteries by changing the phenotype of VSMCs
and increasing the expression of osteogenic proteins.”®*
The main regulatory mechanism involved in the process
of calcification and plaque formation is the canonical Wnt
signaling pathway.”® The target gene of the Wnt cascade
is the transcription factor RUNX2 responsible for the phe-
notypic change of VSMC,” osteoblast differentiation and
initiation of calcification.?*

The arterial Wnt signaling pathway is induced by hyper-
calcemia and hyperphosphatemia, RUNX2, BMP-2 and -4,
and stress or injury, which results in the upregulation
of Wnt-related genes.” The Wnt signaling pathway induces
vascular calcification by promoting the expression of genes
responsible for VSMC differentiation like RUNX2 (osteo-
genic differentiation),!° VCAN (cell proliferation and mi-
gration due to vessel injury),!®! OPG to inhibit osteoclast
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formation,'°2and RANKL (responsible for the recruitment
of osteoblast-like precursors).!%°

Wnt3a has been shown to activate f-catenin and RUNX2
expression, thereby increasing arterial calcium deposi-
tion and osteocalcin expression resulting in the promo-
tion of VSMC calcification!® as well as migration by in-
creased adherence to type 1 collagen fibrils.}** Moreover,
Wnt7b plays a role in the development of neo-vasculature
via the Wnt signaling pathway,'%> while Wnt16 has been
implicated in changing the phenotype of VSMCs from
contractile to osteogenic lineage.!%

Sclerostin: mechanism of action

Sclerostin, the product of the SOST gene'%” and secreted
by osteocytes,'? acts mainly in an autocrine and paracrine
manner. The physiological role of sclerostin is the inhibi-
tion of bone formation and calcification,!! and it has been
suggested that the serum concentration of sclerostin re-
flects the pool of mature osteocytes.'?” Its expression was
also detected in many other tissues, including the heart,
lungs and cancers.!?® The mechanisms of sclerostin action
are summarized in Table 1.

Sclerostin is a soluble inhibitor of the canonical Wnt
signaling pathway and therefore regulates the prolifera-
tion and differentiation of osteoblasts and bone forma-
tion.!'” It antagonizes BMP signaling, thus stimulating
osteoblast and osteocyte apoptosis.!!#11? The autocrine
action of sclerostin also involves stimulating RANKL ex-
pression in osteocytes, thus supporting osteoclast activity
and bone resorption.!? In addition, the paracrine action
of sclerostin on osteoblasts and osteoclasts by the LRP5
receptor inhibits bone formation.!!

Sclerostin signaling is modulated by numerous factors,
including calcitriol, which facilitates its action by modu-
lating the expression of LRP5/6, the sclerostin receptor.
In addition, as shown in mice models, calcitriol enhances
the expression of Dkk-1 and secretion of frizzled-related
protein 2 (Sfrp2), which are antagonists of the Wnt sig-
naling pathway.!?? Other factors modulating the action
of sclerostin are PTH,'?* tumor necrosis factor alpha
(TNF-a)''% and glucocorticoids.!!!

Thus, the physiological role of sclerostin in the regula-
tion of bone mineralization is the inhibition of the canoni-
cal Wnt/B-catenin pathway via LRP5/6 binding!® It also
enhances the degradation of B-catenin, resulting in the in-
hibition of osteoblast differentiation and proliferation.

As mentioned above, numerous studies have shown the es-
sential role of the Wnt signaling pathway in vascular devel-
opment and remodeling.3® An anti-calcification effect re-
lated to the inhibition of the Wnt pathway was demonstrated
in carotid plaques and calcified aortas.!'? Thus, the presence
of sclerostin in human arteries is not unexpected.!** Some
studies have also reported sclerostin and DKK-1 expression
in calcified human aortas and carotid plaques.'?*
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Table 1. Mechanisms of sclerostin action

Models |
In vitro human, mice osteoblast''"1%°
A human with atherosclerosis and heart valves
calcifications?!
A human with chronic kidney disease?

In vitro mice, cell osteoblasts culture incubated with
TNF-a'

Mice osteocytes culture incubated with
glucocorticoids'"

In vitro and ex vivo mice VSMC arterial cells with
atherosclerosis and calcifications''?

A human with sclerosteosis and VBD''3
Mice limb bud'“

A human with bone overgrowth''>

Postmenopausal women treated with calcitriol''®

Genes mutation |

Enpp1~~ mouse

gene chromosome 17q12-g21 of sclerostin
SOST gain of function mutations

LRP4 genes:
mutations — R1170W, W1186S
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Effects or results

sclerostin and Dickkopf family bind to LRP5/6
receptors and suppress osteogenesis

sclerostin has been identified in vascular smooth
muscle cells and aortic valves

sclerostin is produced locally in calcified arteries

decreased sclerostin levels

increased sclerostin levels

sclerostin expression identified in mature osteocyte
- VSMC of aortic tissue

loss of sclerostin function in bones

loss of Wnt pathway in limbs
loss of function of LRP4 — sclerostin receptor in bone

enhanced serum sclerostin levels

VSMC - vascular smooth muscle cells; VDB — Van Buchem'’s disease; TNF-a — tumor necrosis factor alpha.

Sclerostin expression in VSMCs likely reflects their tran-
sition to osteoblast-like cells.!'? This hypothesis is sup-
ported by a positive correlation between serum sclerostin
concentration and the severity of aortic calcification.?!12
In addition, it was shown that B-catenin activity is crucial
in initiating VSMC proliferation and neointima forma-
tion, processes essential in arterial physiology. Reactive
oxygen species (ROS) are among the factors that can en-
hance B-catenin activity.”* Sclerostin and DKK-1 inhibit
the B-catenin-dependent Wnt signaling pathway, and
therefore a high sclerostin level may indicate a defensive
mechanism against enhanced Wnt pathway stimulation
by ROS.33 The process of vascular calcification resembles
that of bone morphogenesis.}?® Wnt signaling mediates
the differentiation of progenitor and VSMCs into an os-
teo/chondro phenotype.'?” This was seen in cultured rat
VSMCs, in which Dkk-1 acts as a potent inhibitor of the ca-
nonical Wnt signaling pathway reducing the expression
of Runx2, an essential transcription factor for osteogenic
differentiation.® In human knee chondrocytes, the incu-
bation with sclerostin resulted in a decrease of RUNX-2
mRNA.!?8 Therefore, both sclerostin and Dkk-1 proteins
may neutralize the process of vascular calcification and
modify arterial stiffness and arteriosclerotic plaque
stability.!??

Sclerostin and atherosclerosis

Interestingly, a higher sclerostin concentration was
found in the media compared to the intima of atheroscle-
rotic plaques of patients undergoing carotid endarterec-
tomy, and a similar finding was demonstrated for VSMCs
when compared to infiltrating macrophages.!*® Sclerostin
was also found in the aorta of patients undergoing aortic

valve surgery and was upregulated in calcifying VSMCs
and calcified valvular plaques.?! Serum sclerostin levels
have been associated with the presence of thoracic aor-
tic calcification (TAC), the severity of calcification, and
sclerostin expression in the vessel wall.!3! Numerous
studies have shown associations between sclerostin levels
and aortic or carotid plaques and vascular calcifications
in patients with T2DM and CVD and in postmenopausal
women.!2132133 [n addition, sclerostin levels were higher
in elderly patients with peripheral arterial disease (PAD)
than in patients with a normal value of the ankle-brachial
index (ABI), and higher sclerostin levels were shown to be
an independent predictor of PAD.!® Therefore, it seems that
sclerostin may be considered a surrogate marker of vascu-
lar calcification, and may even be a surrogate of vascular
disturbances in patients with CKD.!3* Previous literature
also suggests that increased sclerostin levels in VSMCs may
protect against excessive vascular calcification in dialysis
patients.!3® However, this mechanism has limited efficacy.

The increased sclerostin concentrations observed during
the course of atherosclerosis in a clinical setting seem to be
ineffective in exerting protective anti-calcification effects
in damaged vessels. Moreover, clinical studies show sex-
related differences in sclerostin concentrations, which are
higher in men, and in the frequency and course of CVD.
However, even higher serum sclerostin concentrations
in men do not prevent the occurrence and progression
of atherosclerosis, suggesting that the levels of circulating
sclerostin are not effective in inhibiting the pathological
process in vessels.!?®

Sclerostin is independently positively associated with
increased carotid intima-media thickness (CIMT) and
with the risk of carotid plaque presence and aortic calci-
fication.!? However, Gaudio et al. showed higher sclerostin
and DKK-1 concentrations in postmenopausal women with
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T2DM than in healthy controls and a negative correlation
with CIMT only in the T2DM group.!! Thus, sclerostin
concentration was an independent predictor of CIMT
in T2DM patients. In patients with T2DM, sclerostin was
likely higher due to the presence of atherosclerotic lesions
and the presence of cells derived from an osteogenic lin-
eage inside the arterial wall, which may be the source
of circulating sclerostin.!3® Therefore, higher sclerostin
levels in patients with CVD may reflect the advanced pro-
gression of atherosclerosis and plaque calcification.

Sclerostin and vascular
calcification

Recently, it was shown that SOST knockout mice
or the administration of anti-sclerostin antibodies re-
sulted in enhanced bone formation and mineraliza-
tion.137138 However, the data describing the role of scleros-
tin as an important risk factor for vascular calcification
raise doubt.!® It has been found that induction of renal
failure in SOST knockout mice resulted in the develop-
ment of vascular calcification.*® However, while low levels
of sclerostin increased bone formation,!**2 this process
did not prevent increased vascular mineralization.!* In ad-
dition, in DBA/2] mice that are more susceptible to the de-
velopment of ectopic calcifications without renal failure,'*®
treatment with anti-sclerostin antibodies and a diet that in-
cluded warfarin resulted in the development of aortic and
renal arteries calcifications.'3® Thus, these results suggest
that sclerostin prevents vessel calcification in the aorta,
kidney and cardiac arteries. This hypothesis seems to be
supported by observations that expression of sclerostin
mRNA and protein occurs in calcified vessels in both mice
and humans,'** and plasma sclerostin levels are inversely
associated with mortality among patients with CKD.1%>
It seems that locally produced sclerostin in the calcified tis-
sues may act as a counter mechanism against further ecto-
pic calcification. The mechanism may be similar to bones
in that sclerostin binds to LRP5 receptors and inhibits
the Wnt pathway in VSMCs. It seems that sclerostin may
also act by indirect stimulation of FGF-23,¢ resulting
in urinary phosphate excretion, which lowers the plasma
phosphate level.

Sclerostin and aneurysms

Under physiological conditions, VSMCs produce col-
lagen and elastin, which are responsible for the strength
and elasticity of arteries and the aorta. However, during
atherosclerosis, the phenotype of VSMCs is modified, and
they start producing matrix metalloproteinases (MMPs)
that are involved in the degradation of the extracellular
matrix, which in turn contributes to the development
of aneurysms.!12

P. Kocetak et al. Wnt and sclerostin in atherosclerosis

A study by Kirshna et al. reported the downregulation
of sclerostin and activation of the Wnt/p-catenin pathway
in abdominal aortic aneurysms (AAA)?® in both mouse and
human aortas. Upregulation of Wnt target genes was also
detected in that arterial intima and media during the aging
processes.!*” The development of an aneurysm may stem
from epigenetic changes in several genes, including exces-
sive methylation of one of the CpG islands in the SOST
promoter and subsequent inhibition of gene activity by up
to 75%, as shown in human osteocytes.!48:14°

Physiologically, collagen and elastin fibers maintain
arterial width and elasticity. During the development
of an aneurysm, fragmentation of collagen and elastin fi-
bers occurs, resulting in decreased arterial wall strength.1%°
Results of studies performed on mouse fibroblasts indicate
that by inhibiting the Wnt pathway, sclerostin enhances
the expression of genes encoding extracellular matrix pro-
teins responsible for maintaining the aorta structure.!*

It is known that Wnt signaling controls the expression
of OPG and OPN. Osteopontin activates proteolytic path-
ways and MMP-9 activity,®! and is engaged in the promotion
of inflammation.®’ In a mouse model, low OPN levels limited
the development of AAA,'5? and it is interesting to note that
OPG promotes the MMP-2 and MMP-9 release and activ-
ity from monocytes and VSMCs, 53154 leading to instability
of the arterial wall. Furthermore, OPG concentration corre-
lated positively with AA A progression!*® and was positively
associated with aortic diameter, MMP-2 and MMP-9 activ-
ity, cathepsin activity, and the number of lymphocytes in-
side the wall of aortic aneurysms, all being well-established
parameters of AAA pathogenesis and severity.®*8> More-
over, OPG deficiency protected against aortic angiotensin
[I-induced aneurysm development and rupture in mice.'>

In a study performed in a mouse model, results showed
that sclerostin overexpression or administration inhibited
angiotensin II-induced aneurysm formation in the thoracic
and abdominal aorta and the development of atherosclero-
sis.?3 In line with this finding, inhibition of the Wnt path-
way by sclerostin protected against the AAA development
by downregulation of pro-aneurysmal genes in mice.??
Potentially, the inhibition of Wnt signaling may decrease
the expression of OPN, OPG and MMP-9, and thus at-
tenuate aortic wall inflammation and extracellular matrix
degradation.?

Sclerostin and mortality

An investigation by Zeng et al. found a U-shaped asso-
ciation between sclerostin levels and vascular calcification
and mortality.!®® Even though atherosclerosis progresses
with aging, it was shown that sclerostin concentrations
did not predict the occurrence of cardiovascular events
during a 15-year observational period in a population-
based prospective study, whereas DKK-1 level was such
a predictor.!® Moreover, some data has shown that DKK-1
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Table 2. Association of sclerostin expression with cardiac and vascular pathologies

Models | Material
Human - postmenopausal type 2 serum
diabetic women with atherosclerosis'?
Humans over 65 years'® serum
Human - Afro-Caribbean men'® serum

calcified and atherosclerotic

Human with atherosclerosis?'
aorta wall

Human with atherosclerosis?! serum

aorta wall, atherosclerotic

Human with atherosclerosis'*
plaques

atherosclerotic plaques and

Human with atherosclerosis'*° } B
aortic calcifications

| Results

Serum sclerostin level positively correlates with plaque volume and vascular
calcifications.

Serum sclerostin levels were higher in patients with PAD than in patients
with normal ABI.

Serum sclerostin levels positively correlate with coronary and aortic
calcifications.

Upregulated expression of sclerostin was detected in VSMCs.

Serum sclerostin level positively correlates with aortic calcification.

Sclerostin expressions were detected in the heart, calcified aorta and
atherosclerotic plaques.

Sclerostin expressions were detected in aortic calcifications and plaques.
Higher levels of sclerostin in the media than in the intima.

VSMC - vascular smooth muscle cells; PAD — peripheral arterial disease; ABI

is released mainly from endothelial cells’® and can activate
platelets,'>® causes endothelial cell apoptosis and enhances
the expression of molecules including pentraxin-3 and
plasminogen activator inhibitor type 1, which contributes
to inflammation and inhibits fibrinolysis.!*

The effects of inhibition
of sclerostin in the vasculature

Locally enhanced sclerostin production can potentially
inhibit vascular calcification at the site in the arterial wall,
although at the same time may exert a negative effect
on the bones by increasing bone resorption and inhibiting
bone formation after being released into the circulation.!?
Administration of the sclerostin inhibitor romosozumab,
an anti-sclerostin antibody used to treat osteoporosis, re-
sulted in a decrease in bone resorption and an increase
in bone formation.!®® The results of the ARCH study in-
volving postmenopausal women with osteoporosis revealed
a higher frequency of severe cardiovascular adverse events
in the group treated with romosozumab than in patients
treated with alendronate (2.5% compared to 1.9%).'6!
The most common cardiovascular events were myocardial
infarctions and stroke. However, the results of another large
study, FRAME, did not find an increase in cardiovascular
risk between romosozumab and placebo groups.'? Several
nonclinical studies have also been performed to elucidate
the potential biological mechanisms mediating the increase
in adverse cardiovascular events. It has been shown that
romosozumab did not induce vasoconstriction in isolated
human coronary artery cultures,'®® and did not have any
impact on cardiovascular or respiratory function in mon-
keys.1®* Moreover, it did not initiate or exacerbate the pro-
cess of arterial calcification in the absence of atheroscle-
rosis in rats, even during lifetime exposure to this drug.!®®
In mouse models of atherosclerosis, administration of anti-
sclerostin antibodies did not result in changes to plaque

- ankle-to-brachial index.

volume or mineralization, and histopathological examina-
tion of the aortas did not reveal increased hemorrhages,
thrombosis or necrosis in a high-fat diet model of athero-
sclerosis due to treatment with romosozumab.'*3 Therapeu-
tic anti-sclerostin antibodies did not increase the incidence
of aneurysms?® and did not change biochemical parameters,
platelet and endothelial activation or markers of inflamma-
tion in mouse models of the aortic aneurysm.?

Thus, the studies in animal models have not shown
a significant effect of anti-sclerostin antibodies on the car-
diovascular system. Furthermore, the data did not show
evidence of the detrimental effects of sclerostin inhibition
on the development of inflammation or exacerbation of ath-
erosclerosis. The summary of findings concerning sclerostin
levels in different clinical conditions is presented in Table 2.

Summary

Emerging data suggest there are similarities between
bone homeostasis and vascular pathologies.!*® Bone con-
stitutes the buffering capacity for calcium and phosphorus,
although the conditions of hypercalcemia and hyperphos-
phatemia result in stimulation of the arterial Wnt pathway.
This Wnt pathway enhancement results in the initiation
of transdifferentiation of VSMCs into a phenotype that
secrets proteins, migrates, and induces mineralization and
atherosclerosis. The Wnt pathway also stimulates the re-
lease and activity of other signaling regulators and growth
factors, exacerbating RUNX2 expression and resulting
in vascular calcification.

Conclusions

Sclerostin and DKK-1 detection in the calcified aorta
in carotid plaques supports the hypothesis that upregulation
of Wnt pathway inhibitors may be a defensive mechanism
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to restrain atherosclerosis. However, these methods have
so far only been demonstrated under specific laboratory
conditions and in animal models. It is also suggested that
serum sclerostin concentrations mirror the advancement
of arterial remodeling and vessel wall calcification, and
it may represent the increased number of vascular cells
transformed into osteogenic phenotypes. Indeed, higher
serum sclerostin concentrations are observed in patients
with atherosclerosis and vessel calcification when compared
to healthy subjects. However, the value of serum sclerostin
levels as a marker of advancement of global vascular cal-
cification is lowered by the fact that they reflect 2 pools
of sclerostin; one released by VSMCs due to their pathogenic
transition to the osteogenic-like phenotype in arterial walls
and a second that is derived physiologically from the bones.
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