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Abstract
Background. Establishing a robust signature for prognostic prediction and precision treatment is neces-
sary due to the heterogeneous prognosis and treatment response of clear cell renal cell carcinoma (ccRCC).

Objectives. This study set out to elucidate the biological functions and prognostic role of ferroptosis-related 
long non-coding RNAs (lncRNAs) based on a synthetic analysis of competing endogenous RNA networks 
in ccRCC.

Materials and methods. Ferroptosis-related genes were obtained from the FerrDb database. The expres-
sion data and matched clinical information of lncRNAs, miRNAs and mRNAs from The Cancer Genome Atlas 
(TCGA) database were obtained to identify differentially expressed RNAs. The lncRNA-miRNA-mRNA ceRNA 
network was established utilizing the common miRNAs that were predicted in the RNAHybrid, StarBase and 
TargetScan databases. Then, using progressive univariate Cox regression, least absolute shrinkage and selection 
operator (LASSO) and multivariate Cox regression analysis of gene expression data and clinical information, 
a ferroptosis-related lncRNA prognosis signature was constructed based on the lncRNAs in ceRNA. Finally, 
the influence of independent lncRNAs on ccRCC was explored.

Results. A total of 35 ferroptosis-related mRNAs, 356 lncRNAs and 132 miRNAs were sorted out after dif-
ferential expression analysis in the TCGA-KIRC. Subsequently, overlapping lncRNA-miRNA and miRNA-mRNA 
interactions among the RNAHybrid, StarBase and TargetScan databases were constructed and identified; 
then a ceRNA network with 77 axes related to ferroptosis was established utilizing mutual miRNAs in 2 in-
teraction networks as nodes. Next, a 6-ferroptosis-lncRNA signature including PVT1, CYTOR, MIAT, SNHG17, 
LINC00265, and LINC00894 was identified in the training set. Kaplan–Meier analysis, PCA, t-SNE analysis, 
risk score curve, and receiver operating characteristic (ROC) curve were performed to confirm the validity 
of the signature in the training set and verified in the validation set. Finally, single-sample gene set enrichment 
analysis (ssGSEA) and ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using 
Expression data) analysis showed that the signature was related to immune cell infiltration.

Conclusions. Our research underlines the role of the 6-ferroptosis-lncRNA signature as a predictor of prog-
nosis and a therapeutic alternative for ccRCC.

Key words: bioinformatics analysis, ferroptosis-related lncRNA, competing endogenous RNA network, 
prognostic signature, clear cell renal cell carcinoma
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Background

Based on the data from the American Cancer Society, 
an estimated 79,000 new cases of kidney cancer occurred 
in  the  USA in  2022, with nearly 13,920 deaths attrib-
uted to this disease.1 Histologically, renal cell carcinoma 
(RCC) constitutes the vast majority (90%) of kidney cancer 
cases, primarily comprising clear cell RCC (ccRCC; 70%), 
papillary RCC (10–15%) and chromophobe RCC (5%).2 
The incidence of RCC has been gradually increasing due 
to population aging, obesity and environmental pollution.1 
According to the latest global data, about 4.4 per 100,000 
people are diagnosed with RCC every year. The incidence 
of RCC is twice as common in men as in women, which 
poses a significant health risk to men.3,4

Early surgical intervention is currently the main treat-
ment method for clear cell RCC (ccRCC), with an overall 
5-year survival rate of >90% for most patients who undergo 
early resection surgery.3,4 However, about 30% of patients 
experience metastatic recurrence after nephrectomy, which 
significantly affects postoperative survival.5 Additionally, 
ccRCC demonstrates high resistance to chemotherapy and 
radiotherapy, leading to a poor prognosis.6 According to re-
ports, the 5-year survival rate for patients with advanced 
ccRCC is only 11.7%.7 The survival outcomes of ccRCC pa-
tients vary greatly, making it difficult for clinicians to accu-
rately predict patient prognosis. Traditionally, the clinical 
and pathological features of patients have been used to eval-
uate the risk of recurrence and predict prognosis. Recently, 
researchers have explored molecular biomarkers to reliably 
predict the prognosis of ccRCC.8 In 2018, a validated prog-
nostic molecular signature, ClearCode34, was introduced. 
Based on the expression of 34 genes, ClearCode34 demon-
strated satisfactory prediction performance.9 Moreover, 
a study published in 2022 by Helmink et al. utilized deep 
RNA sequencing to construct B-cell-related gene signa-
ture, aiming to predict the impact of anti-PD-1 therapy 
on the efficacy and prognosis of ccRCC patients.10 It can 
be seen that by integrating RNA sequencing data with sur-
vival information, molecular-based characteristics provide 
new options for assessing the prognosis of ccRCC patients. 
Therefore, considering the high incidence and mortality 
rate of ccRCC, it is crucial to explore molecular features 
with prognostic value that affect ccRCC patients.

Cell death induction, including apoptosis, necroptosis, 
pyroptosis, and autophagy, is the core mechanism of anti-
tumor drugs. Approximately 10 years ago, the concept 
of ferroptosis was introduced as a new form of programmed 
cell death.11 Ferroptosis is an iron-dependent form of regu-
latory cell death caused by excessive lipid peroxidation and 
is involved in the development and progression of different 
tumors, including ccRCC.12 Currently, inducing ferroptosis 
in ccRCC is a promising strategy. Miess et al. has proved 
that inhibiting the  synthesis of  glutathione can make 
ccRCC sensitive to ferroptosis and finally prevent tumor 
growth.13 In addition, a study by Yang et al. also confirmed 

that the Hippo pathway effector TAZ can regulate the fer-
roptosis sensitivity of RCC.14 Therefore, modulating fer-
roptosis may have a number of important implications for 
future RCC therapeutic practices.

Long non-coding RNAs (lncRNAs) are non-coding 
transcripts containing more than 200 nucleotides.15 Accu-
mulating studies have shown that lncRNAs play a signifi-
cant role in the occurrence, development and metastasis 
of ccRCC, and can serve as reliable prognostic factors.16,17 
Instead of using a single lncRNA to analyze its prediction 
of disease, it is more effective to comprehensively analyze 
the expression profile of certain pathway-related lncRNAs. 
However, only a few studies have screened ferroptosis-re-
lated lncRNAs in ccRCC. Moreover, very little information 
is available on lncRNA signatures to explain the relation-
ship between lncRNAs and ferroptosis-related genes using 
the competing endogenous RNA (ceRNA) network.

Objectives

Our objective was to establish a ferroptosis-related ln-
cRNA signature for predicting the prognosis of ccRCC 
patients. Furthermore, by constructing ceRNA networks 
and analyzing the immune microenvironment, we sought 
to elucidate the underlying mechanisms of ferroptosis-
related lncRNAs in ccRCC.

Materials and methods

Data acquisition and differentially 
expressed gene analysis

Overall, 112 ferroptosis-related genes (Supplementary Ta-
ble 1) were obtained from the FerrDb Database (http://www.
zhounan.org/ferrdb) concerning the following screening con-
ditions: validated in human and protein-coding. Gene expres-
sion data and matched clinical profiles (including lncRNAs, 
microRNAs (miRNAs) and messenger RNAs (mRNAs)) 
of the KIRC cohort were downloaded from The Cancer Ge-
nome Atlas (TCGA; https://www.cancer.gov/ccg/research/ge-
nome-sequencing/tcga) database using the “GDCRNATools” 
package of R software,18 duplicate samples were removed, 
and only samples with sample_type of “PrimaryTumor” and 
“SolidTissueNormal” were retained. Then, the “GDCRNA-
Tools” package of R software was applied to analyze the dif-
ferential expression of  lncRNA, miRNA and ferroptosis-
related mRNA based on the conditions: method: DESeq2, 
Normalization: Voom, p = 0.05 and log| Fold Change |=2.

Construction of the ceRNA network

The miRNA can regulate gene expression by targeting 
the 3’UTR of mRNA. The ceRNA network refers to non-
coding RNA, such as  lncRNA, that can competitively 

http://www.zhounan.org/ferrdb
http://www.zhounan.org/ferrdb
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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bind to miRNAs and reduce their inhibition on mRNA. 
The  interactions of  differentially expressed lncRNA 
and miRNA, as well as the interactions of miRNA and 
ferroptosis-related mRNA, were predicted utilizing Tar-
getScan (www.targetscan.org), StarBase (https://starbase.
sysu.edu.cn) and RNAhybrid (https://bibiserv.cebitec.
uni-bielefeld.de/rnahybrid) databases. The intersection 
between the 3 databases was identified using the “vennR” 
package of R software. Then, the ceRNA network was 
established using the  common miRNAs in  the  3  da-
tabases that connect lncRNAs and mRNAs. Following 
the mechanism of the ceRNA network, we only retained 
the relationships as upregulated lncRNA\downregulated 
miRNA\upregulated mRNA and downregulated 
lncRNA\upregulated miRNA\downregulated mRNA, 
which were used to construct the ceRNA network, and 
then the  results were imported into Cytoscape 3.7.1 
(https://cytoscape.org) for visualization.

Identification and validation 
of a prognostic lncRNA signature based 
on the ceRNA network

Using the survival data in TCGA and excluding the in-
complete survival time data, we constructed the prognostic 
signature using lncRNAs in ceRNA. KIRC patients were 
randomly assigned into the training and test cohorts in a 1:1 
ratio, utilizing the “caret” package in R 4.1.1. In the training 
set, univariate Cox regression analysis of overall survival 
(OS) was performed to explore the ferroptosis-related ln-
cRNAs with prognostic values (p < 0.01) in the ceRNA 
network. Then, to minimize the risk of overfitting, least 
absolute shrinkage and selection operator (LASSO) regres-
sion analysis was utilized to construct a prognostic signa-
ture in the R package “glmnet”. The following formula: 

risk score = (β1×G1+β2×G2+β3×G3+...+βn×Gn) 

was used to  calculate the  risk score for each patient 
and to  predict the  prognosis of  the  patient according 
to the score, where β stands for the coefficient of each 
lncRNA, G means each lncRNA expression value, and 
n represents the number of lncRNAs.

Based on  the  median risk score of  the  training set, 
we  stratified patients into 2  groups. The  “Pheatmap” 
package was applied to draw a scatter diagram to describe 
the distribution pattern of risk scores and the correspond-
ing survival time of each patient in the training and valida-
tion set. The “Stats” package was used for principal com-
ponent analysis (PCA) to describe the gene expression 
distribution in the signature. Then, the “Rtsne” package 
was used for t-distributed stochastic neighbor embedding 
(t-SNE) analysis to describe the distribution of survival 
status in different risk groups. Receiver operating charac-
teristic (ROC) curves, drawn by the “timeROC” package, 
were used to verify whether the signature could be con-
sidered a useful biomarker in the training and validation 

set. Finally, the “survival” package was used for survival 
analysis for each lncRNA in the signature to verify its prog-
nostic value in the KIRC cohort. The mRNAs competitively 
inhibited by lncRNAs in the ceRNA network were veri-
fied in the Gene Expression Profiling Interactive Analy-
sis (GEPIA; http://gepia.cancer-pku.cn/) database (based 
on the TCGA and Genotype-Tissue Expression (GTEx) 
data) in ccRCC.

Independent prognostic analysis 
of the ferroptosis-related lncRNA signature

To further estimate the independent prognostic value 
of the ferroptosis-related lncRNA signature, univariate and 
multivariate Cox regression analyses were used to find out 
whether it was influenced by other clinical features. Avail-
able clinical characteristics including sex, age and tumor-
node-metastasis (TNM)-based staging were converted into 
dichotomous variables and used to calculate OS-based 
hazard ratios (HRs) and 95% confidence intervals (95% CI). 
A p < 0.05 was considered statistical significance.

Functional enrichment analysis

The “limma” R package was performed to select the risk-
related differentially expressed genes (DEGs) in the KIRC 
cohort based on | log2 Fold Change |≥1.2 and false dis-
covery rate <0.05 as a standard between the high- and 
low-risk groups. The “clusterProfiler” R package was ap-
plied to conduct Gene Ontology (GO; https://geneontol-
ogy.org/) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG; https://www.genome.jp/kegg/) analyses for risk-
related DEGs based on the criterion: gene count >5 and 
p-value < 0.05. The infiltrating scores of 16 immune cells 
and the activities of 13 immune-related pathways were 
quantified with single-sample gene set enrichment analysis 
(ssGSEA) using the “GSVA” R package. Using the annotated 
gene set provided in Supplementary Table 2, we quantified 
the immune infiltration enrichment scores of different im-
mune cells and immune-related functions to further study 
the correlation between risk scores and immune status.

Statistical analyses

Statistical analysis was performed using R  software 
(R v. 4.1.1; R Foundation for Statistical Computing, Vienna, 
Austria). The key R-scripts used in this study were pre-
sented in the Supplementary material – R-scripts. Con-
tinuous variables were analyzed with the Wilcoxon test 
(Mann–Whitney test), whereas categorical data was ana-
lyzed using the χ2 test or Fisher’s exact test. Univariate 
and multivariate Cox regression analysis was used to iden-
tify the related factors affecting the OS of KIRC patients. 
The results of the proportional hazards assumption for Cox 
regression were conducted based on Schoenfeld’s global 
and individual test (Supplementary Table 3, Supplementary 

https://starbase.sysu.edu.cn
https://starbase.sysu.edu.cn
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
https://cytoscape.org
http://gepia.cancer-pku.cn/
https://geneontology.org/
https://geneontology.org/
https://www.genome.jp/kegg/
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Fig. 2,3). Kaplan–Meier analysis and the log-rank test were 
performed to calculate the survival difference. For all statis-
tical analyses, a p-value < 0.05 was considered statistically 
significant without special explanation.

Results

Identification of DEGs in the KIRC cohort

After filtering the sample types of Additional-NewPri-
mary (1 transcriptome and 1 miRNA) and duplicate samples 
(8 transcriptomes and 28 miRNAs), a total of 583 transcrip-
tome samples, and 583 miRNA samples, including 512 KIRC 
patients and 71 normal controls were obtained from the KIRC 

cohort of TCGA database. Through differential expression 
analysis, we screened out 356 lncRNAs (286 upregulated 
and 70 downregulated), 132 miRNAs (62 upregulated and 
70 downregulated) and 35 ferroptosis-related mRNAs (18 up-
regulated and 17 downregulated) (Fig. 1A–C).

Establishment of a ferroptosis-related 
ceRNA network in the KIRC cohort

To understand the regulatory crosstalk between differ-
ent RNA molecules, we constructed a ferroptosis-related 
ceRNA network in the KIRC cohort. RNAHybrid, Star-
Base and TargetScan databases were utilized to predict 
the  network of  lncRNAs, miRNAs and mRNAs. In  to-
tal, 8658,1263,160426 lncRNA-miRNA interactions and 

Fig. 1. A screen of the differentially expressed ferroptosis-associated lncRNAs, miRNAs and mRNAs in KIRC. Volcano plot representing the differentially 
expressed (A) lncRNAs (286 upregulated and 70 downregulated), (B) miRNAs (62 upregulated and 70 downregulated) and (C) mRNAs (18 upregulated 
and 17 downregulated) between the normal and the KIRC groups. The upregulated and downregulated lncRNAs, miRNAs and mRNAs are highlighted 
in red and green, respectively. Venn diagrams of (D) lncRNA-miRNA interactions and (E) miRNA-mRNA interactions predicted in RNAHybrid, StarBase and 
TargetScan databases; F. The ceRNA network consists of 27 lncRNAs, 13 miRNAs and 9 mRNAs

KIRC – kidney renal clear cell carcinoma; RNA – ribonucleic acid; lncRNAs – long non-coding RNAs; miRNAs – microRNAs; mRNAs – messenger RNAs; ceRNA 
– competing endogenous RNA.
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1594,913,10067 miRNA-ferroptosis-related mRNA inter-
actions were predicted, respectively (Fig. 1D,E). Taking 
miRNA as the connecting point, we constructed a ceRNA 
network with 182 axes, according to the expression of genes 
in the network. The intersection of target miRNAs for down-
regulated lncRNAs, downregulated mRNAs with upregu-
lated miRNAs, and target miRNAs for upregulated lncRNAs, 
upregulated mRNAs with downregulated miRNAs were 
selected and finally, a ceRNA network with 77 axes was ob-
tained (Fig. 1F). Among them, there were 27 lncRNAs (26 up-
regulated and 1 downregulated), 13 miRNAs (12 downregu-
lated and 1 upregulated), and 9 mRNAs (8 upregulated and 
1 downregulated). The regulatory relationships disclosed 
by these networks may provide an idea for exploring the mo-
lecular mechanism of the ferroptosis-related lncRNAs.

Construction of lncRNA signature based 
on the ferroptosis-related ceRNA network

Given the potential of ferroptosis-related ceRNA in regu-
lating patient prognosis, we focused on 27 lncRNAs within 
the ceRNA network. A total of 508 eligible ccRCC patients 
(4 samples with missing survival time were removed) with 
integrated information were incorporated in the TCGA-
KIRC dataset and randomly assigned to  the  train set 
(254 samples) and validation set (254 samples). Primarily, 
27 lncRNAs in the ferroptosis-related ceRNA network were 
extracted to identify the prognostic risk model. Then, we per-
formed the Cox proportional hazard assumption test based 
on Schoenfeld’s residuals. All the lncRNAs in the univariate 
Cox regression model satisfied the proportional hazards as-
sumptions (p > 0.05) (Supplementary Table 3). The Schoen-
feld’s residual plots did not suggest a violation of the pro-
portional hazard assumption (Supplementary Fig.  2). 
Next, 14 lncRNAs significantly related to OS were selected 
in the univariate Cox regression analysis, which was consid-
ered as potential predictors. Finally, a LASSO regression algo-
rithm was performed for feature selection. When the partial 
likelihood binomial deviation reaches the minimum value, 
the most appropriate tuning parameter λ for LASSO regres-
sion is 0.055. According to the penalty parameter (Lambda) 
in the model, we established a prognostic signature of KIRC 
patients consisting of 6-ferroptosis related lncRNAs in-
cluding PVT1, CYTOR, MIAT, SNHG17, LINC00265, and 
LINC00894 (Fig. 2A–C). A risk score for each patient was 
calculated according to the following risk formula:

risk score =  
β × expression value of PVT1  

+ β × expression value of CYTOR  
+ β × expression value of MIAT  

+ β × expression value of SNHG17  
+ β × expression value of LINC00265  
+ β × expression value of LINC00894

We evenly categorized patients into a high-risk group 
(n = 127) and a low-risk group (n = 127) based on risk scores 

(Fig. 3A). As depicted in Fig. 3B,C, PCA analysis and t-SNE 
analysis were used to reduce the dimension of the data and 
observe the significant difference between the 2 groups. 
Our results indicated that patients in the high- and low-risk 
groups showed a significant 2-way distribution. As displayed 
in Fig. 3D, there were significantly more deaths in high-risk 
patients than in low-risk ones. Additionally, the Kaplan–
Meier curve revealed that patients in the high-risk group 
have corresponded to a worse OS in the training set (Fig. 4A, 
logrank test, χ2 = 32.6, p = 1.136e−08). Time-dependent 
ROC curves were performed to evaluate the predictive ac-
curacy of the risk score for OS, and the area under the curve 
(AUC) was 0.791, 0.740 and 0.890 in predicting 1-, 5- and 
10-years OS in KIRC, respectively (Fig. 4B). More signifi-
cantly, the signature shows superior prognostic prediction 
efficiency than tumor-node-metastasis (TNM) staging with 
the AUC of risk score of 0.78 on multi-factor ROC (Fig. 4C).

Validation of the 6-lncRNA signature 
in the validation set

Subsequently, we performed the same analysis in the vali-
dation set. Once more, 254 patients in the validation set were 
divided into high-risk (n = 127) and low-risk (n = 127) groups 
based on the median risk values in the train set (Fig. 5A). 
As predicted, the results of PCA analysis and t-SNE analysis 
indicated that the patients of the validation set in the high- 
and low-risk group also showed 2-way distribution, and pa-
tients in the high-risk group have corresponded to more death 
cases (Fig. 5B–D). Moreover, like the training set, the Kaplan–
Meier curve showed that the mortality of patients in the high-
risk group was significantly higher than that in the low-
risk group (Fig. 6A, log-rank test, χ2 = 17.9, p = 2.371e–5). 
The AUC reached 0.723, 0.714 and 0.780 in predicting 1-, 
5- and 10-year OS, and the risk score in muti-ROC was 0.721 
(Fig. 6B,C). These results indicated that the prognostic sig-
nature can be regarded as a qualified prognostic evaluation.

Survival analysis, univariate Cox 
regression analysis and expression 
comparative analysis for the signature 
in the ceRNA network

Moreover, to further evaluate the signature, survival analy-
sis was performed for each lncRNA in the signature (PVT1, 
CYTOR, MIAT, SNHG17, LINC00265, and LINC00894). 
As shown in Fig. 7, the results showed that all 6 lncRNAs were 
significantly negatively correlated with OS. Then, to explore 
the regulatory relationship of the signature on ferroptosis-
related genes, Cytoscape 3.7.1 software was used to show 
the specific regulation relationships of 6 lncRNAs in the sig-
nature and 7 ferroptosis-related genes (Fig. 8A). By comparing 
ccRCC samples with normal kidney samples in TCGA and 
GTEx databases, we analyzed the expression of 7 lncRNA-
regulated mRNAs (including CD44, PML, TAZ, CDKN2A, 
SCD, MYB, and CAV1) in the ceRNA network. The cutoff 
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value was set to |log2 Fold Change | > 1, p < 0.05, and the re-
sults showed that all 7 ferroptosis-related genes were highly 
expressed in ccRCC, among which 5 were statistically signifi-
cant, except TAZ and MYB (Fig. 8B). Besides, in the FerrDb 
database, we discovered that these 7 genes all regulate ferrop-
tosis with the help of lipid reactive oxygen species (ROS), ex-
cept PML, and could be divided into 2 categories: ferroptosis 
suppressors (CAV1, CD44, PML, and SCD) and ferroptosis 
drivers (CDKN2A, TAZ and MYB) (Supplementary Fig. 1).

Prognostic independence analysis 
of ferroptosis-related lncRNA signature 
and clinical features

Univariate and multivariate Cox regression analyses were 
performed among the available variables (including age, 

gender and TNM staging) to determine whether the sig-
nature was an independent prognostic predictor for OS. 
All  the  covariates in  the  multivariate Cox regression 
model satisfied the proportional hazards assumptions and 
the global Schoenfeld’s test (Supplementary Fig. 3). Univari-
ate Cox regression analysis showed that both in training set 
and validation set, TNM staging (training set: HR = 1.946, 
95% CI = 1.604–2.361, Wald test, W = 45.650, p < 0.001; 
validation set: HR = 1.858, 95% CI = 1.533–2.252, Wald 
test, W = 39.900, p < 0.001) and risk signature (training set: 
HR = 3.208, 95% CI = 2.199–4.678, Wald test, W = 37.620, 
p < 0.001; validation set: HR = 3.600, 95% CI = 2.274–5.698, 
Wald test, W = 29.880, p < 0.001) were significantly corre-
lated with OS (Fig. 9A,C). After independent adjustment for 
other clinical features in multivariate Cox regression, risk 
signature remained a reliable prognostic predictor of OS 

Fig. 2. LncRNAs selection utilizing LASSO 
regression. A. Selection of tuning parameter 
(λ) in the LASSO regression with a 10-fold 
cross-validation via minimum criteria; B. LASSO 
coefficient profiles for clinical features and 6 non-
zero coefficients are selected; C. Forest map for 6 
prognostic lncRNAs

RNA – ribonucleic acid; lncRNAs – long non-
coding RNAs; LASSO – least absolute shrinkage 
and selection operator.
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in both cohorts (train set: HR = 2.612, 95% CI = 1.793–
3.805, Wald test, W = 25.000, p < 0.001; validation set: 
HR = 2.416, 95% CI = 1.522–3.835, Wald test, W = 14.200, 
p < 0.001) (Fig. 9B,D). The detailed Cox regression results 
can be found in Supplementary Table 4. Moreover, we ex-
amined the linear relationship between the log hazard and 
the continuous variable age. The results showed an overall 
linear trend in the relationship between the continuous 
covariate age and log hazard (Supplementary Fig. 4).

GO and KEGG enrichment analyses

To evaluate the biological functions and pathways asso-
ciated with the prognostic signature, GO enrichment and 
KEGG pathway analyses were performed using DEGs be-
tween high- and low-risk groups. In total, 1,168 DEGs were 
significantly enriched in 367 biological processes, 51 cel-
lular components, 52 molecular functions, and 10 KEGG 
entries. The  top 10  enriched items of  GO and KEGG 
were selected and demonstrated. As expected, GO analy-
sis revealed that there were several molecular function 

entries related to lipid metabolism: these functions may 
be related to lipid peroxidation of ferroptosis. The KEGG 
analysis indicated that glycerophospholipid metabolism 
and phospholipase D signaling pathway were enriched. 
In addition, some immune-related items were also found 
to be significantly enriched in the 2 cohorts, including 
T cell activation, T cell differentiation, regulation of T cell 
activation, positive regulation of leukocyte cell adhesion, 
positive regulation of T cell activation, regulation of T cell 
differentiation, regulation of lymphocyte differentiation 
positive regulation of cell-cell adhesion, regulation of leu-
cocyte cell adhesion, lymphocyte differentiation, cytokine 
receptor activity in molecular functions, immune receptor 
activity, cytokine binding, and so on (Fig. 10A–D).

ssGSEA and ESTIMATE analysis 
of immune infiltration

The results from GO and KEGG suggest that the fer-
roptosis-related signature may be involved in the regu-
lation of  the  immune microenvironment. Therefore, 

Fig. 3. The validation of the ferroptosis-related signature in the training set. A. The distribution of risk scores per patient in the training set; B. PCA and (C) 
t-SNE analysis revealed that the expression levels of ferroptosis-related lncRNAs involved in model construction could distinguish patients in the high- and 
low-risk groups in the training set; D. The distributions of OS status in the training set. The red dots represent dead patients and the blue dots represent 
living patients

PCA – principal component analysis; t-SNE – t-distributed stochastic neighbor embedding; RNA – ribonucleic acid; lncRNAs – long non-coding RNAs; 
OS – overall survival.
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we explored its potential role in the TME. The ssGSEA 
approach was utilized to further evaluate the correlation 
between the risk score and immune cell infiltration sta-
tus, and the results revealed that 9 of the 16 immune cells 
were found to have significantly high infiltration enrich-
ment scores in the high-risk group, including CD8+ T cells, 
pDCs, T helper cells, Th1 cells, TIL, aDCs, B cells, and 
Th2 cells (Fig. 11A). In terms of  immune function, ex-
cept for type II immune interferon response, the high-risk 
group was positively correlated with other immune-related 
functions (Fig. 11B). Then, we performed the ESTIMATE 
(Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data) algorithm to further 
analyze the differences in immune components of TME 
in the high- and low-risk groups, and our results indi-
cated that the ESTIMATE score and immune score were 

increased significantly in the low-risk group (Wilcoxon 
rank sum test, W = 38063, p < 0.001; Wilcoxon rank sum 
test, W = 41373, p < 0.001) (Fig. 11C), while stromal score 
was no significant difference between the 2 groups (Wil-
coxon rank sum test, W = 31739, p > 0.05) (Fig. 11C).

Discussion

Clear cell renal cell carcinoma displays considerable het-
erogeneity in both its molecular characteristics and biologi-
cal behavior, thereby presenting substantial challenges for 
clinicians involved in the treatment of cancer patients.19 
In clinical practice, grading and staging are commonly 
used clinical pathological parameters to assess the prog-
nosis of ccRCC and guide treatment decisions.20 However, 

Fig. 4. The ferroptosis-related signature predicting 
overall survival (OS) in patients with KIRC in the training 
set. A. Kaplan–Meier curve to predict the OS 
of patients in the high- and low-risk cohorts; B. 
ROC curve analysis to evaluate the prognostic 
performance of the signature at 1 year (AUC = 0.791), 
5 years (AUC = 0.740) and 10 years (AUC = 0.890); 
C. Time-dependent ROC analysis of the accuracy 
of the signature in the training set

KIRC – kidney renal clear cell carcinoma; ROC – receiver 
operating characteristic; AUC – area under the curve.
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patients with the same cancer staging often exhibit signifi-
cant differences in prognosis and response to treatment.21 
Specifically, conventional histopathological measures and 
similar treatment strategies may result in curing patients, 
while others may die prematurely. This indicates the limi-
tations of clinical pathological parameters in describing 
the  survival outcomes of  ccRCC patients.21 Therefore, 
it is necessary to surpass the prognostic features of the cur-
rent staging system in order to accurately identify patients 
who may develop aggressive diseases with poor survival 
rates and provide better guidance for clinical therapy. 
In the current study, we first identified lncRNAs, miRNAs 
and ferroptosis-related mRNAs through differential expres-
sion analysis of 583 samples downloaded from the KIRC 
cohort of the TCGA database. Then, through RNAHybrid, 
StarBase and TargetScan databases, 27 lncRNAs, 13 miR-
NAs and 9 mRNAs conforming to the ceRNA mechanism 
were predicted and selected. Through a series of analyses, 
including univariate Cox regression analysis, LASSO re-
gression analysis and multivariate COX regression analysis, 
6 lncRNAs significantly associated with OS were identified 

and used to establish a ferroptosis-related signature. To ex-
plore the distribution of each case with different risk values, 
PCA and t-SNE analyses were performed in the training 
and validation cohorts, and our results showed that KIRC 
patients with low-risk scores could be distinguished from 
those with high-risk scores. Moreover, the death probability 
distribution analysis also found that the number of deaths 
in KIRC patients with high-risk scores was significantly 
higher than that in KIRC patients with low-risk scores. 
Through Kaplan–Meier curve analysis and Cox regression 
analysis, we identified that the ferroptosis-related signature 
could stratify the risk for ccRCC patients based on OS and 
serve as an independent prognostic factor for clinical out-
comes. Furthermore, the ROC curve analysis demonstrated 
that the ferroptosis-related signature could accurately pre-
dict short- and long-term survival in ccRCC patients, with 
significantly higher predictive accuracy compared to most 
clinical features. Taken together, these results indicate that 
the ferroptosis-related signature could be a stable and ro-
bust tool for clinicians to predict the prognosis of ccRCC 
patients.

Fig. 5. The validation of the ferroptosis-related signature in the testing set. A The distribution of risk scores per patient in the testing set; B,C. PCA (B) 
t-SNE (C) analysis revealed that the expression levels of ferroptosis-related lncRNAs involved in model construction could distinguish patients in the high- 
and low-risk groups in the testing set; D. The distributions of OS status in the testing set. The red dots represent dead patients and the blue dots represent 
living patients

PCA – principal component analysis; t-SNE – t-distributed stochastic neighbor embedding; RNA – ribonucleic acid; lncRNAs – long non-coding RNAs; 
OS – overall survival.
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Within the ferroptosis-related signature that we con-
structed, a higher risk indicated a poor prognosis. To further 
understand the underlying molecular mechanisms, we ini-
tially analyzed the effects of 6 lncRNAs on OS in different 
risk subgroups. Not surprisingly, the 6 lncRNAs (SNHG17, 
CYTOR, LINC00894, LINC00265, MIAT, and PVT1) in-
cluded in the signature were significantly associated with 
the unfavorable prognosis of ccRCC. Among the 6 lncRNAs 
in the signature, some have previously been reported to be 
associated with ccRCC. Research has confirmed that ln-
cRNA PVT1 is significantly overexpressed and can act 
as a ceRNA in the context of RCC.22 Additionally, Yan et al. 
identified that lncRNA MLAT is upregulated in ccRCC 
tissues and cell lines and can act as a sponge for miR-29c, 
increasing the expression of ZEB1.23 Recently, a study iden-
tified that SNHG17 was significantly upregulated in ccRCC 

and could be used as a prognosis predictor.24 Deng et al. 
uncovered that LINC00894 was upregulated and signifi-
cantly related to the prognosis in ccRCC patients.25 Also, 
the function of CYTOR has been identified to be an onco-
gene in many cancers. However, as well as the LINC00265, 
it has not been elucidated in the previous studies and our 
research uncovered their potential roles in KIRC. To fur-
ther investigate the role of ferroptosis-related lncRNAs 
in gene regulation in ccRCC, we constructed a ceRNA net-
work. According to the regulatory network in the FerrDb 
database, all 7 genes were somehow connected with lipid 
ROS to regulate ferroptosis, except that PML was a straight 
ferroptosis suppressor. The high lipid ROS connection was 
in accord with the lipid metabolism relevancy found in GO 
analysis, which revealed that the signature was highly as-
sociated with the lipid peroxidation process in ferroptosis. 

Fig. 6. The ferroptosis-related signature predicts overall 
survival (OS) in patients with KIRC in the testing set. 
A. Kaplan–Meier curve to predict the OS of patients 
in the high- and low-risk cohorts; B. ROC curve analysis 
to evaluate the prognostic performance of the signature 
at 1 year (AUC = 0.723), 5 years (AUC = 0.714) and 
10 years (AUC = 0.780); C. Time-dependent ROC analysis 
of the accuracy of the signature in the testing set

KIRC – kidney renal clear cell carcinoma; ROC – receiver 
operating characteristic; AUC – area under the curve.
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Fig. 7. The Kaplan–Meier curves of 6 prognostic ferroptosis-related lncRNAs in the signature. A Kaplan–Meier curve showing the overall survival (OS) 
of SNHG17 in the high- and low-risk group; B. Kaplan–Meier curve showing the OS of CYTOR in the high- and low-risk group; C. Kaplan–Meier curve 
showing the OS of LINC00894 in the high- and low-risk group; D. Kaplan–Meier curve showing the OS of LINC00265 in the high- and low-risk group; 
E. Kaplan–Meier curve showing the OS of MIAT in the high- and low-risk group; F. Kaplan–Meier curve showing the OS of PVT1 in the high- and low-risk 
group
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Moreover, we uncovered that CAV1, CD44, PML, and SCD 
could act as a suppressor of ferroptosis, while CDKN2A, 
MYB and TAZ were drivers of ferroptosis, which may ex-
plain the double-sided effect of ferroptosis on tumor inhibi-
tion and tumor growth. CAV1, CD44, PML, and SCD have 
been confirmed to be highly expressed in tumor tissues 

and promote tumor progression by inhibiting ferropto-
sis.26–29 CDKN2A has been identified to play a vital role 
in tumorigenesis by enhancing p53-dependent transactiva-
tion and ferroptosis,30 the hypermethylation of CDKN2A 
might be a predictor of poor prognosis for cancer.31 MYB, 
a vital transcription factor in solid tumors, can regulate 

Fig. 8. The ferroptosis-related ceRNA network and the ferroptosis-related gene expression. A. ceRNA network: the light blue triangles indicate lncRNAs, 
the green triangles mean miRNAs, and the red triangles represent mRNAs; B. Expression of 7 ferroptosis-related genes between KIRC tumor and normal tissues

RNA – ribonucleic acid; lncRNAs – long non-coding RNAs; miRNAs – microRNAs; mRNAs – messenger RNAs; ceRNA – competing endogenous RNA; KIRC 
– kidney renal clear cell carcinoma; *p < 0.05.
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the expression of CDO1; then, CDO1 can convert cyste-
ine into taurine, reduce the utilization of cysteine, limit 
the synthesis of glutathione, inhibit the antioxidant ca-
pacity of cells, and eventually cause ferroptosis.32 A recent 
study showed that TAZ is highly expressed in RCC and can 
mediate cell density-regulated ferroptosis.14 These findings 
revealed potential regulatory mechanisms of ferroptosis-
related molecules in  the  occurrence and development 
of ccRCC, providing potential biomarkers for the identifi-
cation and personalized treatment of this cancer.

To  better understand the  transcriptional regulatory 
mechanisms of  ferroptosis-related lncRNAs in ccRCC, 
we conducted a comprehensive exploration of their func-
tions and pathways involved. The GO functional enrich-
ment analysis revealed that these differentially expressed 
genes were involved in lipid metabolism-related functions, 
which may be associated with lipid peroxidation of ferrop-
tosis, and the KEGG analysis revealed that several signaling 
pathways related to cancer and ferroptosis were enriched, 
such as glycerophospholipid metabolism, phospholipase 
D signaling pathway and lipase activity pathway. As pre-
viously reported, these pathways have been found to be 

abnormally overactivated in multiple types of cancers, 
which drives the proliferation, invasion and metastasis 
of cancer cells, and is often associated with poor clini-
cal prognosis.33–35 Hence, these oncogenic pathways may 
explain the  impact of  the  ferroptosis-related signature 
on the prognosis of ccRCC patients. Drugs targeting these 
abnormally overactivated pathways may have the potential 
to inhibit the progression of this cancer.

It has been reported that the mechanism by which ferrop-
tosis cells trigger potent immune responses may have some 
similarities with traditional immunogenic cell death.36 
Considering the close relationship between ferroptosis and 
tumor immunity, we utilized 2 algorithms (ESTIMATE 
and ssGSEA) to investigate the immune microenvironment 
associated with the ferroptosis-related signature in ccRCC. 
In the TME component analysis, the high-risk group had 
higher ESTIMATE scores and immune scores. Some stud-
ies have demonstrated that the abundance of immune cell 
components serves as an independent prognostic factor 
that is crucial to the prognosis of ccRCC.37,38 Therefore, 
we hypothesized that the influence of 6 lncRNAs (SNHG17, 
CYTOR, LINC00894, LINC00265, MIAT, and PVT1) 

Fig. 9. Univariate and multivariate Cox regression analyses regarding overall survival (OS) in the training and testing set. A. Univariate Cox regression analysis 
in the training set; B. Multivariate Cox regression analysis in the training set; C. Univariate Cox regression analysis in the testing set; D. Multivariate Cox 
regression analysis in the testing set
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on unfavorable survival among patients with ccRCC might 
be associated with the remodeling of immune components 
within the TME. This finding provides indirect evidence 
for the close association between the ferroptosis-related 
signature and the survival of ccRCC patients. The analysis 
of TME cell types from ssGSEA also fully supported this 
hypothesis. High-risk individuals had an active presence 
of immune cells, such as CD8+ T cells and Th1 cells, in-
dicating enhanced anti-tumor immune activity. Overall, 
these discoveries provided novel insights into the mecha-
nisms of signature lncRNAs regulating the immune mi-
croenvironment of ccRCC patients.

Limitations

Our study has some limitations. For instance, the fer-
roptosis-lncRNA signature was developed according 
to the TCGA public database, but it would be better to have 

strong external data to confirm its validity and practical-
ity. Furthermore, our study is mainly based on integrated 
bioinformatics and lacks confirmation of these findings 
from valid clinical studies.

Conclusions

In the present study, we developed a ferroptosis-related 
lncRNA signature exhibiting high accuracy and stability, 
which shows potential as a prognostic prediction tool for 
ccRCC patients. Moreover, by constructing a ceRNA net-
work and conducting immune infiltration analysis, we elu-
cidated the potential mechanisms by which ferroptosis-
related lncRNAs regulate ccRCC, and explored their role 
within the TME, offering novel insights for precise treat-
ment based on ferroptosis signaling. Our study provides 
a potential option for prognosis prediction and personal-
ized treatment in ccRCC patients.

Fig. 10. GO and KEGG analyses using DEGs between high- and low-risk groups. A. BP items in GO analyses; B. CC items in GO analyses; C. MF items in GO 
analyses; D. KEGG pathways

GO – Gene Ontology; KEGG – Kyoto Encyclopedia of Genes and Genomes; DEGs – differentially expressed genes; BP – biological process; CC – cellular 
component; MF – molecular function.
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Data availability

The datasets generated and/or analyzed during the cur-
rent study are available from the corresponding author 
on reasonable request.

Ethics approval and consent to participate

This article did not involve any studies with human 
or  animal participants conducted by  the  authors, and 
therefore, ethical approval or consent was not required. 

Fig. 11. ssGSEA and ESTIMATE analysis between high- and low-risk groups. 
A. ssGSEA showing the scores of 16 immune cells between 2 groups; B. 
ssGSEA showing the scores of 13 immune-related functions between 
the 2 groups; C. ESTIMATE score, stromal score and immune score were 
calculated with the ESTIMATE method between the 2 groups

ssGSEA – single-sample gene set enrichment analysis; ESTIMATE 
– Estimation of STromal and Immune cells in MAlignant Tumor tissues 
using Expression data.
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The study did not require any administrative permission 
or licenses to access the original data used in the research.

Supplementary data

The Supplementary materials are available at https://
doi.org/10.5281/zenodo.8032200. The package includes 
the following files:

Supplementary Fig. 1. Seven ferroptosis-related genes 
were divided into 2 categories in the FerrDb database. Fer-
roptosis suppressor: CAV1, CD44, PML and SCD. Ferrop-
tosis driver: CDKN2A, TAZ and MYB.

Supplementary Fig. 2. The results of the proportional haz-
ards assumption (lncRNAs selection using univariate Cox 
regression) based on Schoenfeld’s global and individual test.

Supplementary Fig. 3. The results of the proportional 
hazards assumption (selection of lncRNA signature and 
clinical features) based on Schoenfeld’s global and indi-
vidual test.

Supplementary Fig. 4. The linear relationship between 
the log hazard and the continuous variable age.

Supplementary Table 1. Ferroptosis-related genes 
(n = 112) validated in humans and protein coding were 
obtained from the FerrDb database.

Supplementary Table 2. Annotated gene sets to quantify 
the immune infiltration enrichment scores of different 
immune cells and immune-related functions.

Supplementary Table 3. The results of the proportional 
hazards assumption for Cox regression based on Schoen-
feld’s global and individual test.

Supplementary Table 4. The detailed Cox regression 
results, including HR, coefficient, 95% CI, Wald test, and 
likelihood ratio (LR) test
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