Ethoxyquin mediates lung fibrosis and cellular immunity
in BLM-CIA mice by inhibiting HSP90
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Abstract

Background. Patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) are charac-
terized by severe pulmonary fibrosis and immune dysrequlation. Heat shock protein 90 (HSP90) is involved
in the progression of pulmonary fibrosis and the immune response.

Objectives. This study aimed to explore whether HSP90 requlates the development of RA-ILD and its
underlying mechanism.

Materials and methods. In vivo, collagen-induced arthritis (CIA)-mice were treated with bleomycin (BLM)
to establish an arthritic mouse model of pulmonary fibrosis. In vitro, human lung fibroblast 1 (HLF1) was
exposed to transforming growth factor beta 1 (TGF-B1) to simulate an RA-ILD model. The RA-ILD models
were treated with the HSP90 inhibitor ethoxyquin (EQ) to explore the potential mechanism of HSP90 in RA-
ILD. Histopathological analysis was performed, and pulmonary fibrosis was evaluated. The differentiation
of M1/M2 macrophages and Th1/Th17/Treg cells was assessed. The role of the TGF-B/Smad2/3 pathway
in EQ-mediated RA-ILD progression was also explored.

Results. HSP90a and HSP90P were uprequlated in the RA-ILD models. Ethoxyquin mitigated arthritis
in BLM-CIA mice, and reduced the expression of alpha-smooth muscle actin (a-SMA), collagen | (Col-1)
and fibronectin (FN), as well as hydroxyproline content, thereby relieving pulmonary fibrosis. In addition,
EQ increased M1 macrophages and inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha
(TNF-q) levels; conversely, EQ decreased M2 macrophages and vascular endothelial growth factor (VEGF)-A
and TGF-B1 contents. It also decreased Th17 (interleukin (IL)-17) while increasing Th1 (interferon gamma
(IFN-y)) and Treg (Foxp3), and restricted the expression of transforming growth factor beta type receptor |
and Il (TGF-BRI and TGF-PRIl) and the phosphorylation of Smad2 and Smads3.

Conclusions. This study revealed that EQ regulated pulmonary fibrosis and cellular immunity by inhibiting
HSP90, appearing to act through the TGF-B/Smad2/3 pathway. These findings suggest that EQ holds potential
as a therapeutic agent for treating RA-ILD.

Key words: pulmonary fibrosis, HSP90, cellular immunity, rheumatoid arthritis-associated interstitial lung
disease, ethoxyquin
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Background

Rheumatoid arthritis (RA) is a systemic autoimmune
disease characterized by joint damage and inflammation.!
It often also leads to the involvement of extra-articular
organs, and one of the most common manifestations
is interstitial lung disease (ILD), which affects more than
60% of RA patients. Unfortunately, the median survival
time for patients with RA-associated ILD (RA-ILD) is only
3-7 years.?? In addition to the dysregulated immune re-
sponse, patients with RA-ILD develop irreversible lung
fibrosis that resembles idiopathic pulmonary fibrosis.*>
While certain anti-fibrotic medications such as nintedanib
and pirfenidone have shown promise as potential treat-
ments for RA-ILD, some patients may require additional
immunomodulatory therapy.®” As a result, there is a press-
ing need to develop new treatment approaches that specifi-
cally target RA-ILD. This would significantly contribute
to improving patients’ overall health and quality of life.

T cell activation plays a crucial role in the pathology
of pulmonary fibrosis.® T cells, which can be further cat-
egorized based on surface markers and cell functions, in-
clude natural killer T cells, CD8 cytotoxic T lymphocytes,
y8 T cells, Treg (T regulatory, Foxp3) cells, and T helper
cells. T helper cells can be further divided into different
subsets such as Th1 (interferon gamma (IFN-y)), Th2 (in-
terleukin (IL)-4), Th17 (IL-17), and Tth (T follicular helper).
Studies have shown that nintedanib, for instance, can regu-
late T cell activation and promote the release of IFN-y.°
In the lungs of patients with RA-ILD, IL-17A is upregu-
lated. This elevation of IL-17A stimulates the prolifera-
tion of fibroblast-like synoviocytes and the production
of extracellular matrix (ECM) proteins.?

Macrophages are also present in the lungs of individuals
with pulmonary fibrosis. Inflammatory responses typi-
cally lead to the activation of M1 macrophages by Th1 cells,
while the Th2 cytokine IL-4 induces alternative activation
of M2 macrophages (anti-inflammatory, pro-fibrotic).!*1?
Macrophages, acting as antigen-presenting cells, participate
in T cell-mediated immune responses, and the activation
of M1 or M2 macrophages can affect the occurrence of T cell
responses.!3 Inhibition of M2 macrophage polarization has
been reported to ameliorate the fibrotic phenotype of RA-
ILD.™ However, there is still a need to uncover more details
about the various cellular immune states that exist in RA-ILD.

Heat shock protein 90 (HSP90) is a type of molecular chap-
erone protein involved in regulating protein balance, adap-
tive immune response, and cell differentiation and develop-
ment.!® In patients with pulmonary fibrosis, HSP90 has been
reported to modulate collagen deposition and wound healing,
increasing interest in the potential beneficial effect of HSP90
inhibition in pulmonary fibrosis.!® Previous evidence has
shown that citrullinated HSP90 (citHSP90) plays a signifi-
cant role in immune response in RA-ILD. The citHSP90
stimulates T cells in RA-ILD to produce IFN-y in response
to a Thl response.'”'® However, further confirmation
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is needed to understand the precise role of HSP90 in the fi-
brotic and immune responses observed in RA-ILD.

Ethoxyquin (EQ) has long been used as an additive in an-
imal feed to improve growth performance and disease re-
sistance.!?° Due to its anti-inflammatory and antioxidant
properties, EQ has shown potential in preventing acute
liver injury and cancer.??? Previous studies have illus-
trated the ability of EQ to decrease HSP90 activity, thereby
alleviating peripheral axonal injury induced by chemo-
therapy and providing neuroprotection,?®?* and suggesting
the emergence of EQ as a potential inhibitor of HSP90.
However, whether EQ can modulate RA-ILD progression
by regulating HSP90 activity still needs to be elucidated.

The TGF-B/Smad2/3 signaling pathway is widely rec-
ognized to mediate the process of pulmonary fibrosis.?>2°
transforming growth factor-beta (TGF-p) drives the epithe-
lial-mesenchymal transition (EMT) by activating the tran-
scription factor involved in EMT (EMT-TF). The EMT
is a crucial pathway for the formation of myofibroblasts,
which are the central cells in pathological fibrosis.?”28
Studies have found that microRNA-18-5p limited TGF-f/
Smad2/3 signaling and prevented the EMT of pleural me-
sothelial cells induced by bleomycin (BLM), ultimately al-
leviating subpleural lung fibrosis.? Vitamin D deficiency,
on the other hand, leads to activation of the TGF-3/Smad2/3
signaling and collagen deposition in the lungs, accelerat-
ing BLM-induced pulmonary fibrosis.?® However, whether
HSP90 mediates the TGF-/Smad2/3 signaling pathway
to affect the progression of RA-ILD remains to be elucidated.

The establishment of the preventative models has helped
to understand the role of EQ in RA-ILD. Arthritis and
pulmonary fibrosis are 2 key pathological features of RA-
ILD.?° As an in vivo model, the collagen II (Col-2)-induced
arthritis (CIA) model has been widely chosen for studying
the pathogenesis of RA, as it is cost-effective and shares
immunological and pathological features relatively similar
to human RA.3"32 Bleomycin is further used to induce
animal pulmonary fibrosis and lung injury.* Additionally,
TGEF-B1 is activated in the process of pulmonary fibrosis.
TGEF-B1 predominantly drives lung fibroblast differentia-
tion into myofibroblasts and stimulates excessive secretion
of ECM proteins by myofibroblasts, leading to ECM de-
position and fibrosis.?*3*> Therefore, the BLM-CIA mouse
model and TGF-Pl-induced human lung fibroblast 1
(HLF1) cell model were chosen to assess the effect of EQ
on pulmonary fibrosis.

Objectives

This study aims to generate a mouse model of RA-ILD,
establish a TGF-P1-induced HLF1 cell model, and investi-
gate the mechanism through which EQ affects the physi-
ological and pathological phenotypes and immune cell
characteristics associated with RA-ILD. These investiga-
tions will provide new insights for treating RA-ILD.
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Materials and methods
Animal model

Male C57BL/6 mice (6—8 weeks old) were ordered from
Hunan SJA Laboratory Animal Co., Ltd. (Changsha,
China). Mice were randomly divided into 3 groups (n = 6
in each group): sham, CIA+BLM and CIA+BLM+EQ.
A brief flowchart of the animal model procedure is shown
in Fig. 1. The CIA mice were treated with BLM to mimic
the RA-ILD model as described previously.>3¢ The CIA
was induced by Col-2 emulsified in Freund’s complete
adjuvant. On day 0, a subcutaneous injection of 100 pL
of emulsion containing 100 pg of Col-2 and 200 pug
of Mycobacterium tuberculosis (Mtb) was administered
at the base of the tail. On day 21, booster immunization
was performed following the same procedure. On day
25, mice in the CIA+BLM and CIA+BLM+EQ groups
were subjected to intrabronchial injections of 5 mg/kg
BLM. On the same day, 8 h after BLM induction, mice
in the CIA+BLM+EQ group were intraperitoneally injected
with extra 0.36 mg/mouse EQ (E8260; Sigma Aldrich, St.
Louis, USA).22 From day 25 to day 45, mice received EQ
3 times a week for 3 weeks. The mice in the sham group
received an equivalent dose of normal saline.

Airway hyperresponsiveness analysis

A lung function challenge test was carried out the day
following the final treatment administration. After
the mouse was anesthetized and fixed, the skin of the neck
was incised, and the trachea was bluntly dissected. After
the trachea was exposed, sutures were used to pass through
the trachea, the T-shaped entrance was opened in the tra-
chea, and the endotracheal tube was inserted and then
ligated and fixed. The airway responsiveness of the mice
in each group was measured using a closed plethysmogra-
phy system. The mice were sealed in a body scanning box,
and after the baseline was stabilized, a bronchial challenge
was performed with 0.5, 1, 2, 4, and 6 mmol/L methacho-
line (Mch) solutions (A2126; Sigma-Aldrich). At the end
of each excitation, the 2" excitation and detection were
performed after the baseline stabilized. Changes in air-
way resistance parameters at different Mch concentrations
were observed and calculated. Percentage reduction of lung
compliance was calculated as
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(lung compliance value before challenge —
lung compliance value after challenge)/
lung compliance value before challenge x 100%.

Tissue staining

Histopathological analysis was performed using he-
matoxylin and eosin (H&E) and Sirius red staining.
Lung tissues were fixed in 4% paraformaldehyde. Joint
tissues were fixed in 10% formalin and decalcified with
ethylenediaminetetraacetic acid (EDTA). Paraffin em-
bedding was performed on both lung and joint tissues,
followed by sectioning into thin slices measuring 4—5 pm.
The extent of the damage in lung and synovial tissues
was assessed using H&E staining. Collagen deposition
in the synovium was assessed with Sirius red staining.
Sections were deparaffinized with xylene and hydrated
with alcohols of varying concentrations. Subsequently,
sections were stained with H&E and Sirius red dye (Abio-
well, Changsha, China). After dehydration, the sections
were observed under an optical microscope (BA210T;
Motic, Xiamen, China), and randomly selected fields
of view were photographed.

Immunohistochemistry staining

After deparaffinization and hydration, sections of the left
lungs were heated in 0.01 mol/L citrate buffer for thermal
antigen retrieval. To eliminate endogenous enzymes, 1%
periodate was added. After washing with phosphate-buff-
ered saline (PBS), the sections were incubated overnight
at 4°C with alpha-smooth muscle actin (a-SMA) antibody
(1:300, BM0002; Boster, Wuhan, China). The next day,
horseradish peroxidase (HRP)-labeled mouse antibody
(1:100, AW'S0003; Abiowell) was added. Briefly, 4,6-diamid-
ino-2-phenylindole (DAPI) was chosen to stain nuclei, and
hematoxylin was used to counterstain tissues. Finally, im-
ages were acquired under an optical microscope (BA210T;
Motic) (x100 and x400 magnification) and analyzed with
IPP (Image-Pro-Plus; Media Cybernetics, Rockville, USA).

Flow cytometry
To assess the immune status of RA-ILD, peripheral blood

and bronchoalveolar lavage fluid (BALF) were collected from
the mice, and the proportion of immune cells was detected.

Fig. 1. Flowchart of the animal
model procedure
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Red cell lysate was added to fresh blood. After centrifugation,
the cell pellet was suspended in PBS. Cells (1x10° cells/100 pL)
were washed with 0.01 M PBS (pH 7.4) and resuspended
in the culture medium. Then, F4/80-FITC (11-4801-82; eBio-
science, San Diego, USA) and CD11c-PE (12-0114-82; eBio-
science) or F4/80-FITC and CD206-PE (12-2061-82; eBiosci-
ence) were added, and the cells were incubated in the dark
for 30 min and washed with PBS. Subsequently, cells were
analyzed for M1/M2 macrophage ratio with flow cytometry
(A00-1-1102; Beckman Coulter, Fullerton, USA).

For Th1/Th17 detection, a cell stimulation cocktail was
added to suspend cells. Cells were stimulated at 37°C for
4 h. After centrifugation, 0.5% bovine serum albumin
(BSA)-PBS was added to wash the cells. Cells were sus-
pended with intracellular fixation buffer and fixed at room
temperature. Subsequently, cells were suspended with per-
meabilization buffer. CD4-FITC (11-0041-82; eBioscience)
and IFNy-PE (12-7311-82; eBioscience) or CD4-FITC and
IL17-PE (12-7177-81; eBioscience) were added and incu-
bated for 30 min in the dark. Cells were washed with 0.5%
BSA-PBS and analyzed using flow cytometry.

For Treg detection, cells were fixed and permeabilized.
Subsequently, CD4-FITC, CD25-APC (17-0251-82; eBiosci-
ence) and Foxp3-PE (12-5773-82; eBioscience) were added,
and the cells were incubated in the dark for 30 min. Cells were
washed with 0.5% BSA-PBS and analyzed with flow cytometry.

Enzyme-linked immunosorbent assay

Vascular endothelial growth factor (VEGF)-A, inducible
nitric oxide synthase (iNOS), tumor necrosis factor alpha
(TNF-a), TGF-B, IFN-y, IL-17, and Foxp3 levels in mouse
serum and BALF were detected according to the kit instruc-
tions. VEGF-A (CSB-E04756m), iNOS (CSB-E08326m),
TNEF-o (CSB-E04741m), TGE-B (CSB-E04726m), and IFN-y
(CSB-E04578m) detection kits were ordered from Cusabio
(Wuhan, China). The Foxp3 detection kit (Y]J037859) was
purchased from Yuanju Biological Co., Ltd. (Shanghai,
China).

Table 1. Primer sequences used in the study

Targets | F (5'-3')
M-TGF-BR AATTCCTCGAGACAGGCCATTT
M-Smad?2 AATCATTGCAACAAGAGGCAGT
M-Smad3 CCCTAGTCAAGCCCAGTCCCT
M-IFN-y GCCACGGCACAGTCATTGA
M-IL-17 AGACTACCTCAACCGTTCCAC
M-Foxp3 CTCCAATCCCTGCCCTTGACC
M-B-actin ACATCCGTAAAGACCTCTATGCC
H-ACTA2 (a-SMA) CTATGAGGGCTATGCCTTGCC
H-COL1AT (Col-1) GCAAGAACCCCGCCCGCACC
H-FN ATTCACCTACAATGGCAGGACGTT
H-B-actin ACCCTGAAGTACCCCATCGAG
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Hydroxyproline detection

To quantify collagen metabolism, a hydroxyproline as-
say was performed according to the kit manual (A030-2-1;
Nanjing Jiancheng Bioengineering Institute, Nanjing,
China). The hydrolysate was added, and the tissue was
hydrolyzed by heating in a water bath. The pH was adjusted
to 6—6.8. The hydrolysate containing activated carbon
was added and mixed well. The supernatant was collected
after centrifugation, and the absorbance value of each tube
was measured at 550 nm. The data show hydroxyproline
content (ug per mg) of tissue.

Quantitative real-time polymerase chain
reaction

Total RNA was extracted from cell lysates and tissues
using TRIzol (15596026CN; Thermo Fisher Scientific,
Waltham, USA). RNA was then converted into cDNA us-
ing the HiFiScript cDNA Synthesis Kit (CW2569; CW-
BIO, Taizhou, China). The UltraSYBR mix kit (CW2601;
CWBIO) was used to perform quantitative real-time
polymerase chain reaction (QPCR) with the PCR system.
The 2724t method was used to calculate the relative level
of the target after S-actin standardization. The primer
sequence is shown in Table 1.

Western blot

Radioimmunoprecipitation assay (RIPA; AWB0136;
Abiowell) was used to extract total protein from cell ly-
sates or tissues, and then the protein concentration was
quantified with a bicinchoninic acid (BCA) kit (AW B0104;
Abiowell). Then, the total protein was separated using
sodium dodecyl-sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) and transferred to a nitrocellulose (NC)
membrane. The membrane was mixed with 5% skim milk
powder and incubated for 90 min to prevent nonspecific
binding. Subsequently, the membrane was incubated with

| R(5-3)
CCAGCTGACTGCTTTTCTGTAG
ATTCCCGTCCCCATCATCCT
AGCCTCCTAAACAAGAGTCCACACC
TGCTGATGGCCTGATTGTCTT
CACCAGCATCTTCTCGACCC
ACATCATCGCCCGGTTTCCA
TACTCCTGCTTGCTGATCCAC
GCTCAGCAGTAGTAACGAAGGA
GCTCTCGCCGAACCAGACATGCC
GCACCAAAGATGTCCGTCCTGT
AGCACAGCCTGGATAGCAAC
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Table 2. Antibodies used in the study
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Cat. No. and manufacturer

Indicator Dilution
HSP90a 1:1,000
HSP90B 1:5,000
a-SMA 1:2,000
Col-1 1:2,000
FN 1: 5,000
TGF-BRI 1:1,000
TGF-BRII 1:1,000
p-Smad?2 1:5,000
Smad2 1: 6,000
p-Smad3 1: 2,000
Smad3 1:3,000
B-actin 1: 5,000
HRP goat anti-mouse IgG 1:5,000
HRP goat anti-rabbit IgG 1:6,000

mouse ab128483; Abcam
rabbit ab203085; Abcam
rabbit 55135-1-AP; Proteintech
rabbit 14695-1-AP; Proteintech
rabbit 15613-1-AP; Proteintech
rabbit ab235578; Abcam
rabbit ab259360; Abcam
rabbit ab188334; Abcam
rabbit 12570-1-AP; Proteintech
rabbit ab52903; Abcam
mouse 66516-1-lg; Proteintech
mouse 66009-1-Ig; Proteintech
mouse SA00001-1; Proteintech
rabbit SA00001-2; Proteintech

TGF-BRI'and TGF-BR Il - transforming growth factor beta type receptor | and II; FN - fibronectin; HRP — horseradish peroxidase; IgG — immunoglobulin G;

Col-1 - collagen 1; a-SMA - alpha-smooth muscle actin.

primary antibody at 4°C overnight. After washing with
Tris-buffered saline with Tween (TBST), the membrane
was mixed with the secondary antibody for 90 min. Finally,
the membrane was exposed to Enhanced Chemilumines-
cence (ECL) Plus (AWBO0005; Abiowell), and the protein
bands were visualized using a gel imaging system (Chemi-
Scope6100; Clinx, Shanghai, China). Antibody information
is shown in Table 2.

Cell culture

Human lung fibroblast 1 (HLF1) was ordered from Pri-
cella (Wuhan, China). Cells were maintained in Ham’s
F-12K medium containing 10% fetal bovine serum (FBS)
and 1% penicillin and streptomycin. To explore the effects
of EQ in vitro, 3 groups were set up (n = 6 in each group):
control, TGF-p1 and TGF-B1+EQ. Cells were exposed
to 10 ng/mL TGF-P1 for 48 h,%” and treated with different
concentrations (0, 1, 2,4, 6,8, and 10 ug/mL) of EQ for 48 h.

Cell counting kit

The toxic response of EQ to HLF1 cells was tested us-
ing a Cell Counting Kit-8 (CCK-8) assay. 5x10? cells were
seeded in 96-well plates. After the cells adhered to the wall,
10 pL of CCK-8 solution was added to each well. After
incubation at 37°C for 4 h, the absorbance of the samples
was measured at 450 nm.

Immunofluorescence
Expression of a-SMA in HLF1 cells was evaluated using

an immunofluorescence (IF) assay. Cells were fixed with
4% paraformaldehyde and washed with PBS, incubated

with 0.3% Triton X-100 for 30 min, washed with PBS, then
thoroughly mixed with 5% BSA for 1 h and washed with
PBS. Antibody a-SMA (1:50, BM0002; Boster) was added
and incubated overnight at 4°C. Then, the anti-mouse
secondary antibody (1:200, AWS0004b; Abiowell) was
added and incubated at 37°C for 90 min. DAPI (4',6-di-
amidino-2-phenylindole) was applied to stain the nucleus
for 10 min. Finally, images were acquired (x400 magnifica-
tion) using fluorescence microscopy (BA410E; Motic) and
photographed.

Statistical analyses

GraphPad Prism v. 9 (GraphPad Software, San Diego,
USA) was used for statistical analysis. Data were expressed
as the mean with a 95% confidence interval (95% CI). Nor-
mal distribution was assessed using the Shapiro—Wilk test,
and the Brown—Forsythe test was used to confirm variance
homogeneity (Supplementary Tables 1-6). One-way analy-
sis of variance (ANOVA) and two-way ANOVA were used
to compare groups. Tukey’s post hoc test was adopted. All
experiments consisted of 6 biological replicates, each rep-
resenting the average of 3 technical replicates. The thresh-
old for statistical significance was set at p < 0.05.

Results

Effects of EQ on disease manifestations
in BLM-CIA mice

A mouse model of BLM-CIA was established to investi-
gate the impact of EQ on RA-ILD. All the mice in the sham
group survived during modeling. The CIA+BLM group
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Fig. 2. Ethoxyquin (EQ) inhibits the pathogenesis of rheumatoid
arthritis-associated interstitial lung disease (RA-ILD). A. Survival rate
of mice in each group; B. Representative images of mouse paws
indicating joint swelling; C. Body weight changes in mice; statistical
analysis was performed using two-way analysis of variance
(ANOVA) and Tukey's post hoc test; D. The mouse lung compliance
assay; statistical analysis was performed using two-way ANOVA
and Tukey's post hoc test; E. The degree of lung tissue lesions

and synovitis in mice; scale bar = 100 pm (up) and 25 pm (down);
F. The levels of pulmonary fibrosis; scale bar = 100 um (up) and

25 um (down)

Data were expressed as the mean with a 95% confidence interval
(95% Cl); *p < 0.05 vs sham group; #p < 0.05 vs CIA+BLM group;
CIA - collagen-induced arthritis; BLM — bleomycin.
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Fig. 3. Ethoxyquin (EQ) regulates HSP90 expression and collagen deposition in BLM-CIA mice. A. The abundance of HSP90a and HSP90B; B. The evaluation
of alpha-smooth muscle actin (a-SMA) expression; scale bar = 100 um (up) and 25 um (down); C. Detection of hydroxyproline content in lung tissue;
D. Analysis of the protein abundance of a-SMA, collagen | (Col-1) and fibronectin (FN)

Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey's post hoc test. Data were expressed as the mean with a 95%
confidence interval (95% Cl); *p < 0.05 vs sham group; #p < 0.05 vs CIA+BLM group; CIA — collagen-induced arthritis; BLM — bleomycin.

exhibited a decreased survival rate; however, treatment
with EQ restored the survival rate of the diseased mice
(Fig. 2A). The CIA+BLM group displayed evident redness
and swelling in the paws, while EQ treatment amelio-
rated arthritis and swelling in the affected mice (Fig. 2B).

The body weight of the diseased mice decreased, while EQ
partially restored their body weight on day 45 (p < 0.001,
ANOVA, Fig. 2C). Moreover, the CIA+BLM group exhib-
ited an increase in lung compliance reduction percentage
compared to the sham group, indicating an exacerbated
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reduction in lung compliance and restricted lung func-
tion in the CIA+BLM group. However, the CIA+BLM+EQ
group showed a lower percentage than the CIA+BLM
group (p < 0.001, ANOVA, Fig. 2D), suggesting that EQ
increased lung compliance and was protective in the BLM-
CIA mice. The CIA+BLM group exhibited a widened pul-
monary septum, increased infiltration of macrophages and
lymphocytes, elevated number of neutrophils, significant
destruction of alveolar structure, and obvious inflam-
mation. However, the severity of lung tissue lesions was
notably reduced in the CIA+BLM+EQ group (Fig. 2E).
In addition, H&E staining demonstrated marked joint sy-
novial hyperplasia and infiltration of inflammatory cells
in the CIA+BLM group, both of which were alleviated after
EQ treatment (Fig. 2E). The CIA+BLM group mice showed
significant collagen deposition in the lung interstitium,
while EQ treatment alleviated this pathological phenom-
enon (Fig. 2F). Collectively, these results indicate that
the BLM-CIA mice exhibited synovitis and pulmonary
fibrosis, and treatment with EQ alleviated the physiologi-
cal and pathological phenotypes associated with RA-ILD.

Effects of EQ on HSP90 expression and
collagen deposition in BLM-CIA mice

Subsequently, compared with the sham group, we found
that the expression of HSP90a and HSP90P was up-
regulated in the CIA+BLM group, while EQ decreased
HSP90a and HSP90p levels (p < 0.001, ANOVA, Fig. 3A).
The expression of a-SM A was elevated in BLM-CIA mice,
while EQ inhibited its expression (p < 0.001, ANOVA,
Fig. 3B). The hydroxyproline content in the lung tis-
sues was increased in the CIA+BLM group, which was
further suppressed by EQ (p < 0.001, ANOVA, Fig. 3C).
The protein abundance of a-SMA, collagen I (Col-1)
and fibronectin (FN) increased in the CIA+BLM group,
but EQ downregulated the expression of these proteins
(p < 0.001, ANOVA, Fig. 3D). Our data suggest that EQ
blocked the expression of HSP90, a-SMA, Col-1, and FN
in BLM-CIA mice.

Ethoxyquin affected the cellular immune
status in the peripheral blood of BLM-CIA
mice

Compared with the sham group, the CIA+BLM group
exhibited a decrease in the proportion of M1 macrophages
and an increase in M2 macrophages. Compared with
the CIA+BLM group, EQ increased M1 macrophages and
decreased M2 macrophages (p < 0.001, ANOVA, Fig. 4A).
In the peripheral blood of the CIA+BLM group, iNOS and
TNEF-a levels were decreased, while the levels of VEGE-
A and TGF-p1 increased. Treatment with EQ reversed
these changes (p < 0.001, ANOVA, Fig. 4B). In addition,
the CIA+BLM group exhibited a decrease in the pro-
portion of Thl and Treg cells and an increase in Th17
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cells. However, EQ increased Th1 and Treg cells and de-
creased Th17 cells compared with the CIA+BLM group
(p < 0.001, ANOVA, Fig. 4C). The level of IL-17A was in-
creased in the CIA+BLM group, while the levels of IFN-y
and Foxp3 were decreased. The EQ treatment reversed
these changes (p < 0.001, ANOVA, Fig. 4D). These results
show that in the peripheral blood of BLM-CIA mice, EQ
increased M1 macrophages, Thl and Treg subsets and
decreased M2 macrophages and Th17 cells.

Ethoxyquin regulated the cellular immune
status in the lung of BLM-CIA mice

Compared with the sham group, the CIA+BLM group
exhibited a decrease in the proportion of M1 macro-
phages and an increase in M2 macrophages in the BALF.
Compared with the CIA+BLM group, EQ treatment in-
creased M1 macrophages and decreased the M2 phenotype
(p <0.001, ANOVA, Fig. 5A). The CIA+BLM group showed
reduced iNOS and TNF-a levels and elevated VEGF-A and
TGEF-P1 levels, while EQ reversed the levels of these factors
(p < 0.001, ANOVA, Fig. 5B). In addition, the proportion
of Th1 cells in the CIA+BLM group was lower, and the pro-
portion of Th1 cells in the CIA+BLM+EQ group was higher
than that of the CIA+BLM group (p < 0.001, ANOVA,
Fig. 5C). The levels of IFN-y and Foxp3 were decreased,
and IL-17A was increased in the CIA+BLM group, while
EQ reversed these changes (p < 0.001, ANOVA, Fig. 5D).
These results showed that EQ increased M1 macrophages
and Th1 cells and decreased M2 macrophages in the lungs
of BLM-CIA mice.

Effects of EQ on the TGF-f/Smad2/3
signaling pathway in BLM-CIA mice

We further investigated the effects of the TGF-3/Smad2/3
pathway on RA-ILD regulated by EQ. The CIA+BLM group
exhibited increased TGF-fR, Smad2 and Smad3 mRNA
levels in lung tissue, while EQ inhibited the increase
of these factors (p < 0.001, ANOVA, Fig. 6A). The pro-
tein abundance of transforming growth factor beta type
receptor I and II (TGF-BRI and TGEF-PR II) was elevated
in the CIA+BLM group, and EQ reversed these proteins’
expression (p < 0.001, ANOVA). In addition, the ratios
of p-Smad2/Smad2 and p-Smad3/Smad3 were increased
in the CIA+BLM group, and EQ reversed these trends
(p < 0.001, ANOVA, Fig. 6B). These data show that EQ
inhibited the TGF-f/Smad2/3 pathway in BLM-CIA mice.

Ethoxyquin affected fibrosis-related
protein expression through TGF-f3/
Smad2/3 pathway in vitro

Through in vitro experiments, the role of EQ was con-

firmed using TGF-pl-induced HLF1 cells. The toxic re-
sponse of different concentrations of EQ (0, 1, 2, 4, 6, 8,



Fig. 4. Ethoxyquin (EQ)
participates in rheumatoid
arthritis-associated interstitial
lung disease (RA-ILD)

by regulating the proportion
of immune cells in peripheral
blood. A. The analysis of M1/M2
macrophages by F4/80* and
CD11ct/CD206* double staining;
B. The detected inducible

nitric oxide synthase (iNOS)
tumor growth factor alpha
(TNF-a), vascular endothelial
growth factor (VEGF)-A, and
transforming growth factor
beta 1 (TGF-31); C. Analysis

of Th1, Th17 and Treg cell ratios;
D. Detection of interferon
gamma (IFN-y), interleukin
(I)-17A and Foxp3

Statistical analysis was
performed using one-way
analysis of variance (ANOVA)
and Tukey's post hoc test. Data
were expressed as the mean
with a 95% confidence interval
(95% Cl); *p < 0.05 vs sham
group, #p < 0.05 vs CIA+BLM
group; CIA - collagen-induced
arthritis; BLM — bleomycin.



Fig. 5. Ethoxyquin (EQ)
regulates the proportion
of immune cells

in the lungs of BLM-CIA
mice. A. The analysis

of M1/M2 macrophages
by F4/80* and CD11c"/
CD206* double staining;
B. The detected inducible
nitric oxide synthase
(iNOS), tumor necrosis
factor alpha (TNF-a),
vascular endothelial
growth factor (VEGF-A),
and transforming growth
factor beta 1 (TGF-B1)

in bronchoalveolar
lavage fluid (BALF);

C. The proportion of Thi
cells in BALF; D. Detection
of the relative mRNA
levels of interferon
gamma (IFN-y), interleukin
(IL)-17A and Foxp3in lung
tissue homogenates

Statistical analysis was
performed using one-
way analysis of variance
(ANOVA) and Tukey's
post hoc test. Data were
expressed as the mean
with a 95% confidence
interval (95% Cl);

*p < 0.05 vs sham group;
#p < 0.05 vs CIA+BLM
group; CIA - collagen-
induced arthritis;

BLM - bleomycin.
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Fig. 6. Ethoxyquin (EQ) blocks TGF-B/Smad2/3 signaling to mediate the pathogenesis of rheumatoid arthritis-associated interstitial lung disease (RA-ILD).
A.The relative levels of TGF-BR and Smad2 and Smad3; B. The abundance of transforming growth factor beta type receptor | and Il (TGF-BRI and TGF-{3RIl)

p-Smad2, Smad2, p-Smad3, and Smad3 in lung tissue

Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey's post hoc test. Data were expressed as the mean with a 95%
confidence interval (95% Cl); *p < 0.05 vs sham group; #p < 0.05 vs CIA+BLM group; CIA — collagen-induced arthritis; BLM — bleomycin.

and 10 pg/mL) to HLF1 cells was evaluated. Cell Counting
Kit-8 assay revealed that there were no significant dif-
ferences in the viability of HLF1 cells with an increase
in EQ concentration compared with the control group, sug-
gesting that EQ had no obvious toxic effect on HLF1 cells
(p=0.088, ANOVA, Fig. 7A). Therefore, 10 pg/mL EQ was
chosen in subsequent experiments. Transforming growth
factor beta 1 increased the expression of a-SMA, Col-1
and FN in HLF1 cells, while EQ treatment reversed these
changes (p < 0.001, ANOVA, Fig. 7B and 7C). Ethoxyquin
suppressed TGF-B1-induced expression of a-SM A in HLF1
cells (p < 0.001, ANOVA, Fig. 7D). These results demon-
strate that EQ reduced EMT-specific protein expression
in TGF-Bl-exposed HLF1 cells. In addition, TGF-B1 pro-
moted the expression of HSP90a and HSP90B and in-
creased the ratios of p-Smad2/Smad2 and p-Smad3/Smad3
in HLF1 cells, and EQ reversed the trends observed for
these proteins (p < 0.001, ANOVA, Fig. 7E). These results
suggest that EQ attenuated TGF-P1-induced expression
of fibrosis-related factors in HLF1 cells.

Discussion

Interstitial lung disease is the most important comor-
bidity in RA, but there is still a lack of specific treatment
strategies for RA-ILD.383° Therefore, finding therapeu-
tics that target pulmonary fibrosis and the adaptive im-
mune response is critical. In this study, we investigated
whether the HSP90 inhibitor EQ regulates BLM-induced
pulmonary fibrosis in CIA mice. The results showed that
EQ restricted the protein expression of HSP90 isoforms
(HSP90o and HSP90p). Ethoxyquin ameliorated RA-asso-
ciated pathological phenotypes, namely joint swelling and
synovitis, in the BLM-CIA mice. Airway responsiveness

can be used to reflect airway inflammation.***! Pulmo-
nary involvement in RA can cause airway impairment,*?
and pulmonary fibrosis also involves airway abnormali-
ties and functional changes.*® Fibrosis leads to a decrease
in lung compliance, which in turn causes a decline in lung
function.***> Ethoxyquin reversed the reduction in lung
compliance in BLM-CIA mice, as well as attenuated col-
lagen deposition in the lungs of the BLM-CIA mice, as de-
termined using H&E staining and Sirius staining. These
results provide the first experimental evidence that HSP90
deficiency alleviated disease symptoms in BLM-CIA mice,
thus providing novel insights and directions for the future
treatment of RA-ILD.

The main pathology of pulmonary fibrosis involves
the recruitment of inflammatory cells and the prolifera-
tion of lung fibroblasts, which leads to excessive deposition
of ECM, mainly composed of collagen.*® Col-1 is the major
form of collagen in the ECM, and myofibroblasts express-
ing a-SMA are the major source of Col-1. In our study,
we observed that EQ downregulated BLM-induced a-SMA
expression and decreased the levels of collagen-related
markers Col-1 and FN, as well as the collagen component
hydroxyproline. These results confirm that EQ attenuated
pulmonary fibrosis in BLM-CIA mice.

Transforming growth factor beta 1 occupies a central
position in the pathogenesis of idiopathic pulmonary fi-
brosis (IPF). It promotes the transformation of fibroblasts
into myofibroblasts and the EMT and accelerates collagen
formation.3* At present, evidence that the classic TGF-B1/
Smad2/3 pathway is involved in idiopathic pulmonary fi-
brosis has gradually increased.*”#® In our report, EQ inhib-
ited the expression of the TGF-f receptors TGF-BRI and
TGEF-BRIL, and hindered the phosphorylation of Smad2 and
Smad3. Previous reports have supported that HSP90 can
stabilize TGF-f} receptors and Smads and that inhibition



Fig. 7. Ethoxyquin (EQ) regulates the progression of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) through the transforming growth
factor beta (TGF-)/Smad2/3 pathway in vitro. A. The analysis of HLF1 cells in response to EQ cytotoxicity; B. Relative mRNA levels of alpha-smooth muscle
actin (a-SMA), collagen | (Col-1) and fibronectin (FN) in cells; C. Relative protein levels of a-SMA, Col-1 and FN in cells; D. Assessment of a-SMA expression

is shown; scale bar = 25 um; E. The abundance of HSP90a, HSP90B, p-Smad2, Smad2, p-Smad3, and Smad3 in cells

Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey’s post hoc test. Data were expressed as the mean with a 95%
confidence interval (95% Cl); *p < 0.05 vs control group; ¥ p < 0.05 vs TGF-B1 group.
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of HSP90 attenuated TGF-B-driven myofibroblast trans-
formation and EMT deposition.**® We found that EQ
suppressed TGF-B1-induced expression of a-SMA, Col-1
and FN in HLF1 cells. Taken together, our data reveal that
EQ alleviated pulmonary fibrosis in RA-ILD by impeding
the TGF-p1/Smad2/3 pathway.

The number and phenotype of macrophages are critical
to the fibrotic process, and induction of M2 macrophage
polarization aggravates the development of pulmonary fi-
brosis.”! Studies have shown that MBD?2 stimulates PI3K/
Akt signaling to enhance the macrophage M2 phenotype,
and MBD2 knockdown protects BLM-induced lung fibrosis
by depleting M2 macrophages.> The M2 macrophage-
derived microRNAs (miRNAs) are thought to promote lung
fibrosis.>® Furthermore, M2 macrophages are the main
source of TGF-B1, which induces fibroblast differentiation
and proliferation.>* Based on the above data, we hypoth-
esized that EQ might impair macrophage M2 polarization
to protect CIA mice from BLM-induced pulmonary fibro-
sis. As expected, we observed that EQ increased the pro-
portion of M1 macrophages and decreased M2 in periph-
eral blood and BALF, promoting the switch of macrophages
from an M2 to an M1 phenotype. Examination of the levels
of markers associated with M1 and M2 macrophages sup-
ported this finding. In BLM-CIA mice, EQ upregulated
iNOS and TNF-a and downregulated VEGF-A and TGF-f1.

In this study, we also found an imbalance in the T cell
subsets in BLM-CIA mice. The BLM increased Thl cells
(IEN-y) and Treg cells (Foxp3) and decreased Th17 cells
(IL-17A) in peripheral blood and BALF. Ethoxyquin re-
versed the effect of BLM on Th1/Th17/Treg cells in BLM-
CIA mice. T cells are key players in pulmonary fibrosis.*®
An increase in the ratio of Th1/Th?2 cells is widely thought
to exert an anti-fibrotic effect.”®>” Recent evidence sup-
ports the pro-fibrotic role of Th17 cells, and inhibition
of Th17 production can prevent BLM-induced pulmonary
fibrosis.>®> Tregs seem to have a dual role in pulmonary
fibrosis, which may be related to different models and dif-
ferent stages of pulmonary fibrosis.®® In addition, TGF-f1
is very important for T cell response in pulmonary fibro-
sis,®V%2 but whether EQ mediates T cell differentiation and
functional maintenance in RA-ILD through the TGF-$1/
Smad2/3 pathway needs further evidentiary support.

Limitations

There are some limitations to this study. A constrained
timeframe and financial constraints prevented the applica-
tion of TGF-P1 in an animal model to explore the potential
involvement of the TGF-B1/Smad2/3 pathway in the func-
tion of EQ. Different animal models could produce varying
outcomes, and further analysis is required to understand
the inhibitory effects of EQ on HSP90 fully. The inability
to examine the efficacy and safety of EQ in therapeutic
animal models is also a limitation of this study. It should
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be noted that the results from the BLM-CIA mouse model
and the TGF-B1-induced HLF1 cell model may not neces-
sarily reflect the same effects of EQ in human RA-ILD, and
further validation in clinical samples is required. The role
of the airway responsiveness test in assessing the develop-
ment of RA-ILD is limited. Therefore, additional evidence
is still needed to fully evaluate the effect of EQ on lung
function in BLM-CIA mice. The association between RA-
ILD and RA-airway diseases is worth exploring. The op-
timal administration route and dosage of EQ for BLM-
induced CIA mice still needs to be determined. Moreover,
additional research is needed to elucidate the significance
of macrophage polarization and T cell responses in the de-
velopment of RA-ILD, as well as to gather more evidence
supporting the regulatory role of EQ on macrophage po-
larization and T cell responses. Sample sizes for the in vi-
tro and in vivo experiments were also limited. We plan
to utilize larger sample sizes in future studies.

Conclusions

Our work identified EQ’s previously unrecognized
critical role in RA-ILD. We confirmed that EQ inhibited
the TGF-B1/Smad2/3 pathway to attenuate synovitis, joint
destruction and pulmonary fibrosis in BLM-CIA mice.
Furthermore, we also illustrated that EQ promoted M2-
to-M1 programming of macrophages and affected the dif-
ferentiation of Th1/Th17/Treg cells. These results sup-
port the possible application of EQ as a therapy addressing
the pathophysiology of RA-ILD.

Supplementary data

The Supplementary materials are available at https://doi.
org/10.5072/zenodo.34794. The package includes the fol-
lowing files:

Supplementary Table 1. Normality and uniformity test
results of data and main test results in Fig. 2.

Supplementary Table 2. Normality and uniformity test
results of data and main test results in Fig. 3.

Supplementary Table 3. Normality and uniformity test
results of data and main test results in Fig. 4.

Supplementary Table 4. Normality and uniformity test
results of data and main test results in Fig. 5.

Supplementary Table 5. Normality and uniformity test
results of data and main test results in Fig. 6.

Supplementary Table 6. Normality and uniformity test
results of data and main test results in Fig. 7.
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