Uniwersytet Przyrodniczy we Wrocławiu
Wydział Inżynierii Kształtowania Środowiska
i Geodezji

Rozprawa doktorska

mgr inż. Jan Sztejn

Dynamika zmian zasobów krajobrazowych strefy
podmiejskiej Wrocławia w latach 1982-2009

Promotor
Prof. dr hab. inż. Andrzej Drabiński

Wrocław 2012
Podziękowania

Składam serdeczne podziękowania promotorowi niniejszej pracy, Panu prof. dr hab. inż. Andrzejowi Drabińskiemu, za opiekę naukową, wsparcie w realizacji pracy oraz cenne wskazówki i dyskusje.

Chciałbym także podziękować Panu dr inż. arch. Pawłowi Ozimkowi, za pomoc w realizacji badań oraz umożliwienie prac w laboratorium Zakładu Grafiki Komputerowej i Obliczeń Wysokich Wydajności na Wydziale Informatyki Politechniki Krakowskiej.

Pragnę wyrazić głęboką wdzięczność Pani prof. dr hab. inż. Halinie Klimczak, za cenne rady i możliwość wykorzystania w badaniach sieci TEMKART, opracowanej przez Panią Profesor, a która stała się istotnym narzędziem elementem w analizach przekształceń krajobrazu.

Podziękowania składam także Panu dr inż. Piotrowi Gołuchoewi za pomoc przy opracowaniu ortofotomapy dla 1982 roku.
Zawartość

1. WPROWADZENIE ... 5
 1.1. Wstęp ... 5
 1.2. Przedmiot i zakres badań ... 5
 1.3. Tezy i cel pracy .. 7
 1.4. Obszar badań ... 8
 1.4.1. Rys historyczny .. 8
 1.4.2. Środowisko przyrodnicze .. 15
 1.4.3. Charakterystyka osadnictwa ... 17
2. PRZEGLĄD LITERATURY ... 25
 2.1. Teren badań ... 25
 2.2. Ekspansja peryferyjna .. 26
 2.3. Przegląd literatury z zakresu teorii i metodyki ... 28
3. METODYKA BADAŃ ... 33
 3.1. Materiały i źródła ... 33
 3.1.1. Badania kameralne ... 33
 3.1.2. Badania terenowe ... 36
 3.2. Delimitacja obszaru badań ... 36
 3.3. Wskaźniki krajobrazowe .. 37
 3.4. Parametryzacja wybranych zasobów krajobrazu na potrzeby modelu 42
 3.5. Mapa widoczności .. 44
 3.6. Opis metody ... 47
 3.6.1. Pozyskanie informacji o zasobach krajobrazowych ... 48
 3.6.2. Budowa modelu wirtualnego krajobrazu ... 48
 3.6.3. Budowa map widoczności ... 51
 3.6.4. Weryfikacja modelu krajobrazu ... 53
4. WYNIKI BADAŃ ... 55
5. DYSKUSJA WYNIKÓW ... 75
5.1. Przekształcenia powierzchniowe i liniowe.. 76
5.2. Zmiany zasobów wizualnych ... 76
5.3. Stopień otwartości krajobrazu .. 85
5.4. Wrażliwość wizualna krajobrazu .. 86
5.5. Analiza wyników w świetle badań innych autorów 86
5.6. Planowanie przestrzenne a krajobraz... 88
5.7. Propozycja koncepcji funkcjonalno przestrzennej.............................. 92
6. PODSUMOWANIE I WNIOŚKI KOŃCOWE ... 94
7. LITERATURA ... 98
8. SPIS ILUSTRACJI ... 106
1. **PROJEKT WPROWADZENIE**

1.1. **Wstęp**

Do niedawna podwrocławski krajobraz pozostawał czytelny i harmonijny a jego wizualne formy wynikały z rolniczych funkcji. Ostatnie kilkanaście lat to proces wyjątkowo silnych przekształceń strefy podmiejskiej, której skutkiem są nieodwracalne zmiany charakteru krajobrazu powodowane zamykaniem i fragmentacją terenów otwartych, rozcłonkowaniem oraz zanikaniem elementów kulturowych i przyrodniczych, typowych dla wsi podwrocławskich. Szeroko definiowany krajobraz, od ujęcia przyrodnego do percepcji odbiorcy, oddziałuje na jakość życia mieszkańców a każda inwazja w stan istniejący niesie za sobą wymierne skutki. Najdynamiczniej przeobrażane obszary leżące na zachód i południowy zachód od Wrocławia stały się obiektem badań przemian krajobrazu strefy podmiejskiej, ze szczególnym uwzględnieniem ilościowych zmian zasobów krajobrazu oraz jego wizualnego charakteru. Analiza stadiów rozwoju krajobrazu od początku lat osiemdziesiątych XX w do 2009 roku daje możliwość prześledzenia zmian na progu skoku cywilizacyjnego związanego ze zmianami ustrojowymi po 1989 roku i po przystąpieniu Polski do Unii Europejskiej.

1.2. **Przedmiot i zakres badań**

Przedmiotem badań są zmiany zachodzące w krajobrazie strefy podmiejskiej Wrocławia na skutek procesów suburbnizacji. Pod uwagę wzięto zmienne relacje przestrzenne pomiędzy wybranymi charakterystycznymi dla omawianego obszaru zasobami krajobrazowymi. W szczególności analizowany był aspekt wizualny przeobrażeń dawnych otwartych terenów rolniczych w podmiejskie dzielnice mieszkaniowe.

Zakres terytorialny obejmuje fragment Równiny Kąckiej, na południowy zachód od Wrocławia (Rys.1). Północna granica badanego obszaru przebiega po administrowej granicy Wrocławia, natomiast południowa sięga za autostradę A4. Na zachodzie wychodzi
poza wieś Smolec, a w części wschodniej obejmuje Bielany Wrocławskie aż po wieś Ślęza. W centralnej części terenu opracowania znajduje się wieś Pietrzykowice. Wg podziału Kondrackiego (2002) mikroregion Równiny Kąckiej wchodzi w skład mezoregionu Równiny Wrocławskiej a ta jest z kolei częścią Niziny Śląskiej.

Rys. 1. Obszar badań

Ponadto w celu głębszego zrozumienia procesów zachodzących w krajobrazie wykonano przegląd rozwoju fizjonomii Równiny Wrocławskiej od czasów wczesnego średniowiecza, do chwili obecnej.
Obiekty badawcze

Na podstawie wstępnych badań terenowych oraz po analizie zdjęć lotniczych z lat 1982 – 2009 określono ogólną charakterystykę terenu badań obejmującego łącznie trzynaście wsi i przysiółków wraz z otaczającymi rozłogami pól uprawnych, zadrzewieniami śródpolnymi oraz lasami. Ze względu na nierównomierny rozkład przekształceń obszaru, na szczególną uwagę zasługują osady o największej dynamice procesów suburbanizacji:

- Smolec. Powstają tu duże osiedla mieszkaniowe. W ciągu kilku lat rolniczy, otwarty krajobraz przekształcił się w całkowicie zabudowaną przestrzeń. Rozbudowa Smolca w dalszym ciągu postępuje bardzo żywiołowo, nieradko przyczyniając się do dewastacji krajobrazu;
- Nowa Wieś Wrocławska. Położona w pobliżu autostrady A4 oraz w bezpośrednim sąsiedztwie budowanej właśnie Obwodnicy Autostradowej Wrocławia. Na obiekcie istnieje możliwość bezpośredniego śledzenia procesu przemian zasobów krajobrazu pod wpływem inwestycji drogowej o dużym stopniu oddziaływania na środowisko;

1.3. Tezy i cel pracy

Celem pracy było określenie wpływu urbanizacji strefy podmiejskiej Wrocławia na charakter krajobrazu, a w szczególności przeanalizowanie:

- czy krajobraz rozwija się w sposób spójny, czy powstają nowe zakłócenia?
- czy na skutek zmian powstają nowe formy krajobrazu?
- które elementy krajobrazu są najbardziej wrażliwe na wpływ urbanizacji?
- jak przedstawia się zjawisko fragmentacji i zamykania terenów otwartych?
i na tej podstawie wypracowanie metody opisywania i analizy zmian przestrzennych związanych z urbanizacją strefy podmiejskiej dużego miasta oraz określenia ich wpływu na „wizualny charakter krajobrazu”.

Cele szczegółowe:

- Identyfikacja i klasyfikacja nowo powstających form krajobrazu.
- Identyfikacja elementów krajobrazu najbardziej podatnych na wpływ urbanizacji.
- Wykazanie trendu zamykania dawnych terenów otwartych.
- Odpowiedź na pytanie gdzie pojawiają się największe zakłócenia i czy krajobraz rozwija się w sposób spójny.
- Sprawdzenie możliwości praktycznego zastosowania koncepcji „spójności” i „zakłócenia” krajobrazu w badaniach (Ode, Tveit, Fry, 2008).

Tezy badawcze:

- Ład przestrzenny Niziny Wrocławskiej ukształtowany został poprzez wielowiekowe nawarstwienia kulturowe, zarówno w sferze architektonicznej jak i agrarnej.
- Największa dynamika przekształceń krajobrazu Równiny Kąckiej na przestrzeni ostatnich stuleci zaznacza się na początku XXI w.
- Głównym czynnikiem zmieniającym postać tradycyjnego krajobrazu rolniczego jest nowopowstająca zabudowa.
- Nowe formy zagospodarowania przestrzennego zagrażają trwałości historycznej krajobrazu.
- Gwałtowna zmiana funkcji terenu z rolniczej na mieszkaniową bądź usługową oraz zerwanie z tradycyjną formą zabudowy prowadzi do zaburzenia ładu przestrzennego.

1.4. Obszar badań

1.4.1. Rys historyczny

Omawiając rozwój krajobrazu Równiny Kąckiej nie sposób nie odnieść się do szerszego obszaru Niziny Śląskiej, czy nawet całego Śląska. Ze względu na specyfikę terenu wynikającą z bardzo dogodnych warunków dla rolnictwa, obszar ten wzmiankowany jest
w literaturze dość często. Analiza rozwoju kultury agrarnej tego obszaru stała się więc podstawą do zrozumienia specyfiki badanego krajobrazu. W niniejszej pracy dużo uwagi poświęcono przemianom rolnictwa i krajobrazu kulturowego.

znajdujemy w okolicach wsie, lub osiedla wrocławskie powstałe ze średniowiecznych osad o nazwach wskazujących na rodzaj wykonywanych przez ich mieszkańców prac (Kowale, Szczytniki, Świniary itp.) (Rosik, 2006).

Wyraźne przeobrażenie krajobrazu Śląska nastąpiło w czasach tzw. „rewolucji XIII w.” Kiedy to Henryk Brodaty zapoczątkował kolonizację na prawie niemieckim i pełną integrację z zachodnioeuropejskim kręgiem cywilizacyjnym. W tym okresie powstało wiele wsi a już istniejące na prawie polskim często przebudowywano. Zagospodarowanie na prawie niemieckim wyróżniało powiązanie z wydajniejszym systemem pracy w rolnictwie. Dawne chaotycznie zabudowane owalnice i okolnice zastąpiono uporządkowanymi ulicówkami z regularnie ciągnącą się wzdłuż drogi zabudową do której przylegały pasma wąskich pół i pastwisk tzw. niw (Wójcik, 2006).

W XIV w. następuje rozkwit gospodarczy miast, wzrasta popyt na płody rolne co z kolei przyczynia się do rozwoju wsi. Właścicielami ziemiemi stawali się coraz częściej bogaci mieszkańcy wykupujący wsi i folwarki. W księstwie wrocławskim folwarki obejmowały 30% arealu. W XV w. wojny husyckie oraz liczne plagi zahamowały rozwój gospodarczy oraz osadnictwo. W tym okresie nastąpiło znacznne wyłudnienie Śląska. Ze spisów łanów z 1443 r. wynika, że na terenie księstwa wrocławskiego 1/5 gruntów ornych, w tym najbardziej urodzajnych została porzucona i leżała odlogiem (Ingloń, 1979).

W XVI w. na skutek sytuacji ekonomicznej i silnego przyrostu demograficznego następuje proces parcelacji nieużytków i wspólnych dóbr jak pastwiska czy nawet drogi. W zabudowaniu wsi przybywa domów bezrolnych lub małorolnych chłopów z drugiej strony część dawnych zagrody kmeckich scala się i zamienia w folwarki. Dawne renesansowe zamki przebudowywano na barokowe rezydencje, tworząc przy tym założenia parków dworskich. Pojawiły się zatem symetrycznie kształtowane parterze ogrodowe, otoczone szpalerami i grupami drzew. Sprowadzano egzotyczne gatunki drzew w tym: sosnę, tulipanowiec amerykański, kasztanowiec krwisty, miłorząb chiński. Gościńce pałacowe obsadzano drzewami tworząc aleje wiązów, lip, kasztanowców, buków, dębów i robinii (Czerwiński, 2005)

Goliński (2006) zauważa także zmiany jakie nastąpiły środowisku naturalnym od XVI w. Na skutek intensywnego wyrębu lasów zaczęły nasilać się zjawiska erozyjne. Proces ten spotęgowała w połowie XVII w. zmiana klimatu na bardziej wilgotny i chłodny. Utrata wydolności reencyjnej i glebotwórczej oraz zamulanie koryt rzecznych stało się przyczyną katastrofalnych powodzi. Dla zapobiegania negatywnym skutkom erozji oraz w celu...

Po wyniszczającej Śląsk wojnie trzydziestoletniej 1618-1648 nastąpiła stopniowa odbudowa, widoczna zwłaszcza na wsi gdzie likwidowano pańszczynę. Za panowania pruskiego zaczęto przeprowadzać reformę administracyjną modernizując przy tym sieć osadniczą. Na skutek reform fryderycjańskich i nowej fali kolonizacji powstały na Śląsku kolejne osady. Były to zwykle niewielkie przysiółki o charakterze kolonii zakładanych często przy dawnych założeniach folwarcznych (Staffa, 2005).

Na przełomie XVIII i XIX w. dominujące barokowe założenia pałacowe i dworskie zaczęły ustępować klasycystycznym formom parkowo pałacowym, często w stylu angielskich parków krajobrazowych. W kształtowaniu krajobrazu znaczenia nabrała naturalna forma i konfiguracja terenu (Czerwiński, 2005).

Od XVIII w. na Śląsku pod wpływem inspiracji i doświadczeń państw zachodnich, zwłaszcza Anglii, zaczęto wprowadzać zmiany w strukturze agrarnej wsi. W przodujących majątkach zwłaszcza w rejencji wrocławskiej odchodziło od trójpolówki na rzecz płodozmiaru co spowodowało zmniejszenie powierzchni ugorów i przyczyniło się do wprowadzenia do rolniczego krajobrazu Śląska nowych typów upraw roślin okopowych i pastewnych (Inglot, 1979). W sylwetach wsi zaczęły pojawiać się zabudowania przeznaczone do stajennego wypasu bydła, zastępującego tradycyjny chów pastwiskowy. Jak podkreśla Walczak (1974) w zlewni Ślęży wyjątkowo licznie hodowano dobre rasy bydła mlecznego a do lat 60. XIX w. popularnym elementem krajobrazu były na Nizinie Śląskiej stada owiec. Dalsze zmiany w krajobrazie wsi następowaly w XIX w. kiedy to areał zajmowany przez zboża kurczył się a przybywało rozległych upraw okopowych, przemysłowych i pastewnych. Dominowała uprawa ziemniaków, koni szyn i buraka cukrowego. Stopniowo począwszy od bogatszych ziem rejencji wrocławskiej zaczęto stosować nowe narzędzia rolnicze i nawozy sztuczne znacznie podnoszące wydajność pracy. Zwiększał się udział produkcji warzywnej, zwłaszcza w okolicach Wrocławia, gdzie

Rys. 2. Widok s stronę masywu Ślęży i Tyńca małego z okolic współczesnego krzyża przy trasie Bielany Wrocławskie – Świdnica. Rycina z około 1800 r. przedstawia charakterystyczna do dnia dzisiejszego w podwrocławskim krajobrazie pasmowe układy zarzewień. F.G. Endler, ze zbiorów Instytutu Herdera

Pod koniec XIX w. na Śląsku spada liczba małych gospodarstw, poniżej 5 ha, a wzrasta liczba średnich i dużych. Gospodarstwa o areałach powyżej 100 ha zajmowały 45% ogółu pól i lasów. Wprowadzono intensyfikację rolnictwa i zwiększono wykorzystanie ziemi. Większą rolę zaczął odgrywać przemysł spożywczy. Powstawały liczne cukrownie, w tym największa na Klecinie, a jak podkreśla Walczak, Dolny Śląsk stał się kolebką światowego cukrownictwa z buraków cukrowych (Walczak, 1974). W krajobrazie wsi pojawiły się też młyny i gorzelnie. Istniała już gęsta sieć dróg utwardzonych, z których większość obsadzano drzewami, często owocowymi (Kułak, 2006). W 1843 r. zbudowano linię kolejową z Wrocławia do Świebodzic, na trasie której znalazła się stacja Smolec. Na przedpolach Wrocławia szybko zaczęły rozwijać się osiedla satelitarne i dzielnice willowe (Staffa, 2005).
W okresie II. wojny światowej Śląsk uchodził za jedną z najbezpieczniejszych prowincji Rzeszy, dlatego też wzrastała tu liczba ludności uciekającej przed działaniami wojennymi na zachodzie, przenoszono też całe fabryki a życie w miastach i na wsi przebiegało w miarę normalnie. Sytuacja diametralnie zmieniła się na początku 1945 r. kiedy to ofensywa Armii Czerwonej spustoszyła Dolny Śląsk. Na „ziemiach odzyskanych” rozpoczęto proces kolonizacji, głównie repatryjantami z Kresów Wschodnich i Polski centralnej (Ruchniewicz, 2006). Wieś dolnośląska pomimo zniszczeń infrastruktury i częściowo tkanki budowlanej, a także przelewającej się po wojnie fali szabrowników, stanowiła dla nowoprzybyłych atrakcyjny, dobrze rozwinięty region. W 1945 r. duże gospodarstwa i folwarki stanowiące ponad 40% powierzchni gospodarstw rolniczych i leśnych przejmowane były przez wojska radzieckie. Stopniowo do 1948 r. przekazywane były Państwowym Nieruchomościom Ziemskim. Część z nich zwłaszcza w okolicach Wrocławia rozparcelowano w ramach tzw. spółdzielni parcelacyjno – osadniczych, resztę utrzymano w ręku państwa tworząc Państwowe Gospodarstwa Rolne (PGR). Do lat 50. rolnictwo miało tu jednak charakter ekstensywny. Z powodu braku rąk do pracy i sprzętu, zniszczeń wojennych i występujących licznie pól minowych, w krajobrazie wsi pojawiły się polacie odłogów (Inglof, 1979).

Osobną kwestią pozostaje dewastacja dworków i pałaców, które przetrwały wojnę w przyzwoitym stanie. W znacznym stopniu przyczyniło się do tego procederu wojsko radzieckie, które w pierwszych latach po wojnie zajmowało wiele założeń pałacowo parkowych wraz z folwarkami. Często dochodziło do niszczenia i całkowitego rozbioru tych obiektów w ramach akcji „odzysku” cegły. Ponadto nowi właściciele PGR lub spółdzielnie produkcyjne nie dbały w należyty sposób o utrzymanie zabytków w odpowiednim stanie technicznym (Tyszkiewicz, 2006). Los taki spotkał zarówno największe założenia jak pałac w Szczodrem jak i wiele mniejszych, np. położony na terenie Równiny Kąckiej neorenesansowy pałac w Zabrodziu. Wraz z postępującą dewastacją tkanki budowlanej niszczone także parki dworskie, które często wykorzystywano do celów typowo gospodarczych.

W latach 70. XX wieku w krajobraz podwrocławskich wsi wdarła się nowa pudelkowa forma niskich bloków mieszkalnych dla pracowników PGR, a także siłosy i hangary na maszyny rolnicze (Walczak, 1974)
Do końca lat 80. krajobraz Równiny Kąckiej zmieniał się już w niewielkim stopniu [rys. 4], jednak przekształcenia te miały zwykle charakter negatywny i były spowodowane załamaniem gospodarczym w przeddzień przemian ustrojowych w kraju. Można tu wymienić zaniedbania infrastruktury oraz tkanki budowlanej zwłaszcza tej „poniemieckiej”. Na podstawie analiz ikonograficznych można stwierdzić, że w latach 80. nastąpił znaczny ubytek alei drzew owocowych i ogólnie pojawiała się tendencja „dziczenia” niektórych elementów krajobrazu.

Rys. 4. Zasoby krajobrazowe ze stanu 1982 r. na tle mapy topograficznej z 1932 r. Opracowanie autorskie na podstawie mapy topograficznej ze zbiorów Instytutu Herdera

1.4.2. Środowisko przyrodnicze

Obszar Równiny Kąckiej rozciągającej się pomiędzy Wysoczyzną Średzką a doliną rzeki Oławy położony jest w środkowej części Niziny Śląskiej. Od północnego wschodu graniczy z Pradoliną Wrocławską, na wschodzie przechodzi w Równinę Grodkowską, od południowego zachodu sąsiaduje z północnymi mezoregionami Przedgórza Sudeckiego w tym Masywem Ślęży, natomiast jego północno-zachodnią granicą z Wysoczyzną Średzką wyznacza dolina Bystrzycy (Migoń, 2005). Obszar ma monotonny, płaski charakter, z przewyższeniami nie przekraczającymi 20 m / km² (Mazurski, 1979). To mało urozmaicone ukształtowanie terenu wynika z budowy geologicznej. Równina Kącka znajduje się w
strefie uskokowej Odry, przykrytej całkowicie pokrywą osadową mioceńskich ilów, piasków i ziaren. Brak tu jakichkolwiek formacji skalnych (Żelaźniewicz, 2005). Na tak luźnym podłożu pod wpływem roślinności bagiennej lub łąkowej wykształciły się gleby należące do najbogatszych w składnik pokarmowy. Obszar pokrywają głównie półmetrowej miąższości czarne ziemie, zwane też „czarnymi ziemiami wrocławskimi”, powstałymi w wilgotniejszych warunkach na terenach o małym odpływie. Występują tu także gleby brunatne właściwe a w zagłębieniu doliny Ślęzy mady rzeczne (Drozd, 2005).

Teren opracowania należy do Śląsko-Wielkopolskiego rejonu klimatycznego kraju. Średnia roczna temperatura wynosi tu 8,5°C a w najcieplejszym miesiącu, lipcu 18°C. Okres wegetacyjny wynosi 255 dni dla progu termicznego 5°C. Średnie roczne opady kształtują się na poziomie 600 – 640 mm (Baraniecki, 1998).

Dzięki urodzajnym glebowym i korzystnym warunkom klimatycznym Równina Wrocławska stanowi główny obszar upraw w województwie. Wg waloryzacji przyrodniczej rolniczej przestrzennego produkcyjnego dla obszaru Dolnego Śląska, powiat wrocławski posiada wyjątkowo korzystne warunki dla rolnictwa. (Stuczyński i inni 2000) Występują tu kompleksy przydatności rolniczej pszenne bardzo dobre i dobre dla klas bonitacyjnych od I do III b.

miłek szkarłatny *Adonis flammea*, kurzyślad błękitny *Anagallis foemina*, dymnica drobnokwiatowa *Fumaria vaillantii* (Kęcki, 1999).

Sieć hydrograficzna należy do zlewni rzek II rzędu, Ślęży i Bystrzycy, które stanowią lewobrzeżne dopływy Odry. Największym ciekiem bezpośrednio przepływającym przez obszar badawczy jest Ślęza oraz wpadająca do niej Kasina, która jedynie w okolicach Nowej Wsi Wrocławskiej ma formę bardziej naturalnego potoku a od Cesarzowic płynie już całkowicie skanalizowanym i wyprofitowanym korytem. Poza ciekami naturalnymi obszar poprzecinany jest siecią kanałów i okresowo prowadzących wodę rowów. Warto zwrócić też uwagę na nieliczne stawy.

Tak ukształtowana sieć hydrograficzna stanowi główny ruszt struktury przyrodniczej. Wzdłuż wszystkich elementów liniowych sieci występują pasmowe zadrzewienia śródpolne przechodzące czasem w lasy lub grupy zadrzewień w obniżeniach terenu.

1.4.3. **Charakterystyka osadnictwa**

Omawiając przeobrażenia strefy podmiejskiej Wrocławia, należy zwrócić uwagę na historycznie uwarunkowaną strukturę osadniczą. Tworzą ją gęsto rozmieszczone wsie i mniejsze kolonie, wzmiankowane po raz pierwszy od XII do XIV w. Większość z nich miała układ ulicówek i zakładana była na prawie niemieckim. Warto podkreślić rozwiniętą kulturę agrarną i zamożność obszaru, znajdującą swe odbicie w licznie zachowanych zabudowaniach gospodarczych. W obrębie większości wsi występowały zespoły pałacowo–folwarczne z niewielkimi parkami. Niestety wiele z tych obiektów obecnie już nie istnieje albo znajdują się z złym stanem technicznym. W krajobrazie znajdujemy także dziewiętnasto i dwudziesto wieczne relikty obiektów przemysłowych związanych głównie z cukrownictwem i przemysłem spożywczym. Studia materiałów ikonograficznych dostarczają informacji na temat stylu życia w pierwszej połowie XX w. Tereny te pełniły nie tylko rolę spichlerza Śląska ale także miały znaczenie rekreacyjne dla mieszkańców pobliskiego Wrocławia. Zamożniejszych przyciągały takie obiekty jak pałac w Rybnicy [rys.5], a nastawieni na aktywny wypoczynek już od 1900 r. mogli korzystać z usług klubów cyklistów, z których dwa znajdowały się w pobliskim Tyńcu Małym [rys.6] (Załęski, 1985).

Pomimo działań wojennych prowadzonych na tym terenie w 1945 r. a także dewastacji w pierwszych latach po wojnie stopień zachowania historycznej substancji architektonicznej większości obiektów pozwala jeszcze na czytelny odbiór charakterystycznych cech
tradycyjnej wsi podwrocławskiej. Niestety zjawisko suburbanizacji na przełomie XX i XXI w. zapoczątkowało proces przemian sieci osadniczej, co może w szybkim czasie doprowadzić do zaniku cech typowych i zastąpienia ich przez formy osiedli podmiejskich. Poniższa charakterystyka nakreśla w ogólnym zarysie najważniejsze jednostki osadnicze, które potencjalnie stanowią ogniska dalszego rozwoju strefy podmiejskiej Wrocławia (Załęski, 1985).

Rys. 5. Pałac w Rybnicy, lata 30. XX w. (Źródło: dolny.slask.org.pl)

Rys. 6. Klub cyklistów w Tyńcu Małym, lata 20. XX w. (Źródło: dolny.slask.org.pl)
Smolec, wieś położona na południowy wschód od wrocławskiego lotniska jest jaskrawym przykładem przeobrażeń strefy podmiejskiej Wrocławia. Wzmiankowana była już w 1323 r. jako Smolcz Polonicali (Załęski, 1985) Pierwotnie wielodrożnica, obecnie na północ od historycznej części wsi, wzdłuż drogi biegnącej do Wrocławia, rozpościerają się nowe osiedla mieszkaniowe o zróżnicowanej formie i rozplanowaniu przestrzennym [rys.7]. We wsi znajdują się pozostałości założenia dworskiego, ruiny renesansowego zamku otoczone fosą oraz zdewastowany park o powierzchni 3 ha i kościół (Załęski, 1985). Ciekawym obiektem jest także dworzec kolejowy z początku XX w. zbudowany przy jednej z najstarszych linii kolejowych z połowy XIX w. (Staffa, 2005). Dawniej wieś pełniła istotną rolę administracyjną. Do 1960 r. mieściła się tu siedziba władz gminy, funkcjonowały kółka i kluby rolnicze, wieś posiadała rozbudowaną sieć sklepów i usług (Załęski, 1985). Obecnie charakter wsi zdominował proces suburbanizacji Wrocławia oddalonego o kilka kilometrów. Zabudowa wolnych terenów odbywa się w okolicach Smolca wyjątkowo dynamicznie.

![Smolec](movie_master: wroclaw.dolny.slask.pl)

Rys. 7. Przykład nowej zabudowy w pobliżu Smolca. (Źródło: dolny.slask.org.pl)

Pietrzykowice wieś położona na trasie pomiędzy Wrocławiem a Kątami Wrocławskimi, duża wielodrożnica o charakterze rolniczo – przemysłowym. Wymieniona jako Petricoviz w 1264 r. Znajdują się tu dwa zespoły folwarczne z XIX w oraz zdewastowany park z końca XVIII w. (Załęski, 1985) Na uwagę zasługuje mały przedwojenny cmentarz
otoczony kamiennym murkiem, położony na wzniesieniu na zachód od wsi. Na południe od historycznej zabudowy Pietrzykowic rozciąga się strefa przemysłowo-logistyczna. Dawniej znajdowała się tam cukrownia, po której pozostawały licowane cegłą zabudowania z przełomu XIX i XX w. Obecnie obszar ten zabudowany jest halami produkcyjnymi i magazynami. We wschodniej części wsi założono stawy rybne, które częściowo zarosły. Stanowią one największy akwen na terenie opracowania.

Zabrodzie, wieś ulicówka położona 1,5 km na zachód od Wrocławia w pobliżu obwodnicy miasta. We wsi znajdują się pozostałości założenia pałacowo parkowego. Po neorenesansowym pałacu [rys.8] nie pozostało śladu, a cztero hektarowy park krajobrazowy został całkowicie zaniedbany. Znaleźć tam można jeszcze zarośnięte pozostałości po budowlach parkowych. We wschodniej części parku znajdował się staw, obecnie zarośnięty. W skład zespołu dworskiego wchodził jeszcze folwark z dziewiętnastowieczną zabudową. Na wschód od wsi w przydrożnym zagajniku znajduje się staw. Pomimo bliskości Wrocławia gwałtowny rozwój zabudowy w Zabrodziu nie nastąpił (Załęski, 1985).

Rys. 8. Nieistniejący już pałac w Zabrodziu, który uległ zniszczeniu po 1945r. (Źródło: fotopolska.eu)

Mokronos Dolny, dawna ulicówka sąsiadująca z Wrocławiem, w pobliżu węzła autostradowej obwodnicy Wrocławia. Wchodziła w skład dóbr klasztoru w Trzebnicy i wzmiankowana była od 1267 r. pod nazwą Mocronozi. We wsi znajduje się zespół dworski z dobrze zachowanym pałacem z początku XX w. W centrum znajduje się staw. W północnej części rozwija się nowa zabudowa mieszkaniowa (Załęski, 1985).

Mokronos Górny. Wieś położona pomiędzy Mokronosem Dolnym a Smolcem w pobliżu autostradowej obwodnicy Wrocławia. Pierwotnie była to osada o układzie ulicówki obecnie silnie urbanizowana i rozrastająca się o nowe ulice. Zabudowa mieszkaniowa rozlewa się w każdym kierunku, najintensywniej na północ i zachód gdzie dochodzi do linii kolejowej za którą znajdują się nowopowstałe osiedla Smolca (Załęski, 1985).

Gądów. Wieś ulicówka położona na zachód od Pietrzykowic. Wzmieniona po raz pierwszy w 1207 r. jako Gadnouo. We wsi znajduje się zaniedbany zespół dworski z osiemnastowiecznym pałacem i spichlerzem. W skład zespołu wchodzi także niewielki park krajobrazowy, obecnie zarośnięty i zdewastowany. Wieś rozbudowuje się wzdłuż głównej drogi w stronę północną i południową gdzie zlewa się z Nową Wsią Wrocławską (Załęski, 1985).

Śleza to wieś położona nad rzeką Ślęzą w pobliżu autostrady. Znajduje się tu odrestaurowany renesansowy pałac z XV w. oraz park ze stawem. Obok odnowiona zabudowa folwarczna. Obecnie całość założenia wchodzi w skład centrum filmowego którego nowoczesne studia znajdują się w południowej części parku. Na północy wsi
powstał duży kompleks centrum tenisowego. Dalej znajdują się pozostałości progu wodnego i jazu na Ślęzy. W zachodniej części wsi odnajdziemy jeden z największych w okolicy stawów. Kilometr na południe od wsi, na rozległym wzgórzu położona jest strzelnicą wojskową z charakterystycznym ceglanym kullochwytem. Rozciąga się stamtąd szeroki widok na masyw Ślęży i Przedgórze Sudeckie.

Rys. 11. Pałac we wsi Ślęza. (Źródło: dolny.slask.org.pl)
2. **PRZEGLĄD LITERATURY**

2.1. **Teren badań**

" Każdy z regionów górskich Dolnego Śląska ma swoją osobowość – zespół cech, które go wyodrębniają od innych. Czy można jednak dostrzec coś indywidualnego w krajobrazie Równiny Wrocławskiej, nizinnego i płaskiego obszaru na lewym brzegu Odry?"

(*Arczyński [w]Walczak 1974*)

Obszar Równiny Wrocławskiej był przedmiotem zainteresowań badaczy zarówno w ujęciu geograficznym i przyrodniczym, jak też historycznym czy nauk rolniczych. Ze względu na niewielki rozmiary i jednorodny charakter pozbawiony spektakularnych form geologicznych należy go jednak rozpatrywać w szerszym ujęciu geograficznym Niziny Śląskiej lub nawet całego Dolnego Śląska. W badaniach krajobrazowych, w kontekście wizualnym i estetycznym problematyka strefy podmiejskiej Wrocławia dotyczy zwykle wybranych aspektów architektonicznych bądź krajoznawczych.

Ciekawą pracą o charakterze krajoznawczym jest opracowany przez PTTK opis miejscowości gminy Kąty Wrocławskie, obejmujący wszystkie wsie z uwzględnieniem ich układów zabudowy i historycznej charakterystyki, a także uwarunkowania przyrodnicze i opis szlaków turystycznych (Załęski, 1985).

Bogatym źródłem materiałów dotyczących rozwoju rolnictwa na Dolnym Śląsku od początku osadnictwa do 1975 r. jest szeroko opracowana *Historia chłopów śląskich* (Inglot, 1979).

Istotny z punktu widzenia niniejszego opracowania wkład wniosły badania zadrzewień w krajobrazie rolniczym na obszarze Równiny Wrocławskiej wykonane przez zespół.
Orłowskiego i Nowaka opublikowane w artykule *The importance of marginal habitats for the conservation of old trees in agricultural landscapes* (2006).

2.2. **Ekspansja peryferyjna**

Z rozwojem miast nierozерwalnie związane są zagadnienia przyrodnicze, które szczególnie jaskrawo rysują się na styku aglomeracji i obszarów cennych z ekologicznego punktu widzenia. Próbę kompleksowego rozwiązania szeregu problemów z zakresu planowania przestrzennego w kontekście przyrodniczym zaprezentowała Rasza w pracy habilitacyjnej pt. Poznański Przełom Warty w planowaniu systemów ekologicznych (2003).

Warto zwrócić uwagę na fakt występowania tego zjawiska w przeszłości. Już w antycznym Rymie doszukać się można problemów planistycznych z rozproszoną podmiejską zabudową. Zamożniejsi mieszkańcy chcąc uciec przed zgiełkiem milionowej metropolii zakładali pod Rzymem *villa suburbana* lub *villa rustica* (Bohm, 2006). W kontekście niniejszej pracy należy przyjrzeć się ekspansji Wrocławia, która od czasów budowy
drugiej linii umocnień w XV w. została znacznie zahamowana. Po zdobyciu Wrocławia przez wojska Napoleona jednym z warunków kapitulacji była rozbiorka krępujących rozwój przestrzenny miasta fortyfikacji w 1807 r. (Kulak, 2006). Splantowanie murów miejskich umożliwiło połączenie Wrocławia z pięcioma przedmieściami: Mikołajskim, Świdnickim, Oławskim, Piaskowym i Odrzańskim. Powierzchnia miasta wzrosła z 133 do 2046 ha. (Malczyński, 1956; Rozpędowski, 1995).

Zwycięska koncepcja zakładała koncentryczne rozmieszczenie miast satelitarnych (trabanten) okalających Wrocław, który miał stanowić rdzeń całego założenia. Całość miała spajać dobrze rozwiniętą sieć komunikacyjną a obszary pomiędzy trabantami miały pozostać otwarte z przeznaczeniem dla rolnictwa i rekreacji (Kononowicz, 1995). Wprawdzie plan rozwoju Wrocławia został zrealizowany jedynie fragmentarnie na Złotnikach, Wojtczycach, Ołtiszynie i Brochowie, jednak same próby jego realizacji świadczyły o przyjętym nurcie polityki przestrzennej miasta ukierunkowanym na tworzenie przystępnych i uwzględniających społeczne potrzeby zespołów mieszkaniowych. Kompozycje urbanistyczne Maya cechowała typizacja oparta na znormalizowanych elementach architektonicznych; wprowadził on klasyfikację budynków uwzględniającą status ich właścicieli i umiejscowienie w aglomeracji (półwściejskie, przedmiejskie, miejskie). Wrocławski okres twórczości Ernsta Maya wniósł wkład w tworzący się ruch Werkbundu i miał swoje konsekwencje w latach kolejnych (Kononowicz, 2010).

2.3. Przegląd literatury z zakresu teorii i metodyki

Definicja krajobrazu przyjęta przez Europejską Konwencję Krajobrazową stanowi: *obszar, postrzegany przez ludzi, którego charakter jest wynikiem działania i interakcji czynników przyrodniczych i/lub ludzkich*. Obecnie krajobraz postrzegany jest jako składowa dziedzictwa kulturowego i jako taka powinna być chroniona, a za istotny cel stawia się tu rozpoznanie charakterystycznych cech krajobrazu oraz czynników wpływających na jego kształtowanie (Rada Europy, 2000). W takim ujęciu istotny staje się termin *charakteru krajobrazu* opisany przez zbiór elementów i cech, których rozmieszczenie, proporcja i wzajemne oddziaływanie czyni krajobraz odmiennym od pozostałych (Swanwick, 2002). Pojęcie to należy rozpatrywać szerzej w znaczeniu holistycznym odnoszącym się do złożonej natury krajobrazu (Antrop i Van Eetvelde 2000, Jessel 2006) Charakter krajobrazu jest zmienny i odzwierciedla stadium rozwoju czynników kulturowych i przyrodniczych, nigdy nie jest stanem ostatecznym (Myga-Piątek, 2005). Tworzą go
elementy zarówno przyrodnicze (geologia, rzeźba terenu, gleba, roślinność) jak i antropogeniczne (użytkowanie terenu, układ pól i osadnictwo ludzkie) przynależące wspólnie do konkretnej przestrzeni (Swanwick 2002).

Pojęcie *charakteru krajobrazu* narodziło się w Wielkiej Brytanii gdzie prowadzono systematyczne prace w zakresie monitoringu krajobrazu i wyodrębniania poszczególnych jego cech (Majchrowska, 2006). Efektem działalności brytyjskiej Countryside Agency i Scottisch Natural Heritage było wypracowanie metody Landscape Character Assessment LCA, która zyskała uznanie nie tylko w środowisku naukowców ale także władz a jej rozwinięcia i modyfikacje są stosowane jako narzędzia wspierania polityki przestrzennej w wielu krajach m.in. Danii, Belgii, Francji, Szwecji, Norwegii (Ode, Tveit i Fry, 2008). Metoda ta zakłada wyodrębnianie na podstawie fizycznych cech jednostek krajobrazowych landscape character area a następnie określenie ich indywidualnego charakteru i wytycznych do dalszego kształtowania (Haines-Young i Potschin 2005).

Charakter krajobrazu można rozszerzyć na zagadnienia estetyczne, związane z percepcją i indywidualnym postrzeganiem przestrzeni przez obserwatora. Można zatem wyróżnić wizualny *charakter krajobrazu* jako wizualne odzwierciedlenie elementów, układów i struktur krajobrazu (Ode, Tveit i Fry, 2008).

Analizy widokowe w badaniach krajobrazowych upowszechniła słynna praca *The View from the Road* (Appleyard, Lynch i Myer 1964), w której autorzy omawiają percepcje poruszającego się obserwatora, co wiąże się z pojęciem ekspozycji czynnej (Bogdanowski, Łuczyńska - Bruzda i Novak, 1982). Szerzej podstawowa terminologia badań wizualnych nakreślona została w opracowaniu Foundations for Visual Project Analysis (Smardon, 1987).

W literaturze przedmiotu spotyka się metody waloryzacji krajobrazu oparte na subiektywnej, punktowej ocenie, np. metoda krzywej wrażeń Wejcherta (Litwin, Bacior i Piech, 2009), lub ocenie za pomocą wskaźnika WIT, który określa wartość wydzielonych jednostek przestrzennych na podstawie wag przypisanych wybranym cechom krajobrazu (Litwin 2004). Innym przykładem jest metoda Sohngena, która bazuje na ocenie szaty roślinnej, ukształtowania terenu i zasobów wodnych, gdzie rozpatrywane parametry wartościowanie są na pięciostopniowej skali (Senetra, Cieślak, 2004). Waloryzacji krajobrazu można dokonywać także bazując jedynie na metodach kartograficznych. Bajerowski (1991) opierając się na podkładach mapowych opracował macierz wartości krajobrazu, gdzie estetyka wynikała z odpowiedniej konfiguracji cech przestrzennych w jednostce odniesienia.

fotografii wzdłuż ciągów komunikacyjnych wsi oraz panoram obejmujących sylwety wsi w krajobrazie półotwartym.

Krajobraz i jego estetyczne walory wiążą się od niedawna z pojęciem Geodesign ukutym na gruncie GIS, informatyki, architektury krajobrazu i nauk przyrodniczych, choć jego podwaliny ideowe podłożył McHarg i Steiniz nazywany „ojcem GIS w architekturze krajobrazu” (Orzessek, 2010). Tematyka szeroko poruszana jest na łamach cyklicznych konferencji Digital Landscape Architecture w Anhalt w Niemczech gdzie poza terminem Geodesign (Flaxman, 2010) pojawiają się zagadnienia dotyczące budowy modeli informacji krajobrazowej – Landscape Information Model (LIM) (Pietsch i inni 2010), omawiane są możliwości wykorzystania nowych narzędzi bazujących na trójwymiarowych modelach krajobrazu (Morgan, Gill, Lange, 2010), czy zrównoważonego zarządzania krajobrazem w oparciu o modelowanie w środowisku GIS (Taeger, 2010). W ramach pojęcia Geodesign mieści się też analiza wizualna krajobrazu mająca zastosowanie m.in. w badaniach przemian środowiska (Jombach, Drexlar i Sallay, 2010), czy wyznaczania scenariuszy rozwoju krajobrazu (Bishop i Smith, 2010), a także w badaniach nad krajobrazem historycznym (Joye, 2010).

Analizy krajobrazowe w ściśle wizualnym znaczeniu, z wykorzystaniem modelowania 3D są z powodzeniem wykonywane przez pracowników Politechniki Krakowskiej. Wykorzystują oni cyfrowe modele terenu rozbudowane o trójwymiarowe formy pokrycia. Istotne znaczenie ma tu zastosowanie algorytmów światła, za pomocą których wyznacza się stopień widoczności elementów krajobrazu (Ozimek, 2002). Można w ten sposób określić chłonność krajobrazową (Visual Absorption Capacity) oraz wykonywać analizy polegające na tworzeniu wykresów i map widoczności, dzięki którym możliwe jest ustalanie parametrów widokowych i przekształceń krajobrazu (Ozimek i Ozimek 2009). Metody określania widoczności w krajobrazie mogą mieć także zastosowanie w ochronie zabytków (Ozimek, 2007).

Istotnym zagadnieniem jest systematyka i pozyskanie danych zapewniających odpowiedni stopień dokładności. Powszechny do niedawna system CORINE Land Cover dostarczał informacji o pokryciu terenu ujętego w sklasyfikowane 44 kategorie, dostępne w skali 1:100000. Nie jest to jednak wystarczająca dokładność aby określić złożoną charakterystykę krajobrazu (Jessel 2006). Ograniczenia tego systemu nie pozwalają w pełni monitorować ani śledzić zmiany krajobrazu w czasie (Solon, 2004). Szansę na szerszy dostęp do baz danych adekwatnych do szczegółowych badań krajobrazu daje wprowadzona w 2007 r. dyrektywa INSPIRE (Infrastruktura Informacji Przestrzennej we Wspólnotie Europejskiej), która zakłada docelowe udostępnienie szczegółowych danych podzielonych na 34 klasy.
3. METODYKA BADAŃ

W pierwszej fazie badań przeprowadzono kwerendę archiwalną w Instytucie Herdera w Niemczech oraz przeanalizowano współczesne zdjęcia lotnicze. Na podstawie zebranych materiałów kartograficznych i ikonograficznych, a także szeregu wizy lokalnych na terenie opracowania określono charakter krajobrazu i wybrano kluczowe jego zasoby służące za wskaźniki przekształceń wizualnych cech krajobrazu. Dla wybranych zasobów: lasów, zabudowy, zieleni śródpolnej, przydrożnych alei, wody, dróg oraz masywu góry Ślęży opracowano w środowisku GIS warstwy reprezentujące każdy z elementów. W celu rozpoznania i zobrazowania zmian wykonano trzy serie analiz występowania wybranych elementów krajobrazu dla stanów z 1982, 2004 i 2009 roku. Określenie zakresu czasowego opierało się na założeniu, że największe przekształcenia przestrzenne dokonały się na progu przemian ustrojowych i ekonomicznych w Polsce na przełomie XX i XXI wieku, a ponadto podyktowane było dostępnością zdjęć lotniczych dla poszczególnych lat. Przy zastosowaniu modelowania trójwymiarowego CAD zbudowano model krajobrazu a następnie dokonano na nim symulacji widoczności zasobów w poszczególnych latach. Otrzymane wyniki przedstawiono w postaci map reprezentujących stopień oddziaływania wizualnego wybranych zasobów krajobrazu w terenie.

3.1. Materiały i źródła

3.1.1. Badania kameralne

a) Ikonografia

Archiwalna dokumentacja ikonograficzna okolic Wrocławia zawiera głównie treści dotyczące licznych na tym terenie posiadłości dworskich i pałaców. Tylko nieliczne z nich dostarczają informacji o strukturze krajobrazu. Najcenniejszą i najstarszą ryciną przedstawiającą krajobraz otwarty jest pochodząca z około 1800 r. panorama Tyńca Małego i okolicznych rozłogów, autorstwa F.G. Endlera [rys.2]. Za materiały

b) Materiały kartograficzne

Pierwsze pomiary geodezyjne na terenie Śląska wykonał Marcin Helwig, autor wydanej drukiem w 1561 r. mapy poświęconej w całości śląskiej ziemi. Jednak dopiero w połowie osiemnastego wieku C.F. Werde, na zlecenie Fryderyka II Wielkiego opracował rękopiśmienny atlas Krieges-Carte von Schlesien wyznaczający przełom w kartografii Śląska. Wykonane w podziałce 1:33 333 arkusze zawierały niespotykane wcześniej detale terenu łącznie z odwzorowaniem poszczególnych budynków (Walczak 1970). Cennym źródłem informacji o strukturze krajobrazu okazała się też późniejsza mapa z 1831 r., ze zbiorów instytutu Herdera przedstawiająca w skali około 1:25 000 rozmieszczenie takich elementów jak nasadzenia przydrożne i śródpolne, łąki, dukty i drogi polne, lasy, hydrografia wraz z melioracjami, rzeźba terenu i zabudowa z rozróżnieniem na kilka jej typów [rys.12]. Dokładnie sto lat później wydany został Messtischblatt 2891 w skali 1:25 000 zawierający bardzo dokładnie informacje o zasobach krajobrazu wraz z pomiarem wysokości terenu npm.
Jako podstawowe materiały kartograficzne w badaniach współczesnych przekształceń krajobrazu wykorzystano ortofotomapy z lat 2004 pochodzące z Wojewódzkiego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej we Wrocławiu (WODGiK) oraz z 2009 r. z zasobu Systemu Informacji Przestrzennej Powiatu Wrocławskiego (WROSIP), z którego pochodzi także warstwa mapowa zabudowy w postaci shape’a. Dla roku 1982 ortofotomapę wykonano samodzielnie na podstawie zdjęć lotniczych pochodzących z Centralnego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej (CODGiK). Ponadto w badaniach wykorzystano numeryczny model terenu o rozdzielczości próbkowania 10 m. (WODGiK).

Dodatkowo posiliwano się materiałami pomocniczymi w postaci różnego rodzaju map tematycznych, sozologicznych, hydrograficznych i glebowych, z Atlasu Śląska Dolnego i Opolskiego (Pawlak i inni, 2008), oraz regionalizacją fizycznogeograficzną Polski Kondrackiego (2002).
3.1.2. **Badania terenowe**

Badania w terenie wykonane zostały w latach 2008 – 2009 i obejmowały sporządzenie dokumentacji fotograficznej, weryfikację danych po fotointerpretacji zdjęć lotniczych oraz rozpoznanie zasobów krajobrazowych z perspektywy obserwatora.

3.2. **Delimitacja obszaru badań**

Zjawisko ekspansji peryferyjnej Wrocławia odbywa się w sposób niejednorodny zarówno w czasie jak i w ujęciu przestrzennym. W celu uchwycenia przekształceń krajobrazu strefy podmiejskiej należało dokonać wyboru obszaru, na którym procesy suburbanizacji są wyraźne i możliwe do odczytania. Wymagało to doboru odpowiednich wskaźników, cechujących krajobraz z przed okresu jego przeobrażeń. Skoncentrowano się tu głównie na ujęciu wizualnym, oddającym na poziomie fizjonomii krajobrazu stopień przekształceń lub trwałości charakteru miejsca. Na podstawie wstępnej analizy wytypowano fragment Równiny Kąckiej obejmujący wieś Smolec i Bielany Wrocławskie jako ośrodki o największej dynamice przekształceń w ostatnich dwudziestu latach. Dodatkowo założono, że suburbanizacja może na nieco mniejszą skalę zachodzić w okolicach Pietrzykowice, Mokronosa Górnego, Nowej Wsi Wrocławskiej oraz Ślęzy.

W podjętej pracy oparto się na założeniach koncepcji jednostek i wnętrz krajobrazowych Bogdanowskiego (Bogdanowski, Łuczyńska – Bruzda, Novak, 1981) jednak ze względu na jednorodny charakter krajobrazu na całym omawianym terenie zrezygnowano z wewnętrznego podziału obszaru na poszczególne wnętrza. Określenie granic opracowania uwzględniało ukształtowanie terenu i rodzaj jego pokrycia. Wyznaczony został obszar zawierający wymienione jednostki osadnicze z buforem minimum 500 m. Szerokość bufora uzależniona była od uwarunkowań wizualnych i tworzących je przegród optycznych w krajobrazie. Za podstawowe elementy wyznaczające granice uznano nasypy, ściany lasów i kurtyny zadrzewień śródpolnych. W sytuacjach gdy nie było możliwe jednoznaczne określenie granic wizualnych wytyczano je na podstawie innych elementów struktury rozłogów, takich jak drogi polne, rowy czy miedz.
3.3. Wskaźniki krajobrazowe

Zmiany w krajobrazie przeanalizować można za pomocą stanu zachowania, bądź przekształceń poszczególnych jego zasobów. Określają one uwarunkowania przyrodnicze jak i kulturowe a ich rozmieszczenie, skała, wewnętrzna struktura oraz wzajemne relacje determinują wizualny charakter krajobrazu. W podjętej pracy kierowano się zwłaszcza aspektami estetycznymi, wynikającymi z percepcji obserwatora. Dobór zasobów krajobrazowych uzależniony był od następujących kryteriów:

- charakterystyczność – kryterium jakościowe podkreślające cechy typowe dla danego rodzaju krajobrazu;
- policzalność – możliwość przeprowadzenia analiz ilościowych, których wyniki dadzą się porównywać pomiędzy poszczególnymi klasami obiektów;
- możliwość przedstawienia na mapie – fizyczne właściwości zasobu pozwalają na jego odwzorowanie na mapie (Ode, Tvite i Fry 2008).

Lasy liściaste, mieszane, z przewagą wiązą, jesionu, dębu, lipy, drobnolistnej, klonu, występują równomiernie na całym obszarze jednak mają niewielki udział powierzchniowy na badanym terenie 3,2% (średnia powierzchnia 2,5 ha). Zakładane były głównie w zagłębieniach terenu, w bezodpływowych nieckach chłonnych, często na terenach wilgotnych połączonych z siecią hydrograficzną. Pełnią rolę remiz dla dzikiej zwierzyny, wzbogacone są wtedy o gatunki takie jak: dereń właściwy, grusza pospolita, jabłoń dzika, śliwa tarnina oraz mieszanki głogów i róż. Mają funkcję wiatrochronną, glebochronną a także krajobrazową. Wykazują wyraźną zmienną sezonową, w okresie wegetacyjnym tworzą w krajobrazie zwarte grupy zieleni, przebarwiające się jesienią a w miesiącach bezlistnych tworzą akcenty, częściowo azurowe, odcinające się ciemniejszą barwą od tła. Mimo niewielkiego udziału powierzchniowego, lasy odgrywają kluczową rolę w percepcji krajobrazu i stanowią istotny element kompozycyjny tworzący ściany wnętrz krajobrazowych. Z wizualnego punktu widzenia mogą stanowić kurtyny, plany i tło dla innych obiektów. Za lasy przyjęto obszary porośnięte zwartą roślinnością drzewistą o powierzchni co najmniej 0,1 ha (Ustawa o lasach, 1991).
Rys 13. Charakterystyczne elementy krajobrazu Równiny Kąckiej. Plany lasów i zieleni śródpolnej na tle masywu Ślęży (fot. J. Sztejn)

Zabudowa to najdynamiczniej zmieniający się element krajobrazu Równiny Kąckiej. Na badanym obszarze można ją zasadniczo podzielić na trzy grupy. Pierwsza z nich to zabudowa tradycyjna dla tych rolniczych terenów powstała do 1945 roku, druga obejmuje okres od połowy do końca XX w. oraz trzecia od XXI w. Zabudowa tradycyjna pochodzi w większości z końca XIX i początku XX w. (Walczak, 1970). Poza zabudową mieszkaniową występują tu też większe kubaturowo obiekty gospodarskie a także tworzące akcenty lub dominanty dwory, palace i kościoły. Zdecydowana większość obiektów z tego okresu odznacza się spójnością w doborze materiałów (np. pokrycie dachów czerwoną dachówką), formy i skali architektonicznej. Spośród zabudowy drugiej połowy XX w. wyróżniają się odbiegające skalą i formą obiekty gospodarcze i przemysłowe, a także częściowo mieszkaniowe z końca XX w. Za zabudowę uznano wszystkie budynki wg bazy danych WROSIP.

Rys. 15. Nowa zabudowa przemysłowa widziana z okolic Nowej Wsi Wrocławskiej (fot. J. Sztejn)

Rys. 16. Krajobraz otwarty i zieleń śródpolna w okolicach Smolca (fot. J. Sztejn)
Aleje i szpalery występują wzdłuż dróg. Wprowadzają rytmiczne podziały w przestrzeni stanowiąc jednocześnie ażurowe przesłony. Wśród starszych nasadzeń dominują głównie drzewa owocowe: czereśnie, jabłonie, grusze. Młodsze to często lipy i klony. Charakterystyczne formy rzędowych nasadzeń wzdłuż dróg na omawianym terenie znajdziemy już na dawnych rycinach z przełomu XVIII i XIX w. i na fotografiach z początku XX wieku. Wyróżniają się one w otwartym słabo zalesionym krajobrazie. Obecnie nie są tak silnie zaakcentowane, częściowo na skutek ich zaniku spowodowanego brakiem odpowiedniej pielęgnacji, wycinką starych okazów drzew i nie zastąpieniem ich nowymi nasadzeniami. Tendencja ta widoczna jest zwłaszcza wzdłuż mniej znaczących dróg, w tym dróg polnych gdzie dawne aleje owocowe pozostają obecnie w stanie szczątkowym lub przekształciły się na drodze sukcesji wtórnej w spontanicznie uformowane pasma zwartej zieleni śródpolnej.

Wody powierzchniowe, w tym zbiorniki i cieki na omawianym obszarze reprezentowane są głównie przez niewielkie zbiorniki wodne o łącznej powierzchni około 10,5 ha. Do tej grupy zaliczono także cieki z najbardziej znaczącą na tym terenie rzeką Ślęzą. Rowy odwadniające, pomimo tego że liczne, nie zostały zakwalifikowane do zasobów wody. Wynika to z faktu iż przeważnie suche lub zarośnięte rowy pod względem wizualnym nie stanowią wystarczającego nośnika informacji wizualnej o zasobach wodnych. Zbiorniki wodne to przeważnie sadzawki występujące pośród tradycyjnej zabudowy wiejskiej.

Drogi-układ komunikacyjny południowych przedmieści Wrocławia bazuje na kanwie dawnych duktów i podziałów własnościowych. Wraz ze zmianą technik uprawy ziemi stopniowo ewolucji ulegała struktura rozłogów, w tym szlaków komunikacyjnych. Analizując najstarsze z dostępnych mestishblatów można stwierdzić, że obecny przebieg większości dróg wytyczony był przynajmniej od połowy XIX w. a ogólny układ komunikacyjny sięga czasów średniowiecza, kiedy to istniała już większość współczesnych nam wsi. Drogi wojewódzkie oraz część powiatowych i gminnych posiada nawierzchnie utwardzone bitumiczne, jednak na wielu mniej uczęszczanych trasach można napotkać bruk z kostki granitowej lub kamieniu polnego. Osobną grupą są drogi polne, z których tylko niektóre mają brukowane nawierzchnie, a reszta nie jest utwardzona. Do badań włączono wszystkie klasy dróg, łącznie z dojazdowymi nie licząc mniej znaczących dróg polnych. Drogi mogą oddziaływać na wizualny charakter krajobrazu lokalnie, poprzez eksponowanie cech kulturowych (np. brukowana droga okalająca średniowieczny kościół), mogą też pośrednio przyczyniać się do odbioru przestrzeni jako nośnik ruchu samochodowego.
Podłoże stanowi nierozwalny z krajobrazem element, który w znaczącym stopniu wpływa na wizualny charakter. Powierzchnia ziemi odzwierciedla fizyczne cechy miejsca, w którym jest obserwowana. Kolor podłoża, jego struktura i faktura mogą dostarczyć wstępnich informacji na temat geologii, wilgotności, żyzności i wielu innych cech, które informują o charakterze krajobrazu. W przypadku Równiny Kąckiej mamy do czynienia z płaszczyzną podzieloną mozaiką upraw. Często zaobserwujemy tu zboża, pola buraków, w wielu miejscach kukurydzy. Są to cechy typowe dla krajobrazu rolniczego. Istotny jest też fakt zmienności sezonowej, która odzwierciedla wielowiekową relację pomiędzy cykliznością natury i agrokulturą. Dla celów badawczych założono, że podłoże stanowi powierzchnie tła dla pozostałych elementów.

Masyw Ślęży. W otwartym krajobrazie Równiny Kąckiej próżno szukać bogatej rzeźby terenu. Płaska powierzchnia ziemi, tylko miejscami lekko pofałdowana, nie dostarcza obserwatorowi spektakularnych doznań estetycznych. Brak jakichkolwiek wyraźnych form geologicznych sprawia, iż rolniczy krajobraz staje się monotony i homogeniczny. Naturalną skłonnością człowieka jest poszukiwanie w przestrzeni elementów charakterystycznych, stanowiących rodzaj znacznika ułatwiającego orientację w terenie. Masyw Ślęży oddalony o około 30 km od Wrocławia stanowi taki właśnie „landmark”. Szczyt Ślęży wyrasta stożkowo ponad 500 m nad Równiną Wrocławską i widoczny jest z wielu kilometrów. Uznano, że góra stanowi nierozłączny element krajobrazu na badanym terenie i stanowi o jego charakterze, dlatego pomimo iż znajduje się daleko poza granicami opracowania została włączona do badań jako jeden z wizualnych zasobów krajobrazu.

3.4. Parametryzacja wybranych zasobów krajobrazu na potrzeby modelu

<table>
<thead>
<tr>
<th>element</th>
<th>Znaczenie wizualne</th>
<th>Znaczenie kulturowe i/lub przyrodnicze</th>
<th>Parametry wysokości w modelu 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zabudowa</td>
<td>Przegroda ażurowa lub całkowita</td>
<td>Tradycyjna zabudowa jak i nowe osiedla, obiekty przemysłowe</td>
<td>Zabudowa mieszkanowa 8 m / zabudowa przemysłowa 15 m</td>
</tr>
<tr>
<td>Lasy</td>
<td>Przegroda ażurowa lub całkowita</td>
<td>Siedliska drobnej zwierzyny, znaczenie fitosanitarne</td>
<td>20 m</td>
</tr>
<tr>
<td>Zieleń śródpolna</td>
<td>Przegroda ażurowa</td>
<td>Korytarze ekologiczne siedliska gatunków agrocenozy, funkcje przeciw wietrzne i przeciw erozyjne</td>
<td>6 m</td>
</tr>
<tr>
<td>Aleje</td>
<td>Przegroda ażurowa</td>
<td>Akcentowanie ciągów komunikacyjnych, osłona przed nadmiernym nasłonecznieniem</td>
<td>15 m</td>
</tr>
<tr>
<td>Podłoże</td>
<td>Podłoga</td>
<td>Obejmuje relief rozłogów, rozplanowanie upraw, stanowi główną przestrzeń produkcji rolniczej</td>
<td>-</td>
</tr>
<tr>
<td>Drogi</td>
<td>Akcent</td>
<td>Znaczenie komunikacyjne</td>
<td>-</td>
</tr>
<tr>
<td>Woda</td>
<td>Akcent</td>
<td>Stawy gospodarcze wykorzystywane do chowu ryb czy pełniące funkcje p.poż, dawne wyrobiska, bogate siedliska fauny i flory</td>
<td>-</td>
</tr>
<tr>
<td>Masyw Ślęży</td>
<td>akcent</td>
<td>Ważny element w świadomości mieszkańców, identyfikacja miejsca, orientacja w terenie.</td>
<td>-</td>
</tr>
</tbody>
</table>
3.5. Mapa widoczności

Aby dokonać analizy przeobrażeń wizualnych cech krajobrazu Równiny Kąckiej, zdecydowano się na prezentację danych w postaci map, które są uniwersalnym narzędziem dającym czytelną informację o terenie. Zaletą tego rozwiązania jest także możliwość porównania danych z różnych lat oraz nakładania mapowych warstw tematycznych, co może być przydatne w planowaniu przestrzennym lub ochronie krajobrazu.

Punktem wyjścia do rozważań na temat mapy widoczności jest problem samego postrzegania krajobrazu. Podstawowe pytanie postawione w tym miejscu przez autora brzmi: Czy istnieje możliwość przedstawienia krajobrazu widzanego z perspektywy obserwatora stojącego na powierzchni terenu w postaci dwuwymiarowej mapy? W ujęciu kartograficznym mapy mogą prezentować różnego typu zjawiska rozmieszczone w przestrzeni, np. fizyczne cechy terenu takie jak wysokość n.p.m., czy w odniesieniu do jednostki terenu jak np. liczba mieszkańców na km kwadratowy. Natomiast krajobraz oceniany jest zwykle pod kątem cech wizualnych takich jak skala, kolor, tekstura, proporcja i innych dających w mniejszym lub większym stopniu zdefiniować się właściwości. Ocena optyczna krajobrazu dokonuje się ponadto w trzech wymiarach przestrzennych, co komplikuje bezpośrednie przedstawienie cechy wizualnej na dwuwymiarowej mapie. Kolejnym problemem jest zdefiniowanie przedmiotu analizy wizualnej. W pracy ustalono, że ocenie podlegają charakterystyczne elementy krajobrazu, jednak aby prawidłowo przedstawić zjawisko na mapie musi ono zostać przypisane do jednostki odniesienia, tak więc kluczowe znaczenie ma tutaj założenie gdzie znajdują się obserwowane obiekty i z jakiego miejsca są postrzegane. Z relacją przestrzenną pomiędzy punktem obserwacyjnym a obiektem obserwowanym wiąże się określenie ekspozycji.

Analizy krajobrazowe ukierunkowane na rozpoznanie wizualnych cech krajobrazu mogą bazować na pojęciu ekspozycji biernej lub czynnej. W przypadku ekspozycji biernej informacja o poziomie widzialności danego obiektu przypisana jest do samego obiektu, natomiast w ekspozycji czynnej informacja o widzialności obiektu przypisana jest do miejsca, z którego na obiekt patrzmy. Wynika z tego, że obserwator znajdujący się w terenie postrzega czynnie obiekt z punktu obserwacyjnego w którym się aktualnie znajduje. W niniejszej pracy założono, że ten rodzaj ekspozycji jest bardziej naturalny, ponieważ doświadczany jest nieustannie na poziomie zmysłu wzroku.
W świetle powyższych rozważań wyznaczyć należało warunki przy których możliwe jest zbudowanie mapy widoczności. W szczególności są to:

- przeniesienie widoku perspektywicznego (ekspozycja czynna) na ortogonalny rzut mapy;
- przypisanie zjawiska do jednostki odniesienia;
- przedstawienie zjawiska za pomocą policzalnej wagi;
- odwzorowanie widzianego krajobrazu;

W celu scharakteryzowania wizualnych zasobów krajobrazu Równiny Kąckiej posłużono się oceną ekspozycji czynnej. Zastosowanie znalazły tu analizy panoram widokowych, za pomocą których przestudiowano wybrane aspekty krajobrazowe. Analizy tego typu przeprowadza się zwykle w oparciu o kilka charakterystycznych punktów widokowych, wykonując dokumentacje fotograficzną, która w dalszym etapie oceniana jest metodami kameralnymi. W celu prezentacji na mapie przekształceń wizualnych Równiny Kąckiej należało pójść o krok dalej, rozbudowując znane metody analiz panoram o zagadnienia kartograficzne.

Przeniesienie widoku perspektywicznego na mapę

Założeniem mapy widoczności jest prezentacja wyników analiz panoram dla regularnie rozmieszonej sieci punktów obserwacyjnych. Oznacza to, że zjawiska wizualne rozpatrywane w ramach widoku perspektywicznego można przedstawić w rzucie ortogonalnym poziomym na dwuwymiarowej mapie. Pozwala to na pokazanie widoczności danego elementu, lub grupy elementów krajobrazu, z dowolnego punktu w terenie. Dzięki zastosowaniu regularnej sieci punktów obserwacyjnych (analiza systematycznego próbkowania) uzyskuje się rozkład zjawiska wizualnego na całym badanym obszarze, np. mapa pokazuje stopień widoczności masywu Ślęży z każdego miejsca na terenie gminy.

Przypisanie zjawiska do jednostki odniesienia

Informacja o stopniu widoczności elementów krajobrazu z danego miejsca reprezentowana jest na mapie w postaci kwadratowego pola, którego centroid odwzorowuje położenie przypisanego punktu obserwacyjnego. W ten sposób zdefiniowane pole podstawowe staje się pikselem zawierającym informację o określonym walorze. W badaniach posłużono się zdefiniowaną siatką kwadratów TEMKART (Klimczak, 2001). Rozdzielczość przedstawionych na mapie danych związana jest ściśle z gęstością rozmieszczenia.
punktów obserwacyjnych i jest równa najmniejszej odległości pomiędzy nimi. W założonym modelu rozdzielczość ta wynosi 125 metrów, przy czym dobór tego parametru uzależniony jest od skali opracowania i specyfiky terenu.

Przedstawienie zjawiska za pomocą policzalnej wagi

W analizach widoczności systemów GIS zwykle stosuje się ocenę binarną, dającą wynik: widoczne – nie widoczne. W przypadku analiz zmienności krajobrazu taka informacja nie jest wystarczająca, dlatego do opisu informacji wizualnej zastosowano ocenę wagową wyrażoną w procentach, ukazując udział wybranego elementu w panoramie. Pozwala to na prześledzenie zmienności gradientu natężenia zjawiska widoczności w przestrzeni oraz czasie.

Pokrycie badanego obszaru o powierzchni około 51560 km² siatką o rozdzielczości 125 m oznaczało wyznaczenie 3364 punktów obserwacyjnych, a z każdego z nich należało wykonać odwzorowanie panoramiczne krajobrazu w zakresie 360°. Wykonanie tego zadania w terenie wymagałoby ogromnych nakładów pracy i praktycznie wiązałoby się z wieloma problemami technicznymi. Zastosowano więc model symulujący krajobraz Równiny Kąckiej uwzględniający wszystkie analizowane elementy krajobrazu. Na podstawie analiz krajobrazowych wykonanych in silico otrzymano serię danych o stopniu widzialności poszczególnych elementów krajobrazu, które posłużyły do budowy mapy widoczności.

Zestawiając mapy widoczności różnych grup obiektów możliwe jest określanie cech krajobrazu co powinno ułatwić określenie jego charakteru wizualnego.

Pozyskiwanie danych z modelu do budowy mapy

Mapa widoczności powstała w oparciu o wyniki symulacji wirtualnych panoram trójwymiarowego modelu krajobrazu. Informacja o poziomie widoczności pozyskiwana była w tym procesie dwuetapowo. Pierwszym etapem była właściwa symulacja widoczności z każdego punktu obserwacyjnego, przedstawiona za pomocą wirtualnej panoramy. W takiej postaci nie jest możliwe przeniesienie danych o zasobach wizualnych
bezpośrednio na mapę. Należało odseparować każdy z utrwalonych na wirtualnej panoramie element krajobrazu a następnie obliczyć jego procentowy udział w całości widoku. Wyniki dla wszystkich punktów obserwacyjnych poddano klasyfikacji w ciągu geometrycznym, a następnie zaprezentowano na mapie odpowiednim walorem.

3.6. Opis metody

Przekształcenia wybranych zasobów krajobrazowych analizowano na podstawie ich wizualnej zmienności w czasie.

Rys. 17. Schemat przedstawiający metodykę wykonania map widoczności zasobów krajobrazowych
3.6.1. Pozyskanie informacji o zasobach krajobrazowych

3.6.2. Budowa modelu wirtualnego krajobrazu

W celu przeprowadzenia analiz wizualnych niezbędne było zasymulowanie obrazów panoramicznych na wirtualnym modelu krajobrazu. Ten etap prac wykonano przy zastosowaniu oprogramowania Autodesk 3ds Max 2011 na stacji roboczej Zakładu Grafiki Komputerowej i Obliczeń Wysokich Wydajności na Wydziale Fizyki, Matematyki i Informatyki Politechniki Krakowskiej. Dzięki zastosowaniu profesjonalnej karty graficznej Nvidia Quadro 5000 możliwe było wykonanie dużej ilości symulacji widoczności.

W pierwszym etapie przeniesiono numeryczny model terenu w postaci TIN (*Triangulated irregular Network*) do środowiska CAD (*Computer-aided design*). Powstała w ten sposób trójwymiarowa warstwa odwzorowująca ukształtowanie powierzchni terenu, na którą nałożono przekonwertowane ze środowiska GIS warstwy zasobów krajobrazowych. Program automatycznie rozpoznawał i przypisał do warstw współrzędne z map wektorowych. Wysokość poszczególnych elementów krajobrazu została wyznaczona arbitralnie na
podstawie obserwacji terenowych i uśredniona dla każdej z warstw. Wyciągnięte do trzeciego wymiaru warstwy stworzyły bryły o uproszczonej geometrii. Na potrzeby zamodelowania struktury krajobrazu i jej wizualizacji nie było potrzeby uszczegóławiania brył. Model wzbogacono o masyw Ślęży, który wprawdzie nie znajduje się na terenie opracowania ale jest stanowi istotny element.

Prawidłowe rozpoznanie przez program poszczególnych zasobów krajobrazu wymagało zastosowania wskaźnika informującego o przynależności bryły do danego zasobu. W tym celu użyto identyfikacji kolorystycznej, opartej na podstawowych barwach palet RGB oraz CMYK.

W celu zdefiniowania punktów obserwacyjnych rozciągnięto na modelu osnowę punktów utworzonych z centroidów siatki TEMKART (Klimczak, 2001) a następnie umieszczono je na wysokości 1,8 m nad powierzchnią terenu.

Symulacja wirtualnych panoram

Rys. 18. Przykłady wirtualnych panoram z uwzględnieniem różnych zasobów krajobrazowych

a) panorama wsi w sąsiedztwie zbiornika wodnego,
b) otwarta przestrzeń pól uprawnych,
c) obszar zabudowany obiektami przemysłowymi,
d) aleje przydrożne i zieleń śródpolna.

3.6.3. Budowa map widoczności
Każdy jednostka odniesienia, będąca jednocześnie pikselem mapy posiada swój ID, który dziedziczony jest przez jej centroid wyznaczający punkt obserwacyjny. Dzięki temu możliwe było skojarzenie konkretnej panoramy z odpowiednim miejscem na mapie. Struktura danych niezbędna do budowy mapy widoczności z jednego stanu czasowego ujęta została w następujących kategoriach:

- **Tabela atrybutów.** Zawiera wszystkie dane liczbowe opisujące zjawisko stopnia widoczności poszczególnych zasobów krajobrazu. Na poziomie tabeli atrybutów dokonuje się kojarzenia ID TEMKART i ID panoram.
- **Ortofotomapa jako warstwa podkładowa, pomocnicza**
- **Warstwa warstwa podkładowa, pomocnicza**
- **Warstwa warstwa podkładowa, pomocnicza**
- **Warstwy warstwa podkładowa, pomocnicza**
- **Legenda, skala.**

Na potrzeby edycji konkretnej mapy każdy z tych elementów może zostać włączony bądź wyłączony.

![Schemat analizy przekształceń zasobów krajobrazowych w latach 1982 – 2009](image.png)

3.6.4. Weryfikacja modelu krajobrazu

Model krajobrazu zweryfikowano wykonując serię fotografii w dowolnie dobranych punktach obserwacyjnych i porównując je z odpowiadającymi wirtualnymi panoramami [rys. 18]. Zarówno wirtualne panoramy jak i zdjęcia terenowe wykonano z zastosowaniem tej samej ogniskowej i zakresu widoczności. Uproszczona budowa modelu pomija wiele drobnych elementów krajobrazu jak pojedyncze drzewa lub krzewy. Pomimo znacznego uproszczenia udało się prawidłowo wymodelowaćukturę głównych zasobów krajobrazowych, czego dowodem jest duża zbieżność wirtualnych panoram i odpowiadającym im fotografiom wykonanym w terenie w tych samych kierunkach i z tych samych miejsc co w modelu wirtualnym. W kilku przypadkach zaobserwowano niewielkie rozbieżności powstałe w wyniku umieszczenia w modelu kamery wyżej o około 1-1,5 metra nad poziomem gruntu w stosunku do położenia aparatu w rzeczywistym terenie.
Rys. 21. Porównanie fotografii wykonanej w terenie (powyżej) z wirtualną panoramą (poniżej). Model nie uwzględnia elementów drobno przestrzennych a także pomija drogi polne, które włączone są do klasy podłoża.
4. WYNIKI BADAŃ

4.1. Klasyfikacja wyników

Na podstawie symulacji wirtualnych panoram uzyskano serie wyników ilustrujących procentowy udział danego zasobu w polu panoramy. Podstawowym problemem było ustalenie jednoznacznej, wspólnej dla wszystkich danych klasyfikacji. Rozkład danych obejmował wartości od 0% do 100% ale koncentrowały się one między 0,1% a 5,0% [rys. 19]. Wyjątek stanowiła klasa terenu otwartego, w której mediana wynosi średnio 46% [rys. 20]. Zauważyć należy zależność pomiędzy odległością obserwatora od obserwowanego obiektu a rozkładem danych. Wraz ze wzrostem dystansu krzywa rozkładu załamuje się silniej w stronę zera. Wynika to z faktu, wzrostu ilości obserwacji przy malejącym udziale wartości w polu widoku. W celu ujednolicenia wyników badań zastosowano klasyfikację smart quantiles opartą na interwale geometrycznym. Jest to system dający równą liczbę wartości w każdej z klas. Dla map widoczności wszystkich zasobów krajobrazowych zastosowano podział na 7 jednakowych klas, co w ujęciu kartograficznym umożliwiło porównanie zmian w różnych stadiach rozwoju krajobrazu. Osobną grupę stanowiły mapy przedstawiające samą zmianę zasobu. W tym przypadku posłużono się klasyfikacją zakładającą po pięć klas, powyżej i poniżej zera, co umożliwiło prześledzenie przyrostu lub ubytku widoczności danego elementu krajobrazu.

Rys. 22. Rozkład danych dla klasy zabudowy

Zabudowa. Na podstawie analiz porównawczych historycznych materiałów kartograficznych oraz orto obrazów z lat 1982 -2009 określono elementy trwałych układów zabudowy. Do lat 80. XX w zachowała się czytelna struktura przestrzenna wsi funkcjonująca często od XIX wieku prawie w nie zmienionym stanie. Wyróżnić tu można zarówno zabudowę gospodarczą i folwarczną jak i mieszkalną. Poszczególne osady tworzyły wyodrębnione skupiska zabudowy, skoncentrowane wzdłuż głównych dróg. Na uwagę zasługuje fakt zniknięcia z powierzchni ziemi zabudowań pałacowych i dworskich w kilku wsiach m.in. w Zabrodziu i w Rybnicy. Największe powierzchniowo obiekty z tego okresu to głównie dawne zabudowania folwarczne rozbudowane o infrastrukturę i budynki gospodarcze do 1700 m² powierzchni ewidencyjnej.

Analiza przekształceń krajobrazu wykazała, że zabudowa stanowi najdynamiczniej przekształcający się element strefy podmiejskiej Wrocławia. W roku 1982 [rys.21] liczba obiektów budowanych o powierzchni powyżej 10 m na badanym obszarze wynosiła 2627, w roku 2004 stwierdzono 5126 budynków, a w roku 2009 było ich już 7224. Powierzchnia ewidencyjna budynków wyniosła w tych latach odpowiednio: 318403 m²,

W analizach widoczności przeprowadzonych za pomocą symulacji wirtualnych panoram stopień pokrycia pola widoku dla zabudowy osiągnął w niektórych punktach obserwacyjnych 100%. Widoczne elementy zabudowy w zakresie od 10% do 100% pola widzenia koncentrowały się głównie przy samych zabudowaniach, natomiast widoczność miedzy 0,5% a 2,5% odnotowano w odległości około 600 - 700 m od zabudowy. Powierzchnia widoczna budynków do 0,5% odnotowana została na dystansie od 700 m do 1,5 km od obserwowanej zabudowy. Warto podkreślić, że zasięgi widzialności były większe dla obiektów wielko-kubaturowych a mniejsze dla zabudowy mieszkaniowej jednorodzinnej.

Na podstawie analiz widoczności wirtualnych panoram określono pokrycie pola widoku przez dany zasób krajobrazowy przypadające średnio na każdą panoramę [rys. 21,22,23]. W klasie zabudowy wynosiło ono w 1982 r. - 1,7% ; w 2004 r. – 3,4%; w 2009 r. – 5,0%. Szczególnie intensywny przyrost odnotowano w okolicach Bielan Wrocławskich. Dotyczy to zarówno części mieszkaniowej miejscowości jak i obszaru aktywności gospodarczej na północy. Kolejną strefą silnie zurowanizowaną w latach 1982 -2004 był Smolec i południowa część Pietrzykowic.

W roku 2004 nastąpiło zagęszczenie zabudowy w okół większych wsi. W miejscowościach tych powstały drogi dojazdowe wzdłuż których pojawiły się nowe budynki, wyznaczając nowe kierunki rozwoju, poprzeczne do poprzednich rozciągniętych wzdłuż głównych dróg (Bielany Wrocławskie, Smolec, Pietrzykowice). Widoczna staje się tendencja do zlewania się poszczególnych wsi w większe zespoły (Smolec – Mokronos Górny, Gądów – Nowa Wieś Wrocławska) . Proces ten następuje przede wszystkim wzdłuż głównych dróg.

W północnej części Bielan Wrocławskich, na początku XXI w. powstaje kompleks wielko kubaturowej zabudowy o charakterze handlowo – logistyczno – przemysłowym. Największe budynki osiągają powierzchnię ewidencyjną 25800 m².

W roku 2009 przybyło zabudowy mieszkaniowej wolnostojącej oraz szeregowej (Bielany Wrocławskie, Smolec) a także obiektów wielko kubaturowych, przy węźle bielańskim oraz w okolicach Nowej Wsi Wrocławskiej i Pietrzykowic. Poza granicami historycznych części wsi wyodrębniły się kompleksy osiedli mieszkaniowych o miejskim charakterze i indywidualnym układzie przestrzennym.

Rys. 25. Mapa widoczności dla klasy zabudowy obserwowanej w kierunku południowym. Stan z 2004 r.
Lasy. Na podstawie analiz historycznych materiałów kartograficznych ustalono, iż umiejscowienie większości lasów nie zmieniło się od co najmniej 1830 r., natomiast ich forma trwa w stanie prawie nienaruszonym co najmniej od lat 30. XX w. Analizy te nie biorą pod uwagę składu gatunkowego czy stopnia pielęgnacji a jedynie rozkład przestrzenny i kontury zrzucone na mapy. Przeciętny las miał wtedy powierzchnię około 23000 m² a średnia ta utrzymała do 2009 r.

Całkowita powierzchnia lasów na badanym obszarze w roku 1982 wynosiła 1719790 m². W roku 2004 powierzchnia lasów wynosiła 1742419 m², a w roku 2009 1735253 m². Największy kompleks leśny liczy 190000 m² i znajduje się na północny zachód od Smolca.

Na podstawie analiz panoram [rys. 24, 25, 26] stwierdzono, że średni udział lasów w polu widzenia wynosił w 1982: 3,52%, w roku 2004: 3,53% a w 2009 roku wartość ta spadła

Rys. 27. Mapa widoczności dla klasy lasów obserwowanej w kierunku południowym. Stan z 1982 r.
Rys. 28. Mapa widoczności dla klasy lasów obserwowanej w kierunku południowym. Stan z 2004 r.

Rys. 29. Mapa widoczności dla klasy lasów obserwowanej w kierunku południowym. Stan z 2009 r.
Zadrzewienia śródpolne i pasma zadrzewień stanowią kluczowy element krajobrazu Równiny Kąckiej. Analizy historycznych materiałów kartograficznych wykazały istnienie pasmowych układów zieleni i zadrzewień śródpolnych co najmniej od 1830 r.. Podobnie jak obecnie występowały one głównie wzdłuż cieków wodnych i kanałów. Na podstawie materiałów ikonograficznych można przypuszczać, że miały one w dużym stopniu charakter regularnych nasadzeń, odmiennie niż współcześnie. Trwałość historyczną pasmowych układów zieleni potwierdzają także analizy mapy z roku 1931, ale i tu symboliczne przedstawienie sygnatur w układzie liniowym pozwala jedynie na umiejscowienie obiektów, natomiast informacje o ich wysokości gęstości i ogólnym odbiorze wizualnym czerpać można jedynie ze źródeł ikonograficznych. Studia te potwierdzają tezę, iż zieleń śródpolna była pielęgnowana i miała charakter mniej naturalny niż ma to miejsce obecnie.

Pokrycie terenu dla klasy zieleni pasmowej i śródpolnej przedstawiało się następująco w kolejnych latach: 1982 r. - 544697 m², 2004 r. - 504884 m² oraz w 2009 r. - 476337 m².

Ze względu na często liniowy charakter tej klasy obliczono także przybliżoną łączną długość w układach pasmowo liniowych zadrzewień. W roku 1982 wynosiła ona około 43,6 km, w 2004 - 43,0 km a w 2009 - 41,5 km.

Średni udział klasy zadrzewień śródpolnych w polu panoramy wynosił w latach 1982 r. oraz 2004 r. - 1,7% natomiast w roku 2009 spadł do 1,6%.

Rys. 31. Mapa widoczności dla klasy zieleni śródpolnej obserwowanej w kierunku południowym. Stan z 2004 r.
Wody powierzchniowe są najtrwalszym elementem struktury hydrograficznej krajobrazu Równiny Kąckiej okazały się rowy i skanalizowane cieki wodne. Ich obecność od co najmniej lat 30. XIX w. potwierdzają analizy map historycznych. Inaczej przedstawia się sytuacja stawów i oczek wodnych, których w przeszłości było więcej. Zwykły były to zalane wyrobiska kruszyw lub glinianki. Część z nich przetrwałą do dziś w formie wilgotnych zagajników. Ślady ich dawnej obecności bywają widoczne także na zdjęciach lotniczych lub na numerycznym modelu terenu w postaci wyróżniającego się od tła reliefu terenu. Spośród grupy zbiorników wodnych największą trwałością wykazują się niewielkie stawy gospodarcze wśród zabudowy wiejskiej [rys. 30, 31, 32].

W klasie wód powierzchniowych odnotowano zmiany pokrycia terenu wynikające z powstawania prywatnych stawów i basenów kąpielowych zlokalizowanych głównie na terenie ogrodów przydomowych. Ich całkowita powierzchnia w roku 1982 wynosiła około 80300 m² a w roku 2009 wzrosła do 85200 m². Analizy wirtualnych panoram wykazały średni udział wody w panoramie we wszystkich latach, na poziomie 0,1%. Obiektem na
którym odnotowano największy wzrost widoczności w klasie wody był staw w Pietrzykowicach. Niewielkie ubytki wystąpiły wzdłuż rzeki Ślęzy.

Rys. 18. Mapa widoczności dla klasy zabudowy obserwowanej w kierunku południowym. Stan z 1982 r.

Rys. 33. Mapa widoczności dla klasy wody obserwowanej w kierunku południowym. Stan z 1982 r.
Rys. 34. Mapa widoczności dla klasy wody obserwowanej w kierunku południowym. Stan z 2004 r.

Rys. 35. Mapa widoczności dla klasy wody obserwowanej w kierunku południowym. Stan z 2009 r.
Aleje, szpalery, liniowe, regularne nasadzenia wzdłuż dróg były jednym z najbardziej rozpoznawalnych elementów krajobrazu Równiny Kąckiej do połowy XX w. STUDIA map potwierdzają, że w pierwszej połowie XIX w. obsadzano drzewami wszystkie ważniejsze drogi i wiele dróg polnych. Większość z nich nie przetrwała do początku XXI w. Fotografie z lat 80. XX w. z okolic Smolca, Bielan Wrocławskich czy Gądowa przedstawiają jedne z ostatnich zachowanych w dobrym stanie nasadzeń drzew owocowych. Do roku 2009 przetrwały nieliczne relikty w postaci pojedynczych drzew lub niewielkich grup. Dotyczy to głównie dróg śródpolnych. Nieco lepiej sytuacja wygląda wzdłuż głównych ciągów komunikacyjnych gdzie prowadzono prace pielęgnacyjne i częściowo uzupełniano stare nasadzenia.

Przeprowadzona analiza długości w tej klasie wykazała, że w roku 1982 łączna długość szpalerów i alej w ciągach wynosiła 12604 m, dla roku 2004 – 9021 m oraz 8376 w roku 2009. Udział w polu widoku wynosił odpowiednio: 1982 r. – 0,5%; 2004 r. – 0,4%; 2009 r. – 0,3%. Największy ubytek alei od 1982r. do 2009 r. wystąpił wzdłuż drogi pomiędzy Mokronosem Dolnym a Pietrzykowicami.

Rys. 36. Mapa widoczności dla klasy alei obserwowanej w kierunku południowym. Stan z 1982 r.
Rys. 37. Mapa widoczności dla klasy aleii obserwowanej w kierunku południowym. Stan z 2004 r.

Rys. 38. Mapa widoczności dla klasy aleii obserwowanej w kierunku południowym. Stan z 2009 r.
Masyw Ślęży od zarania dziejów stanowili jeden z najbardziej charakterystycznych punktów odniesienia Równiny Wrocławskiej, który często pojawia się w ikonografii.

Analiza symulacji panoram wykazała, iż masyw Ślęży widoczny jest jedynie w kierunku południowym i w niewielkim stopniu zachodnim. Dla wszystkich panoram południowych udział w widoku wynosił średnio w roku 1982 – 0,027%; 2004 r. – 0,024%; 2009 - 0,022%.

Rys. 40. Mapa widoczności dla masywu Ślęży obserwowanej w kierunku południowym. Stan z 2004 r.

Rys. 41. Mapa widoczności dla masywu Ślęży obserwowanej w kierunku południowym. Stan z 2009 r.
Drogi to jeden z najtrwalszych zachowanych elementów krajobrazu. Główne szlaki komunikacyjne na tym terenie mają rodowód średniowieczny i tworzyły ruszt rozwoju osadnictwa. W XIX w układ dróg utrwalił się i pozostał prawie niezmieniony do dnia dzisiejszego, nie licząc drobnych korekt w przebiegu tras komunikacyjnych. Nowym elementem w krajobrazie stały się natomiast ukończona w 1843 r. linia kolejowa w Wrocławia do Wałbrzycha, oraz budowana w latach 30. XX wieku autostrada. Współcześnie znaczące zmiany zaszły dopiero na skutek rozbudowy sieci dróg dojazdowych i autostradowej obwodnicy Wrocławia.

Rys.42. Mapa widoczności dla klasy dróg obserwowanej w kierunku południowym. Stan z 1982 r.
Rys. 43. Mapa widoczności dla klasy dróg obserwowanej w kierunku południowym. Stan z 2004 r.

Rys. 44. Mapa widoczności dla klasy dróg obserwowanej w kierunku południowym. Stan z 2009 r.
Teren. Biorąc pod uwagę aspekt wizualny, od lat 30. do 80. XX wieku głównym czynnikiem mającym wpływ na widoczność powierzchni terenu otwartego (podłoża) była zieleń śródpolna i układy pasmowe, które stopniowo ulegając spontanicznej sukcesji zmieniły swój charakter, zagęszczając gęstwinę roślinności. W ten sposób z ażurowych przegród zamieniły się często w masywne ściany krajobrazowe, przesłaniając widoczne wcześniej fragmenty terenu. Od końca XX w czynnikiem w największym stopniu ograniczającym widoczność otwartego terenu stała się zabudowa, która w niektórych miejscach (Smolec, Bielany Wrocławskie) zasłoniła podłoże w sposób całkowity.

Średnia powierzchnia w polu widzenia zmieniała się w następujący sposób: 1982 r. – 4,2%; 2004 r. – 47,9%; 2009 r. – 46,8%. Trend regresywny widoczny jest zwłaszcza na terenach zabudowywanych. W takim wypadku ubytek następuje nie tylko poprzez zajęcie powierzchni terenu przez zabudowę, ale głównie polega na zasłanianiu terenu otwartego przez nowopowstające budynki.

Rys. 45. Mapa widoczności dla klasy terenu obserwowanej w kierunku południowym. Stan z 1982 r.
Rys. 46. Mapa widoczności dla klasy terenu obserwowanej w kierunku południowym. Stan z 2004 r.

Rys. 47. Mapa widoczności dla klasy terenu obserwowanej w kierunku południowym. Stan z 2009 r.
5. **DYSKUSJA WYNIKÓW**

Pomiędzy 1982 r. a 2009 r. najistotniejsze przekształcenia krajobrazu na badanym obszarze obejmowały:

- gwałtowny przyrost powierzchni zabudowanych;
- pojawienie się układów przestrzennych o miejskim charakterze;
- wprowadzenie wielko kubaturowych form zabudowy;
- zmiana proporcji w aspekcie wizualnym pomiędzy zabudową a pozostałymi elementami krajobrazu;
- zmniejszenie udziału widocznych form tradycyjnego krajobrazu rolniczego;
- osłabienie roli masywu Ślęży jako charakterystycznej dominanty;
- systematyczne zamykanie krajobrazu otwartego.
5.1. Przekształcenia powierzchniowe i liniowe
Czynnikiem decydującym w największym stopniu o przekształceniach była zabudowa, której w latach 1982 – 2009 przybyło w ujęciu powierzchniowym o 513%. Pozostałe klasy odznaczają się zmianami znacznie mniejszego rzędu i przedstawiały się następująco:

- lasy – przyrost powierzchni o 0,9%;
- zadrzewienia śródpolne – ubytek powierzchni o 12,5%;
- wody powierzchniowe – przyrost powierzchni o 17,0%;
- aleje i szpalery – ubytek długości o 43,5%;
- drogi główne – przyrost długości o 5,7%;
- powierzchnia terenów otwartych – ubytek powierzchni o 3,2%.

5.2. Zmiany zasobów wizualnych
W ujęciu widokowym, w latach 1982 - 2009 liczba terenów zabudowanych wzrosła na badanym terenie średnio o 180%. Największy ubytek ze wszystkich klas w ujęciu widokowym odnotowano w analizach widoczności alei i zadrzewień rzędowych. W tej klasie średni spadek widoczności wyniósł w omawianym okresie 37%. Po części było to spowodowane zasłonięciem przez powstające budynki oraz w dużej mierze faktycznym zaniknięciem zasobu na skutek braku pielęgnacji czy odnawiania. Jest to znaczący spadek w porównaniu z innymi klasami. Wyraźne obniżenie udziału w polu widoku odnotowano też dla masywu Ślęży, która w latach 1982 – 2004 przestała być widoczna o średnio 21%. Wynika to z faktu, iż jako pojedynczy element oddalony od terenu opracowania może być obserwowany tylko na panoramach południowych i w mniejszym stopniu zachodnich. Dodatkowo nawet w najlepszych warunkach ekspozycji Ślęża ma bardzo niewielki udział w powierzchni panoramy, a zatem wykazuje dużą wrażliwość na wszelkie zmiany w polu widoku. Wzajemne proporcje pozostałych zasobów pozostają przeważnie niezmienne, ale we wszystkich, poza drogami odnotowano tendencje spadkowe w wymiarze wizualnym. Pozostałe klasy odznaczają się mniejszymi średnimi ubytkami w polu widzenie, które kształtują się następująco:

- lasy – ubytek 4,5%;
- pasma zadrzewień i zieleń śródpolna – ubytek 4,0%;
- wody powierzchniowe – ubytek 3,0%;
- drogi – przyrost 7,0%;
Przekształcenia zasobów krajobrazowych badane były zarówno w ujęciu pokrycia terenu jak i wizualnym. Zestawione ze sobą wyniki powyższych studiów naświetlają problematykę analiz krajobrazowych. W badaniach w ujęciu powierzchniowym i wizualnym przeprowadzonych dla tych samych klas zasobów odnotowano znaczące rozbieżności wyników. Daje to przesłanki do stwierdzania, iż badania wizualnego charakteru krajobrazu oparte wyłącznie na analizie podkładów mapowych mogą pomijać znaczną ilość informacji wizualnej, a co za tym idzie dawać nieobjętywne wyniki. Jest to efekt specyfiki rozmieszczenia, skali, proporcji długości do szerokości każdego z zasobów. I tak np. lasy, których faktyczna powierzchnia w latach 1982 – 2004 wzrosła o niecały procent, w ujęciu wizualnym straciły średnio 4,5% w polu panoramy. W klasie zadrzewień śródpolnych w ujęciu powierzchniowym nastąpił ubytek 12,5% a w wizualnym 4%, co wynika z liniowego charakteru pasmowych układów zadrzewień. Jeszcze większe rozbieżności odnotowano dla klasy wód powierzchniowych, których ogólna powierzchnia wzrosła o 17% ale nastąpił ubytek o 3% w aspekcie wizualnym, co spowodowane jest z jednej strony przyrostem powierzchni wód na terenach słabo widocznych, a z drugiej zastanawianiem przez nowopowstającą zabudowę.

Odnotowano także zależność pomiędzy fizyczną skalą zasobu a jego wrażliwością na zmiany wizualne. Z przeprowadzonych badań wynika, że im większa skała zasobu, a co za tym idzie średni udział w polu widoku, tym większa odporność na przekształcenia krajobrazu. Przykładem może być tu masyw Ślęży, która widoczna jest w niewielkim zakresie w porównaniu z pozostałymi elementami krajobrazu a spadek jej widzialności wyniósł 21%. Natomiast lasy stanowiące obok zabudowy najczytelniej reprezentowany zasób w tym samym czasie przestały być widoczne średnio o 4,5%, pomimo, że to głównie w ich sąsiedztwie lokalizowana jest nowa zabudowa mieszkaniowa. Zmiany zasobów wizualnych przedstawiono na mapach [rys. 46-57].
Rys. 48. Średni udział poszczególnych zasobów krajobrazowych w polu widzenia dla północnego kierunku obserwacji
Rys. 49. Mapa przedstawiająca zmianę klasy zabudowy w panoramie, w latach 1982 – 2004, wyrażona w procentach

Rys. 50. Mapa przedstawiająca zmianę klasy zabudowy w panoramie, w latach 2004 - 2009, wyrażona w procentach
Rys. 51. Mapa przedstawiająca zmianę klasę lasów w panoramie, w latach 1982 – 2004, wyrażona w procentach

Rys. 52. Mapa przedstawiająca zmianę klasę lasów w panoramie, w latach 2004 - 2009, wyrażona w procentach.
Rys. 53. Mapa przedstawiająca zmianę klasy zadrzewień śródpolnych w panoramie, w latach 1982 – 2004, wyrażona w procentach

Rys. 54. Mapa przedstawiająca zmianę klasy zadrzewień śródpolnych w panoramie, w latach 2004 - 2009, wyrażona w procentach
Rys. 55. Mapa przedstawiająca zmianę klasy alei w panoramie, w latach 1982 – 2004, wyrażona w procentach

Rys. 56. Mapa przedstawiająca zmianę klasy alei w panoramie, w latach 2004 - 2009, wyrażona w procentach
Rys. 57. Mapa przedstawiająca zmianę klasy dróg w panoramie, w latach 1982 – 2004, wyrażona w procentach

Rys. 58. Mapa przedstawiająca zmianę klasy dróg w panoramie, w latach 2004 - 2009, wyrażona w procentach
Rys. 59. Mapa przedstawiająca zmianę klasę terenu w panoramie, w latach 1982 – 2004, wyrażona w procentach

Rys. 60. Mapa przedstawiająca zmianę klasę terenu w panoramie, w latach 2004 – 2009, wyrażona w procentach
5.3. Stopień otwartości krajobrazu

Jedną z klas obiektów poddanych analizie było podłoże reprezentujące grunty orne, łąki, polany, nieużytki, oraz pozostałe elementy krajobrazu bezpośrednio związane wizualnie z powierzchnią ziemi. Powyższe formy użytkowania występują wyłącznie w terenie otwartym i w kontekście analizy wirtualnych panoram mogą być uznane za wskaźnik otwartości krajobrazu. W świetle przeprowadzonych badań obszar Równiny Kąckiej charakteryzuje się krajobrazem rolniczym, w którym widoczne podłoże stanowi blisko 50% w panoramie. Pozostałe zasoby krajobrazowe stanowiły łącznie 8,5% w roku 1982, 10,0% w roku 2004 i 11,3% w roku 2009. Resztę powierzchni widoku przypada na nieboskłon. Przy założeniu, że elementy posiadające swój wertykalny wymiar stanowią przegrody wizualne, lub w myśl koncepcji JARK-WAK - ściany wnętrz krajobrazowych oraz, że teren jest płaski wg klasyfikacji Mazurskiego (1979), można przyjąć, że stopień otwartości krajobrazu rolniczego Równiny Kąckiej wyraża proporcja terenu otwartego do przegród krajobrazowych równa w przybliżeniu 5:1.

Rys. 61. Średni udział zasobów krajobrazowych o charakterze przegród wizualnych (zabudowa, aleje i szpalery, zieleń śródpolna, lasy) i terenów otwartych (teren) w ujęciu wizualnym.
5.4. Wrażliwość wizualna krajobrazu

5.5. Analiza wyników w świetle badań innych autorów

W analizach krajobrazu istotną rolę odgrywa percepcja wizualna, która stała się przedmiotem badań w metodach fotograficznych. Nośnikiem informacji o krajobrazie jest tu zdjęcie, będące zapisem stanu środowiska postrzeganego przez obserwatora. W przyjętej metodyce zdjęcia panoramiczne zastąpiono wirtualną panoramą wyrenderowaną na bazie trójwymiarowego modelu krajobrazu. Podobne rozwiązanie stosowała Czyńska (2011) w analizach widoczności zabudowy metodą kątów widokowych, z tą różnicą, że w przeciwieństwie do metody wirtualnych panoram analizowała panoramę z jednego punktu widokowego. Badania metodą wirtualnych panoram posiada cechy wspólne z sektorową analizą wnętrz krajobrazowych opracowaną przez Niedźwiecką – Filipiak. W obu metodach analizowany jest procentowy udział poszczególnych elementów w polu widoku, jednak różnią się one sposobem jego obliczenia. W metodzie wirtualnych panoram wykorzystuje się do tego zautomatyzowany proces obliczeniowy oparty na oprogramowaniu MatLab, natomiast wyznaczenie udziału procentowego zasobów w sektorowej analizie wnętrz odbywa się ręcznie w oparciu o macierz nałożoną na zdjęcie. Analiza porównawcza wyników obu metod na terenach zabudowanych wykazała zbliżony wynik w klasie zabudowy, w obrębie wsi. Dla wirtualnych panoram od 10% do 30%, skrajnie do 100% oraz dla sektorowej analizy 14% (Niedźwiedzka – Filipiak, 2009). Należy jednak podkreślić, że ze względu na odmienne założenia konstrukcji kadru, niema możliwości bezpośredniego porównywania wyników. Wirtualna panorama wykonywana jest w zakresie widoczności 90°, natomiast fotografie w analizie sektorowej obejmują optymalnie od 120° do 150° przy założeniu, że horyzont znajduje się wedle zasady złotego podziału na 7/5 wysokości, a w wirtualnych panoramach umiejscowiony jest dokładnie na środku kadru. Ze względu na większą granicę błędu metoda sektorowej analizy panoram
nie uwzględnia udziałów procentowych dla krajobrazów otwartych, charakteryzujących się niewielkim udziałem widocznych obiektów, co jest możliwe przy zastosowaniu wirtualnych panoram dla których granicę błędu określono na poziomie 0,0001%.

W przyjętej pracy symulacja wirtualnych panoram odbywała się w oparciu o trójwymiarowy model krajobrazu. Modelowanie trójwymiarowe przy określaniu zasięgów widoczności stosował m.in. Ożimek przy zastosowaniu algorytmów światła. Przytoczyć tu można metodę wykresów średniej jasności [rys.62], polegającą na rzutowaniu z punktów obserwacyjnych promieni świetlnych na powierzchnię modelu. Zasadnicza różnica pomiędzy metodami polega na tym, że wynik symulacji wirtualnych panoram przedstawia ekspozycję czynną wybranych elementów krajobrazu, natomiast wykres średniej jasności odzwierciedla ekspozycję bierną. Nowością wirtualnych panoram w stosunku do wykresów średniych jasności jest sposób prezentacji danych na, a nie na rzucie modelu. Ma to kolosalne znaczenie w przypadku terenów płaskich jak i modeli uwzględniających obiektów pionowych np. ściany budynków, które w ortogonalnym rzucie modelu pozostają niewidoczne. Obie metody uzupełniają się w zakresie sposobu ekspozycji. Ekspozycja czynna ukazuje stopień widoczności zasobów krajobrazu z dowolnego miejsca w terenie, natomiast ekspozycja bierna przydatna jest zwłaszcza przy określaniu dominant i obiektów widocznych z większej ilości punktów obserwacyjnych.

Jak wykazały badania średni udział widzianej zabudowy na całym analizowanym terenie wzrósł z 1,7% w 1982 r. do 5,0% w roku 2009 [rys. 48]. Przy założeniu, że stan krajobrazu z początku lat 80’tych XX w. pozostawał stosunkowo trwały, zachowując dojrzalość formy (Bogdanowski, Łuczyńska – Bruzda i Nowak, 1982) można przyjąć, że w tradycyjnym krajobrazie rolniczym Równiny Kąckiej udział zabudowy kształtował się średnio na poziomie około 1,5%. Przeprowadzone badania wykazały, że wartość taką uzyskać można w panoramie wsi, której zabudowa oddalona jest o około 300 metrów a przy zabudowie przemysłowej o około 400 do 500 metrów. Należy jednak pamiętać, że udział elementu w widoku zależy od wielu czynników, takich jak: skala obiektu, zagęszczenie sieci osadniczej, czy relacje kompozycyjne. Ponadto na podstawie samego zapisu procentowego w przyjętej metodycie, nie można stwierdzić czy wartość odnosi się do całej sylwety wsi czy do jednego dużego obiektu przemysłowego. Dlatego określenie charakteru krajobrazu w oparciu o udział zasobu wizualnego należy poddać indywidualnej ocenie eksperckiej. W celu udoskonalenia metodyki wirtualnych panoram w przyszłości, należałoby sprecyzować klasyfikację zasobów pod kątem konkretnych problemów badawczych. Trudno jednoznacznie wyznaczyć ścisłe wartości progowe, przy których
widoczność elementu zadecyduje o wizualnym charakterze krajobrazu, jednak można założyć, że dominujące typy użytkowania terenu charakteryzowane są przez wartości w orientacyjnych przedziałach. Na terenie gęsto zabudowanej wsi lub nowego osiedla domków jednorodzinnych udział zabudowy w polu widoku zwykle może ważyć się pomiędzy 10 – 100% (przeciętnie 15 – 20%), natomiast w terenach otwartych oddalonych o ponad 300 metrów od zabudowań jest to zwykle przedział 1,0 – 0,0%.

5.6. Planowanie przestrzenne a krajobraz

Powiat Wrocławski posiada jeden z najwyższych w kraju stopień pokrycia miejscowymi planami zagospodarowania przestrzennego, który wynosi około 85% (Raport ... 2010). Jednocześnie plany miejscowe są rozrobnione i często powstają bez uwzględnienia wzajemnych powiązań przestrzennych funkcjonalnych, np. w gminie Kąty Wrocławskie ogólna liczba planów wg. bazy WROSIP na początku roku 2012 wyniosła 121, w tym na samą wieś Smolec przypada ich 12. Znamienne jest uzupełnianie funkcjonujących już uchwał nowymi wariantami co w efekcie prowadzi do braku stabilnego statusu obszarów już raz objętych zapisami planistycznymi. Powielany jest schemat znany ze Smolca gdzie do Uchwały Rady Gminy Kąty Wrocławskie,
Nr XXXII/266/96 z dnia 16 grudnia 1996 r. wprowadza się zmianę (Nr XLVII/343/2002 z dnia 28 marca 2002 r.) obejmującą łącznie 154 ha a po kilku latach na mocy kolejnej uchwały (XXXII/295/09 z dnia 28 kwietnia 2009 r.) przekształcono pojedyncze wolne działki, stanowiące ostatnie potencjalne rezerwy pod zieleń lub inne tereny publiczne na tereny zabudowy mieszkaniowej. Tak prowadzona polityka przestrzenna zdeterminowana jest jedynie przez czynnik ekonomiczny i nie uwzględnia aspektów społecznych, nie mówiąc o racjonalnym gospodarowaniu krajobrazem. W świetle obowiązujących zapisów planistycznych dalszy scenariusz rozwoju zabudowy opierać się będzie o zagęszczanie już istniejących ognisk osadnictwa oraz powstanie dużych osiedli mieszkaniowych w okolicach Cesarzowic i w Gądowie - Jaszkotlu. Wyraźnie rysuje się tendencja do zlewania zabudowy oddzielnych niegdyś wsi. Zwiększenia udziału obiektów wielkoskalowych o przemysłowym charakterze należy spodziewać się na południe od Nowej Wsi Wrocławskiej i Pietrzykowic, na wyznaczonych wzdłuż autostrady A4 strefach aktywności gospodarczej. W rysunkach planów trudno doszukać się spójnej koncepcji rozwoju nawet w obrębie jednej gminy. Podziały przestrzenne nowych osiedli bazują na kanwie dawnych rozłóg szatkowanych na mniejsze parcele. Program funkcjonalno przestrzenny ogranicza się do wyznaczenia strefy mieszkaniowej z możliwością prowadzenia usług oraz dróg dojazdowych. Na tereny zielone adoptowane są zwykle wąskie pasy rowów melioracyjnych z zadrzewieniami, ale nawet i te relikty krajobrazu rolniczego pozostają niedostępne dla większości mieszkańców, gdyż nie zapewnia się odpowiednich połączeń do rozdrobnionych fragmentów terenów publicznych.

Na obszarach peryferyjnych metropolii często dochodzi do zderzenia nowopowstającej „miejskiej” zabudowy z równie współczesną „wiejską”, wyrażającą tęsknotę mieszkańców miast za sielskim utrzymaniem wśród łąk i lasów (Kępkowicz, 2012). Wydaje się, że w walce o wiejsko-miejski charakter suburbi prymat zaczynają przejmować kompleksy „miejskich” osiedli mieszkaniowych, powstające głównie w bezpośrednim sąsiedztwie Wrocławia. Niejednokrotnie zabudowa wielorodzinna powstająca na obszarze rolniczym zlewa się niepostrzeżenie z osiedlami w granicach miasta stanowiąc niejako bezpośrednie ich przedłużenie na obszary podmiejskie. Mozaika osiedli budowanych przez deweloperów nie tworzy razem spójnego obszaru funkcjonalno przestrzennego, wprawdzie każde założenie jest kompleksowo rozplanowane w „miejskim stylu”, ale tylko w swoich granicach. W ich sąsiedztwie powstają indywidualne inwestycje mieszkaniowe, często na obszarach nie objętych miejscowymi planami, tylko na podstawie zasady „dobrego sąsiedztwa”
(Dz.U. 2003, nr.80, poz. 717). Pod Wrocławiem znajdziemy obok siebie dom góralski, postmodernistyczną rezydencję jak i willę stylizowaną na dworek polski z wejściowym frontonem wspartym na kolumnach.

Brak poszanowania przestrzeni wizualnej, będącej dobrem publicznym, odbija się w największym stopniu na krajobrazie, który pomieścić musi wszystkie fizjonomiczne aspekty działalności człowieka. To zatem krajobraz powinien częściej stawać się przedmiotem zapisów planistycznych, a jego ochrona stać się narzędziem do wzmocnienia ładu przestrzennego (Bohm, 2007). Problematyczne może być się tu określenie, co należałyby chronić w całej rozciągłości krajobrazu. Inwestycje na terenie jednej gminy mogą oddziaływać na zasoby znajdujące się w gminie sąsiedniej, które z kolei wpływają na charakter jeszcze innej gminy. Przykładem mogą być tu obiekty przemysłowe zlokalizowane na terenie gminy Kobierzyce, zasłaniające widok z obszarów gminy Kąty Wrocławskie na położony o 30 km dalej masyw Ślęży w gminie Sobótka. Ochrona krajobrazu powinna zatem uwzględniać zasoby wizualne przeanalizowane w trzecim wymiarze a nie jedynie na ortogonalnym rzucie mapy zasadniczej.

Rys. 63. Dom w stylu góralskim w okolicach Smolca (fot. J. Sztejn)
Rys. 64. Współczesna zabudowa jednorodzinna w okolicach Ślęży (fot. J. Sztejn)

Rys. 65. Współczesne osiedla wielorodzinne w okolicach Komorowic (fot. J. Sztejn)
5.7. Propozycja koncepcji funkcjonalno przestrzennej

Pierwszy kompleksowy plan rozwoju aglomeracji wrocławskiej opracowany przez Ernsta Maya w 1922 r. powstawał w duchu koncepcji miast ogrodów z uwzględnieniem potrzeb różnych grup społecznych. W propozycji Maya na uwagę zasługuje znaczny udział terenów otwartych, które poza funkcją rolniczą pełniły też rolę ogólnodostępnych terenów wypoczynkowych, buforów zieleni, czy też swoistych otwartych granic, podkreślających odrębność i charakter poszczególnych osiedli w aglomeracji (Kononowicz, 2010). Niestety owe ambitne założenia nie zostały nigdy zrealizowane w całości, a po upływie 90 lat wydają się być utopijną wizją, nie przystającą do współczesnych realiów. Dynamiczne przekształcenia krajobrazu podmiejskiej strefy Wrocławia rodzą pytanie o konsekwencje obecnych procesów. Czy efektem działań współczesnych inwestorów i organów administracji publicznej odpowiedzialnych za politykę przestrzenną ma pozostać jedynie rozległa strefa zabudowy? O jakości zarówno miejskiego jak i wiejskiego krajobrazu świadczy dostępność terenów publicznych. W przypadku wsi jest to otwarte szerokie widoki, z którego zasobów każdy może czerpać wrażenia estetyczne. W miastach przestrzeń publiczna jak parki, skwery, bulwary itp. ma znaczenie społeczne, przyrodnicze, fitosanitarne i psychologiczne. Współczesny kierunek rozwoju wrocławskich suburbi powoduje bezpowrotnie wydzieranie otwartych terenów rolniczych, które stanowią potencjał dla rozwoju zrównoważonego podmiejskich osiedli mieszkaniowych, z uwzględnieniem ważnej roli przestrzeni publicznej. To właśnie dostępność widokowa obszaru dająca możliwość wglądu w charakterystyczne elementy kompozycyjne świadczy o jakości wizualnej i duchu miejsca. Otworzenie terenu ma także znaczenie w kształtowaniu stref ogólnodostępnego wypoczynku i rekreacji, które sprzyjają powstawaniu więzi społecznych na poziomie lokalnym. Dla miasta szczególnego znaczenia nabierają obszary leżące na styku terenów zurbanizowanych i otwartego krajobrazu rolniczego. Potencjalnie zapewniają one integrację satelitarnych osiedli Wrocławia ze strukturą przyrodniczą agrocenozy.

Znajomość kierunków przekształceń oraz charakteru tradycyjnego krajobrazu strefy podmiejskiej Wrocławia pozwalają na sformułowanie wniosków i wytycznych do dalszego gospodarowania przestrzenią na styku miasta i wsi. Próby tego typu podejmowane są w pracowni Wojewódzkiego Biura Urbanistycznego w postaci opracowywanych planów rozwoju dla Wrocławskiego Regionu Metropolitarnego, gdzie jednym z elementów jest...
sformułowanie uwarunkowań i kierunków rozwoju struktury przyrodniczej. W przypadku aglomeracji o złożonym układzie funkcjonalno przestrzennym istotne staje się potraktowanie terenów otwartych, tożsamych często z tkanką środowiska przyrodniczego jako systemu obsługującego całą metropolię (Raszka, 2000). Przy formułowaniu tego typu strategii zastosowanie można znaleźć model płatów i korytarzy oparty na liniowych elementach agroekosystemu, jak zadrzewienia śródpolne, miedze, rowy melioracyjne, drogi polne. Liniowa struktura powyższych zasobów tworzy korytarze spięte w węzłach tzw. płatach ekologicznych, obejmujących kompleksy leśne. Pola uprawne stanowią tło, które w myśl koncepcji płatów i korytarzy stają się macierzą dla całego systemu (Markuszewska, 2004).

Powyższe rozważania dają podstawę do propozycji rozwiązań funkcjonalno przestrzennych strefy podmiejskiej Wrocławia, opierającą się na:

- wyznaczeniu powiązań funkcjonalno przestrzennych dla zielonej infrastruktury aglomeracji wrocławskiej na bazie rusztu istniejącej struktury przyrodniczej,
- uwzględnieniu powiązań i otwarć widokowych, zwłaszcza w kierunku południowym i południowo zachodnim, na których eksponowany jest masyw Ślęży,
- określaniu zasad kształtowania krajobrazu w skali elementów przyrodniczych i drobno-przestrzennych, np. racjonalne wyznaczanie buforów wolnych od zabudowy wzdłuż pasm zadrzewień śródpolnych.

Zaproponowane strefowanie krajobrazu opiera się o:

- analizę miejscowych planów zagospodarowania przestrzennego;
- istniejącą zabudowę wraz z jej funkcją;
- układ komunikacyjny łącznie z drogami polnymi;
- strukturę zieleni (las, zadrzewienia śródpolne, dawne parki pojedyncze grupy drzew i krzewów a także aleje);
- sieć hydrograficzną;
- ocenę wpływu zasobów krajobrazowych na wizualny charakter krajobrazu.
6. PODSUMOWANIE I WNIOSKI KOŃCOWE

Celem podjętej pracy było określenie wpływu urbanizacji strefy podmiejskiej Wrocławia na charakter krajobrazu. Na podstawie przeprowadzonej kwerendy materiałów archiwalnych określono tradycyjny charakter krajobrazu rolniczego na badanym obszarze. Wyodrębniono elementy najbardziej typowe w jego strukturze. Opracowanie danych w środowisku GIS pozwoliło na przeanalizowanie przekształceń w czasie i opracowanie map wynikowych. Dzięki zastosowaniu modelowania zasięgów widoczności określono udział charakterystycznych elementów budujących krajobraz.

Na podstawie przeprowadzonych prac i uzyskanych wyników można przedstawić następujące wnioski:

- Na terenie opracowania wyszczególnić można dwa główne kierunki rozwoju krajobrazu. Pierwszy wiąże się z zamykaniem przestrzeni zabudową mieszkaniową, często chaotyczną i obcą w krajobrazie tradycyjnym. Powstają w ten sposób kompleksy osiedli – sypialni pozbawione konkretnego programu funkcjonalno przestrzennego, który obejmowałby poza funkcją mieszkaniową także usługi i rekreację. Jaskrawym przykładem tego typu przekształceń jest wieś Smolec. Drugim kierunkiem formowania nowych form krajobrazu jest rozwój przestrzeni aktywności gospodarczej, co wiąże się z powstawaniem w otwartym krajobrazie wielko-kubaturowych obiektów o charakterze przemysłowym i związaną z nimi infrastrukturą. Tego typu obiekty powstają głównie w okolicach Bielan Wrocławskich i wzdłuż autostrady A4.
W analizowanym przedziale czasowym nie odnotowano znaczących zmian wynikających z przekształceń krajobrazu na skutek rozwoju infrastruktury komunikacyjnej. Budowa autostradowej obwodnicy Wrocławia do momentu zakończenia badań nie wkroczyła w na tyle zaawansowany etap, żeby miało to wpływ na wizualne aspekty krajobrazu. Wyjątek stanowić może fragment w okolicy Nowej Wsi Wrocławskiej, gdzie prowadzone były już prace ziemne i wycinka zardzewień śródpolnych.

Na podstawie analiz wirtualnych panoram określono wrażliwość wizualną poszczególnych elementów krajobrazu. Najbardziej podatne na przekształcenia widoku są obiekty zajmujące niewielki odsetek ogólnej powierzchni panoramy, lub których ekspozycja jest ograniczona w większym stopniu niż elementów sąsiednich. Na szczególną uwagę zasługują tu masyw Ślęży oraz aleje i szpalery.

Przy spełnieniu założeń określonych w metodyce badań ustalono, iż proporcja terenów otwartych do przegród wizualnych stanowi na badanym obszarze średnio 5:1, przy czym wyraźnie kształtuje się tendencja do zamykania krajobrazu w pobliżu nowopowstającej zabudowy. Wartością dodaną może być sformułowanie zależności pomiędzy otwartością krajobrazu a krzywą rozkładu wizualnych przegród.

W podjętej pracy opracowano nową metodę kartowania zjawisk wizualnych na mapach widoczności. Bazuje ona na modelowaniu krajobrazu i symulacji wirtualnych panoram, które analizowane są pod kątem udziału poszczególnych charakterystycznych zasobów krajobrazowych.

Na podstawie kwerendy materiałów archiwalnych można stwierdzić że:

- dominującą funkcją na badanym obszarze było rolnictwo,
- sieć rowów odwadniających stanowiła ruszt układu przestrzennego co najmniej od pierwszej połowy XIX w. i przetrwała w niemalże niezmienionym stanie do dnia dzisiejszego;
- do lat 80. XX w. krajobraz zachował swoją ciągłość historyczną i dojrzałość formy wynikającą z pełnionej od wieków funkcji rolniczej;
- na przełomie XX XXI w. na skutek gwałtownych przekształceń i zmiany funkcji terenu, nastąpiły nieodwracalne zmiany charakteru krajobrazu.
Analizy wizualne przekształceń krajobrazu w latach 1982 – 2009 oparte o modelowanie krajobrazu wykazały:

- znaczący przyrost zabudowy w analizowanych, średnio na panoramę od 1,7% w roku 1982 do 5% w roku 2009;
- zmniejszenie widoczności lasów, zadrzewień śródpolnych, alei, wód powierzchniowych, masywu Ślęży, podłoża;
- niewielki przyrost widoczności infrastruktury drogowej;
- stopniowe zamykanie krajobrazu.

W podjętej pracy opracowano metodę budowy map widoczności opartą o symulacje wirtualnych panoram. Metodyka bazuje na połączeniu modelowania trójwymiarowego, analiz krajobrazu w oparciu o fotografie i opracowania kartograficznego przy użyciu narzędzi GIS.

Uzyskano serię map przedstawiających w perspektywie właściwej dla percepcji obserwatora, znajdującego się na powierzchni terenu, udział charakterystycznych zasobów krajobrazu, w jednostce odniesienia.

Uzyskane wyniki badań są prawdziwe przy następujących założeniach:

- analizowany obszar jest płaski tj. maksymalne przewyższenia nie przekraczają 20 m./ km²;
- linia horyzontu wirtualnej panoramy znajduje się w połowie wysokości kadru;
- wysokości elementów w modelu krajobrazu ustalone zostały osobno dla każdej z klas obiektów poprzez uśrednienie ich realnych wartości.

Uproszczenie modelu krajobrazu może powodować może nieznaczne zniekształcenie wyników. W przypadku punktów obserwacyjnych znajdujących się na krawędzi modelu część danych, jest niekompletna, wynika to z faktu, że panoramy dla kierunków granicznych obejmują przestrzeń poza wymodelowanym obszarem. Innym ograniczeniem jest dokładność klasyfikacji poszczególnych zasobów krajobrazu. W celu uzyskania ogólnego obrazu charakteryzującego obszar Równiny Kąckiej klasyfikowano jedynie najważniejsze elementy z pominięciem ich wewnętrznego zróżnicowania. Pominięto wewnętrzną klasyfikację dla zabudowy tradycyjnej i nowopowstającej, ale uwzględniono różnicę skali pomiędzy obiektami przemysłowymi a zabudową mieszkaniową.
Opracowana metoda może mieć zastosowanie w kartowaniu zjawisk wizualnych w krajobrazie. Mapa widoczności w sposób kompleksowy przedstawia, dla dowolnego obszaru widoczność wybranych elementów krajobrazu, dzięki czemu może stać się, przydatnym narzędziem wspomagającym procesy planistyczne jednostek samorządowych.

Jest to narzędzie, które może znaleźć zastosowanie w planowaniu przestrzennym i w szeroko pojętym gospodarowaniu krajobrazem. Modelowanie umożliwia analizę wpływu planowanych inwestycji na zasoby wizualne środowiska zarówno w skali dużych kompleksów zabudowy jak i drobnych, w postaci obiektów infrastruktury jak ekrany akustyczne, czy reklam wielkoformatowych. Wypracowane narzędzie pozwala na określenie osi i ciągów widokowych, oraz innych uwarunkowań wizualnych. Jak wykazały podjęte badania, przyjęta metodyka sprawdza się także przy monitorowaniu zmian zachodzących w krajobrazie.
7. **LITERATURA**

Appleyard D., Lynch K., Myer R. 1964: View from the Road Joint Center for Urban Studies of the Massachusetts Institute of Technology and Harvard University.

Bohm A. 2006: Planowanie przestrzenne dla architektów krajobrazu - o czynniku kompozycji, Politechnika Krakowska, Kraków.

Bohm A. 2007: Rola krajobrazu w budowie ładu przestrzennego, Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 17a, s. 63-72.

Drozd J. 2005: Gleby [w:] Przyroda Dolnego Śląska, PAN Wrocław.

Europejska Konwencja Krajobrazowa, sporządzona we Florencji dnia 20 października 2000 r. (Dz. U. z dnia 29 stycznia 2006 r.)

Hubbard H.V. 2010: An introduction to the study of landscape design, Read Books Design

Inglot S. 1979: Historia chłopów śląskich, Ludowa Spółdzielnia Wydawnicza.

Litwin U., Bacior S., Piech I. 2009: Metodyka waloryzacji i oceny krajobrazu.

Markuszewska I. 2004: Zastosowanie modelu płatów i korytarzy w aspekcie zmian krajobrazu rolniczego [w:] Platy i korytarze jako elementy struktury krajobrazu – możliwości i ograniczenia koncepcji. Wydawnictwo SGGW, Warszawa

Mazurski K. R. 1979: Próba klasyfikacji relifu górskiego, PTTK, Wrocław, s. 4-16

McHarg I. 1971: Design with Nature . The American Museum of Natural History

Migoń P. 2005: Rozwój rzeźby terenu [w:] Przyroda Dolnego Śląska, PAN Wrocław.

Myga-Piątek U. 2005 a: Krajobraz kulturowy w badaniach geograficznych, [w:] Krajobraz kulturowy. Aspekty teoretyczne i metodologiczne, Komisja Krajobrazu Kulturowego PTG, Sosnowiec, s. 40-51

Orzessek D. 2010: Precace by President of Anhalt University of Applied Sciences, [w:] Digital Landscape Architecture 2010, Wichmann Verlag, Berlin

Ozimek P., 2002: Zastosowanie algorytmów światła lokalnego w wyznaczaniu wykresów widoczności, praca doktorska w WAPK, pod kierunkiem A. Bohma

Pawlak W. i inni 2008: Atlas Śląska Dolnego i Opolskiego. Pracownia Atlasu Dolnego Śląska Uniwersytetu Wrocławskiego, Wrocław

Raport o stanie i uwarunkowaniach prac planistycznych w gminach w końcu 2008 r., Instytut Geografii i Przestrzennego Zagospodarowania PAN dla Ministerstwa Infrastruktury, Warszawa 2010.

Rygiel P. 2008: Odporność wizualna krajobrazu – zastosowanie w planowaniu przestrzennym, Czasopismo Techniczne z. 10 - Architektura z. 5-A Politechnika Krakowska, Kraków.

Shekhar S. 2005: Urban sprawl assessment Entropy approach

Smardon R. i inni 1987: Foundations for visual project analysis

Szczęśniak E. 2005: Roślinność [w:] Przyroda Dolnego Śląska, PAN Wrocław.

Uchwała Rady Gminy Kąty Wrocławskie, Nr XXXII/266/96 z dnia 16 grudnia 1996, z późniejszymi zmianami.

Ustawa o Lasach z dnia 28 września 1991 r. (Dz. U. z 2011 r. Nr 12, poz. 59)

Ustawa o planowaniu i zagospodarowaniu przestrzennym Dz.U. 2003, nr.80, poz. 717.

Walczak W. 1974: Nad Odrą, Ossolineum, Wrocław.

Wejhert K. 1984: Elementy kompozycji urbanistycznej, Wydawnictwo Arkady Warszawa, s. 50-93.

Widoczności zabudowy metodą kątów widokowych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie.

8. **SPIS RYSUNKÓW**

Rys. 1. Obszar badań

Rys. 2. Widok z strony masywu Ślęży i Tyńca małego z okolic współczesnego krzyża przy trasie Bielany Wrocławskie (Źródło: Instytut Herdera)

Rys. 3. Krajobraz równiny Kąckiej, lata 30. XX w. (Źródło: Instytut Herdera)

Rys. 5. Pałac w Rybnicy, lata 30. XX w. (Źródło: dolny.slask.org.pl)

Rys. 6. Klub cyklistów w Tyńcu Małym, lata 20. XX w. (Źródło: dolny.slask.org.pl)

Rys. 7. Przykład nowej zabudowy w pobliżu Smolca. (Źródło: dolny.slask.org.pl)

Rys. 8. Nieistniejący już pałac w Zabrodziu, który uległ zniszczeniu po 1945r. (Źródło: fotopolska.eu)

Rys. 9. Widok na średniowieczny kościeł w Jaszkotlu, lata 80. XX w. (Źródło: dolny.slask.org.pl)

Rys. 10. Pałac w Rynicy, lata 20. XX w. (Źródło: dolny.slask.org.pl)

Rys. 11. Pałac we wsi Ślęza. (Źródło: dolny.slask.org.pl)

Rys. 12. Mapa topograficzna w skali 1:25 000, wydana w 1831 r. (Źródło: Instytut Herdera)