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1. INTRODUCTION. 

GENERAL PRINCIPLES OF MODELLING. 

In the most general sense a model is anything used in any way to represent 

anything else [1.1]-[1.5]. There are also other definitions of the term “model”, e.g.: 

1. A model is a simplified representation used to explain the workings of a 
real world system or event.  

2. A model is an object which we study, not for its intrinsic interest, but 
because it is a formalized or simplified representation of a class of 

phenomena which can be studied easily. 

The reasons of building models are as follows:  

1. A model helps us to understand problem.  

2. A model makes easier finding possible ways of solving problem. 

3. A model helps us to assess possible directions of activities. 

The “goodness” of a model depends not on how well it might serve our purposes 

but on the degree to which it tells the truth.  

It should be underlined that if a model is based upon observed data, especially 

physical data about the real world, then the model must be equally real.  

To measure the validity (i.e. the reality) of a model, several criteria are established.  

1.1. TYPES OF MODELS 

One can distinguish the following types of models: 

− concrete and abstract, 

− physical and mathematical, 

− descriptive and prescriptive, 

− analogue and symbolic, 

 

1.1.1. CONCRETE MODEL 

A concrete model is a replica of reality.  

1.1.2. ABSTRACT MODEL 

An abstract model (in another words a conceptual model) is a model that uses ideas 

to represent other ideas.  

The abstract model is:  

− a synthetic presentation of the most essential elements of reality,  
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− a theoretical construct that represents something, with a set of variables and a set 

of logical and quantitative relationships between them, 

− constructed to enable reasoning within an idealized logical framework about 

certain processes. 

1.1.3. PHYSICAL MODEL 

A physical model is a physical object that mimics the system.  

1.1.4. MATHEMATICAL MODEL 

A description of a system where the relationships are expressed in mathematical 

form is called as a mathematical model.  

Classifying mathematical models, one can distinguish the following models: 

− static and dynamic, 

− deterministic and probabilistic, 

− linear and nonlinear. 

 

Static models 

A static model presents reality at a specific time instant.  

 

Dynamic models 

A dynamic model describes the behaviour of reality in terms of how one qualitative 

state can turn into another.  

 

Deterministic models 

The deterministic model is a mathematical model in which outcomes are precisely 

determined through known relationships among states and events, without any room 

for random variation. In such models, a given input will always produce the same 

output.  

 

Probabilistic models 

A statistical (probabilistic) model is a set of mathematical equations which describe 

the behaviour of an object of study in terms of random variables and their associated 

probability distributions.  
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Linear models 

If all the operators in a mathematical model exhibit linearity, such a model is called 

the linear model.  

Notes: 

The question of linearity and nonlinearity is dependent on context. Linear models 

may have nonlinear expressions in them.  

 

�onlinear models 

In nonlinear models, some of the operators exhibit nonlinearity. 

1.1.5. DESCRIPTIVE MODEL 

A descriptive model is a physical, conceptual or mathematical model that describes 

situations as they are or as they actually appear.  

1.1.6. PRESCRIPTIVE MODEL 

A prescriptive model is a model that suggests what ought to be done (how things 

should work) according to some assumptions or standards.  

1.1.7. ANALOGUE MODEL 

An analogue model explains a phenomenon by reference to some other occurrence.  

1.1.8. SYMBOLIC MODEL 

Symbolic model contains mathematical symbols used to describe the status of 

variables at a given time and to define the manner in which they change and interact.  

Symbolic models are constructed using either a natural or formal language.  

1.2. CLASSIFICATION OF MODELS OF POWER SYSTEMS - 

DOMAIN POINT OF VIEW 

The following models of power systems can be distinguished: 

− phase and symmetrical component models, 

− one- and three-phase models. 
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1.2.1. PHASE MODELS 

A phase model is a representation of a power system in the natural phase 

coordinates.  

1.2.2. SYMMETRICAL COMPONENT MODELS 

A symmetrical component model describes a three-phase power system with use of 

3 symmetrical sets of balanced phasors. These sets are the sets of:  

− positive sequence components – ABC components,  

− negative sequence components – CBA components,  

− zero sequence components.  

1.2.3. SINGLE PHASE MODELS 

A single phase model is the one-phase representation of a three-phase power 

system.  

1.2.4. THREE-PHASE MODELS 

A three-phase model is the three-phase representation developed with strong 

reference to the physical structure of the equipment in actual three-phase power 

system. It should be underlined, that three-phase model is built for a power system 

exhibiting a considerable degree of geometric unbalance or load unbalance. 

1.3. MODELLING 

Modelling is the process of generating a model. Two models of the same 

phenomenon may be essentially different. It should be also stressed that users of a 

model need to understand the model's original purpose and the assumptions of its 

validity.  

Modelling processes can be classified as follows: 

− mathematical modelling,  

− physical modelling 

1.3.1. MATHEMATICAL MODELLING 

The mathematical modelling is a process of developing a mathematical model. 

Mathematical modelling is the use of mathematics to: 

− describe real-world phenomena,  

− investigate important questions about the observed world,  
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− explain real-world phenomena,  

− test ideas,  

− make predictions about the real world. 

The aim of mathematical modelling is not to produce the most comprehensive, 

descriptive model but to produce the simplest possible model that incorporates the 

major features of the phenomenon of interest.  

A process of mathematical modelling is presented in the Fig. 1.1. 

 

 
 

Fig. 1.1. Process of mathematical modelling. 

1.3.2. PHYSICAL MODELLING 

A typical procedure of physical modelling is cutting a system into subsystems and 

accounting for the behaviour at the interfaces.  

It can be noted that physical modelling is also used for mathematical models 

built/structured in the same way as physical models. The considered modelling is very 

convenient for building reusable model libraries. 

PROBLEMS 

1.1. What do you mean by model? 

1.2. What are the reasons for building models? 

1.3. Bring out the differences between: 

a) concrete vs. abstract models, 

b) physical vs. mathematical models, 

c) static vs. dynamic models, 

d) deterministic vs. probabilistic models, 

e) linear vs. nonlinear models, 

Real-world 

data 

 

Model 

 

Mathematical 

conclusions 

Predictions/ 

explanations 

Formulation 

Interpretation 

Test Analysis 
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f) descriptive vs. prescriptive models, 

g) analogue vs. symbolic models, 

h) phase vs. symmetrical component models, 

i) one- vs. three-phase models. 

1.4. What do you mean by modelling? Describe one application of modelling in 

electrical power engineering. 

1.5. Differentiate between mathematical and physical modelling. 

REFERENCES 

[1.1] E.A. Bender, An Introduction to Mathematical Modelling. John Wiley & 

Sons, New York 1978. 

[1.2] B. S. Bennett, Simulation Fundamentals. Prentice-Hall, 1995.  

[1.3] A.M. Law, W.D. Kelton, Simulation Modelling & Analysis. McGraw-Hill, 

New York 1982. 

[1.4] J. Ledin, Simulation Engineering. CMP Books, 2001. 

[1.5] M. Pidd, Systems Modelling: Theory and Practice. John Wiley & Sons, 2004. 
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2. MODELS FOR STEADY STATE ANALYSES. 

SCOPE OF UTILIZATION 

2.1. INTRODUCTION 

Power system modelling bases on several assumptions: bus loads and branch 

power flows are three phase and balanced, all series and shunt devices are symmetrical 

in the three phase. These assumptions allow for a simplification of the three phase 

power system into single phase model. Nevertheless, these simplifications are fully 

substantiated because such modelling is accurate enough for steady state analyses of 

power system [2.1]-[2.5]. Furthermore all network data are expressed in the per-unit 

system. In order to convert into the per-unit system it is necessary to assume one base 

apparent power Sb for a whole power system and the base voltage Vb for an individual 

level of transformation. The remaining base values as the base current Ib, the base 

impedance Zb or the base admittance can be obtained in the following way [2.5]: 
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b
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= ,   

b
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= ,   

b
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S
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2.2. BASIC COMPONENTS FOR STEADY STATE ANALYSIS 

2.2.1. TRANSMISSION LINES 

Transmission lines are described by the equivalent Π-circuit which is defined by 

two complex parameters: the series impedance 
kmZ , and the shunt admittance 

shY , 

where: 

 

.

,
1

,

1

shshsh

kmkm

kmkm

kmkmmkkm
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jXR
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jXRZZ

+=

+
==

+==

−  (2.2) 

Series elements represent resistance and reactance of line. Shunt elements are 

related with discharge and capacity between lines and ground. All parameters for 

a transmission line are positive. Sometimes, transmission line is modelled with the use  

of only the series branch. Expression of line parameters in terms of per-unit can be 

made in the following way. 
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Fig. 2.1. Two port Π-model of transmission line 

2.2.2. TRANSFORMERS 

Two winding transformers 

 

 
Fig. 2.2. Two winding transformer 
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a)      b) 
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shY
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c)      d) 
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2
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2
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2
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2
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kmZ

 
 

Fig. 2.3. Equivalent circuit for a transformer  

a) the model without shunt elements b) the Γ -model c) the T-model  d) the Π-model. 
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where:  vk  – a rated value of the short circuit voltage in percentage terms, 

∆PCu – total winding active losses, 

∆PFe  – total magnetic active losses, 

I0  – an idle current in percent of the rated current of the transformer.  

Equivalent parameters of transformers are related to a single phase. They can be 

related to the primary or secondary voltage and the nominal power of a transformer. In 

practical computations, these parameters are converted into the per-unit system. For 

the per-unit system above parameters can be calculated in the following way: 
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Three winding transformers 

  

Fig. 2.4. The three winding transformer. 

kZ

mZ

lZ

shY

 
Fig. 2.5. The equivalent circuit for a three winding transformer. 
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Off-nominal tap transformers and phase shifters 

Transformers with off-nominal taps and phase shifters can be modelled as an ideal 

transformer with complex tap  kmj

kmkm ett
θ=  connected with two port circuit (Π-

model ,T-model or Γ-model) or series impedance when iron loss and magnetizing 

reactance is neglected. For practical usage Π-model seems to be the best choice. The 

following advantages can be enumerated: 

 

− can be used to model also transmission line (tkm=1). It must be remembered that 

shunt susceptance, when it is considered, for transmission lines is positive and 

negative for transformers, 

− proper arrangement of shunt reactors allows to build another model of 

transformers,  

− proper arrangement of three of them and shunt reactors allows to model three 

winding transformer.  

 

kmt:1

2

sh
y

2

sh
y

kmz

kV nV mV

kI nI mI

 
 

Fig. 2.6. The equivalent Π-circuit for an off-nominal tap transformer or a phase shifter 
 

Series element represents power losses in the winding (real part) and flux leakage 

(imaginary part). Shunt branches represent iron loss (real part) and magnetizing 

reactance (imaginary part).  

The nodal equations for the equivalent Π-circuit can be derived, using the 

following relationship with the current flows In and Im: 

 
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Substituting for nI  and nV according to the formulae: 
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we obtain the following relationship among kI , mI , kV  and mV : 
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The new relationships for parameters can be derived: 
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Fig. 2.7. The equivalent circuit of an off-nominal tap transformer or a phase shifter 

2.2.3. SHUNT CAPACITORS AND REACTORS 

Shunt capacitors or reactors control voltage and reactive power. They are modelled 

as shunt susceptance at the corresponding bus. Determination of type of shunt element 
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depends on sign of the susceptance. It will be positive for shunt capacitor and negative 

for reactor. 

2.2.4. LOADS AND GENERATORS 

Loads and generators are modeled as equivalent complex power injections. 

Therefore they are not represented in the network model.  

2.3. BUILDING THE NETWORK MODEL 

The above-described components can be used to build the model of power system. 

There are many alternative ways of describing power system to comply with 

Kirchhoff’s laws. The most popular are mesh and nodal method. However the latter 

one has appeared to be more suitable for digital computer work. 

The nodal method has the following advantages:  

− very simple the numbering of nodes, 

− easy data preparation, 

− usually less variables and equations than with the mesh method, 

− no difficulties for network crossover branches, 

− parallel branches do not increase the number of variables or equations, 

− node voltages are available directly from solution, and branch currents 

are easily calculated, 

− off-nominal transformer taps can be easily presented.   

Set of equations for power system  according to the nodal method has the following 

form: 

 VYI ⋅=
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

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22221

11211
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, (2.20) 

 
where:  Ik  – the current injection phasor at the bus k, 

Vk  – the voltage phasor at the bus k, 

Ykm  – the (k,m) element of the admittance matrix Y, 

� – number of buses. 

2.3.1. ADMITTANCE MATRIX 

The admittance matrix Y has the following properties: 
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− in general, it is complex, and can be written as G + jB, 

− it is structurally symmetrical and numerical if there is no phase shifters 

in a power system,  

− it is sparse, 

− it is non-singular if each island of a power system has at least one shunt 

connection to the ground. 

The admittance matrix is formulated in the following way: 

 ∑ ∑
= =

+=
�

m

M

j

tap

kjsh

tap

kmkk yyY
1 1

,

, (2.21) 

 mk�mkyY
tap

kmkm ≠=−= K,2,1, , (2.22) 

 mk�mkyY
tap

mkmk ≠=−= K,2,1, , (2.23) 

where:  M-number of shunt elements at the bus k. 

Example 2.1 

In Fig.2.8, the considered 4-bus power system is presented. Network data and the 

steady state bus voltages are listed below. The susceptance of the shunt capacitor at 

bus 3 is given as 0.5 p.u. 

 

Fig. 2.8. One-line diagram of a 4-bus power system 
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The parameters of branches are given in Tab.2.1  

 

Tab. 2.1. Data of considered power system 

Bus k Bus m 
R 

p.u. 

X 

p.u. 

B 

p.u. 
Tap 

1 

1 

2 

2 

2 

3 

3 

4 

0.02 

0.02 

0.05 

0.00 

0.06 

0.06 

0.10 

0.08 

0.20 

0.25 

0.00 

0.00 

- 

- 

- 

0.98 

 

The admittance matrix for the considered system is: 

 



















−

−+−+−

+−−+−

+−+−−

=

50.12075.120

037.2200.900.800.400.1500.5

75.1200.800.491.3500.900.1500.5

000.1500.500.1500.577.2900.10

jj

jjj

jjjj

jjj

Y  

2.3.2. VOLTAGE PHASOR 

Voltage phasor can be considered in the polar and rectangular coordinate system. 

In the polar coordinate system, the bus voltage at the k-th bus is considered in the form 
kj

kk eVV
δ=  where Vk, δk – magnitude and phase angle of the voltage respectively. 

In the rectangular coordinate system, 
kkk feV j+=  where ek, fk – a real part and an 

imaginary part of the voltage, respectively. 

 
Fig. 2.9. The voltage phasor 
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2.3.3. POWER EQUATIONS 

For the purposes of the steady states modelling, the following relationships for 

active and reactive power injections, active and reactive power flows and bus voltages 

can be derived (Fig. 2.7):  

 VY krowkkk VjQP
*=− , (2.24) 

 ( )[ ] [ ]Tkmk
tap

km

tap

km

tap

kshkmkm VVVyyyjQP
*2

,
⋅⋅+−=− , (2.25) 

 ( )[ ] [ ]Tmkm
tap

mk

tap

mk

tap

mshmkmk VVVyyyjQP
*2

,
⋅⋅+−=− , (2.26) 

where:  Pk, Qk  – an active injection and a reactive one at the k-th bus respectively;  

Pkm Qkm – an active power flow and a reactive power one between the k-th bus 

and the m-th one, respectively;  

ykm
tap
  – an admittance of the series branch connecting the k-th bus and the 

m-th one,  

ysh,k
tap 

– an admittance of the shunt branch at the k-th bus,  

ysh,m
tap
  – an admittance of the shunt branch at the k-th bus,  

Yrow k  – the k-th row of an admittance matrix, 

 [ ]
k�kkkrow yyy ,...,,

21
=Y , (2.27) 

 [ ]T21 ,...,, �VVV=V . (2.28) 

It must be noted that it is assumed convention that currents or power entering a bus 

is positive.  

PROBLEMS 

2.1. Build the admittance matrix for the power system from example 2.1 if a phase 

shifting transformer is used instead of the transformer between the buses 2 and 

4. Assume that the phase shift is equal to 30 degrees. 

2.2. Calculate all bus and branch powers in the power system from example 2.1 for 

the state vector shown in the Tab. P.2.1, if shunt parameters of branches (i) are 

considered, (ii) are not considered. 

 

22



 

 

Tab. P.2.1. Elements of the state vector of an exemplary power system  

bus no. 
V, 

p.u. 

δ, 

degrees 

1 

2 

3 

4 

1.00 

0.99 

0.97 

1.00 

0 

-1.72 

-3.14 

-2.86 
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3. MODELS FOR TRANSIENT ANALYSES.  

SCOPE OF UTILIZATION 

3.1. INTRODUCTION  

Electromagnetic transient analysis (transients) plays very important role in power 

system operation studies. It provides valuable information on dynamic behavior of 

system resulting from various forms of transient phenomena. Transient phenomena in 

power systems are caused by change of power network configuration and parameters 

such as switching operations, faults, lighting strokes. When transients occur, the 

currents and voltages in some parts of the network may many times exceed their 

nominal values and may cause malfunction of power network equipment.  

The changes of currents, voltages, power and energy during the transients are not 

instantaneous because the transient processes are attained by the interchange of energy 

stored in the magnetic field of inductances and the electrical field of capacitances. All 

transients vanish and, after that new steady-state operation point is established, i.e. 

transient describes the circuit behavior between two steady-states. It should be noted 

that in case of power system steady state operation system generation and loads 

change continuously and the power system never reaches steady-state mode – it 

operates in fact in quasi steady-state mode. 

Mathematical description of electromagnetic transient has in general a form of set 

of first order differential equations based on Kirchhoff’s laws describing circuit 

response containing resistances, inductions and capacities in presence of specified 

stimulus. Handling general formulation and analysis of the power networks is very 

complex due to interactions of electrical, mechanical and thermal phenomena.  

Calculation by hand of electromagnetic transients for large scale power systems is 

practically very challenging or quite impossible. Since late third decade of the last 

century, power systems were modeled with use of their physical models called 

transient network analyzers. From the mid of 1960’s the transient simulation with 

digital computers has become possible and pure analog transient network analyzers 

have been successively replaced by hybrid (analog-digital) or purely digital systems. 

First version of EMTP software was proposed by Dommel in early 1960’s [3.4]. 

Today’s transient simulation software packages are intensively developed, equipped 

with user friendly, visual “drag and drop” environment, are capable of graphically 

represent the results, export-import data in different formats etc. Key technical 

features concern on component library facilities with detailed element modeling, 

supporting of load flow and short-circuit studies, electric motors, protection devices, 

power electronics and FACTS simulations, flexible and adaptive simulation modes, 

time- and frequency (harmonic components) domain analyses etc. Moreover, various 

special modules and add-ons are offered as an extension of basic version. To the most 

popular simulation software one can be numbered: ATP-EMTP, PSCAD-EMTDC, 
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DIgSILENT PowerFactory, Matlab Power System Blockset, PowerWorld Simulator, 

PSS/E.  

Further part of the chapter concerns on characteristic of transient phenomena, 

discrete models of basic circuit elements, formulation and solution of network 

equations. A concise description power system equipment is also given in order to 

explain the way the network devices are modeled. 

3.2. TRANSIENT PHENOMENA IN POWER SYSTEMS 

Electric power system consists of large number of various elements operating for 

energy generation, transmission, distribution and consumption. In such complex and 

wide-are distributed system the great variety of transients can occur and they may 

affect not only single elements or small areas, but also entire system. From physical 

character point of view the following transient groups can be recognized:  

• wave – involving electromagnetic wave propagation,  

• electromagnetic – involving interaction between electric and magnetic 

field stored in power system,  

• electromechanic – involving interaction between electrical energy 

stored in power system and energy generator rotor motion and 

oscillations,  

• thermodynamic – involving control phenomena in thermal power 

plants.  

To the most important electromagnetic transient phenomena one can recognize: 

• switching phenomena caused by energization of lines, cables and 

transformers, capacitor and reactor switching, circuit breaker operation, 

sudden load changes, electrical motor startup, power electronic 

equipment operation etc.,  

• faults, e.g. symmetrical and unsymmetrical faults, fault removing,  

• transient stability, sub-synchronous resonance,  

• lighting overvoltages, e.g. direct and indirect lighting strokes.  

Electromagnetic transients in power network involve wide time duration from 

microseconds to minute (Fig. 3.1) and wide frequency range from DC to 50 MHz or 

even more. Modeling of power network components valid for such wide frequency 

range is impossible in practice. Therefore, the applied component models should 

correspond to the specific frequency range of certain transient phenomena.  
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Tab. 3.1 contains brief overview of electromagnetic origins and their frequency 

ranges. Tab. 3.2 presents the frequency ranges of electrical transients which are 

classified into four groups with frequency ranges for which specific models of 

components can be stated.  

Although time/frequency characteristic consideration for accurate power network 

representation is very important it is essential to recognize component non-linearities, 

to identify reliable model structure and parameters, to consider their 

mutual/distributed nature and frequency dependence. 

3.3. DISCRETE MODELS OF ELECTRICAL NETWORKS  

Transient calculations cannot be performed without applying digital computers 

except to the very simple circuits and with use of classical methods, e.g. Laplace 

transformations. Electrical variables in power networks are continuous, however, 

digital simulation is discrete in nature. One of the main problems in digital transient 

simulation is developing of appropriate models and methods applied for solution of 

differential and algebraic equations at discrete time instances.  

3.3.1. DISCRETE MODELS OF BASIC ELECTRICAL COMPONENTS  

Basic electrical component: resistors, capacitors and inductors need to be 

represented in discrete form for computer calculation of transient studies. These 

models are applied to formulate discrete model of electrical network suitable for 

solving by digital computer with the assumed integration rule and time step.  

 

Fig. 3.1. Duration time (in. sec.) of some transient phenomena.  
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Tab. 3.1. Origin of electromagnetic transients and their frequency ranges  [3.3].  

Origin Frequency 

Transformer energization 

Ferroresonance 
0,1 Hz – 1 kHz 

Load rejection 0,1 Hz – 3 kHz 

Fault clearing  

Fault initiation 

50 Hz – 3 kHz 

50 Hz – 20 kHz 

Line energization  

Line reclosing 

50 Hz – 20 kHz 

(DC) 50 Hz – 20 kHz 

Recovery voltage:  

Terminal faults 

Short line faults  

 

50 Hz – 20 kHz 

50 Hz – 100 kHz 

Multiple re-strikes of circuit breakers 10 kHz – 1 MHz 

Lightning surges,  

Faults in substations  
10 kHz – 1 MHz 

Disconnector switching  

and faults in gas insulated switchgear  
100 kHz – 50 MHz 

Tab. 3.2. Origin of electromagnetic transients and their frequency ranges  [3.3].  

Group Frequency range 
Time-domain 

characteristic 
Representation for 

I 0,1 Hz – 3 kHz 
Low frequency 

oscillations 
Temporary overvoltages 

II 50 Hz – 20 kHz Slow front surges Switching overvoltages 

III 10 kHz – 3 MHz Fast front surges Lightning overvoltages 

IV 100 kHz – 50 MHz Very fast front surges Restrike overvoltages 

 

Resistor is considered as static element and its representation is shown in Fig. 3.2. 

 

 

R k m 

vk(t) vm(t) 

ikm(t) 

Fig. 3.2. Resistor repesentation. 
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Relation between current and voltages in time instance t can be described by 

equation  

 ( ) ( ) ( )( )tvtv
R

ti
mkkm

−=
1

 (3.1) 

Capacitor and their Norton based representation is presented in Fig. 3.3.:  

 

 
 

Differential equation describing relation between current and voltage is given by: 

 ( ) ( )
t

tvtv
Cti mk

km
d

)()(d −
= . (3.2) 

Assuming that ikm(t–Ts), vk (t–Ts), vm(t–Ts) are known (from previous time step), the 

equation can be integrated for one step Ts:  

 ( ) ( ) ( ) ( ) ( ) tti
C

TtvTtvtvtv
t

Tt

kmsmskmk

s

d
1

∫
−

+−−−=− . (3.3) 

Applying trapezoidal integration rule one can obtain: 

 ( ))()(
2

1
)(

skmkms

t

Tt

km
TtitiTdtti

s

−+≈∫
−

. (3.4) 

If the values from preceding time steps are in Ikm(t–Ts), then:  

 ( )( ) ( )( ) )()()()(
2

)(
skmmkskmmk

s

km
TtItvtvGTtItvtv

T

C
ti −+−=−+−= , (3.5) 

where:  

 ( ))()(
2

)()(
smsk

s

skmskm
TtvTtv

T

C
TtiTtI −−−−−−=− ,  (3.6) 

is called current history term.  

Fig. 3.3. Capacitor (a) and their equivalent circuit (b). 

G=2C/Ts 

k m 

uk(t) um(t) 

ikm(t) 

Ikm(t-Ts) 

C 
k m 

uk(t) um(t) 

ikm(t) 

a) b) 
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For inductance described by differential equation:  

 
t

i
Ltvtvv km

mkL
d

d
)()( =−= . (3.7) 

Using similar rules as for capacitance, the current in branch with inductance is 

given by:  

 ( ) ( ) ( ) )()()()()()(
2

skmmkskmmk

s

km
TtItvtvGTtItvtv

L

T
ti −+−=−+−= ,  (3.8) 

and history term: 

 ( ))()(
2

)()(
smsk

s

skmskm
TtvTtv

L

T
TtiTtI −−−−−−=− . (3.9) 

Norton equivalent circuit for inductance is presented in Fig. 3.4.  

 
 

Note that applying different integration rules is possible as shown in Tab. 3.3. 

Tab. 3.3. Integration formulae for selected discrete integration methods.  

Integration 

method 

Capacity model Induction model 

G History term G History term 

Backward 

Euler 
s

T

C
 ( )

s

s

Ttv
T

C
−−  

L

T
s  
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s
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T
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nd
 

order 
sT

C

2

3
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s

s

s

Ttv
T

C
Ttv

T

C
2

2

2
−−−−  

L

T
s

3

2
 ( ) ( )

ss
TtiTti 2

3

1

3

4
−−−  

L k m 

vk(t) vm(t) 

ikm(t) 

G=Ts/(2L) 

k m 

vk(t) vm(t) 

ikm(t) 

Ikm(t-Ts) 

Fig. 3.4. Inductance (a) and their equivalent circuit (b). 

a) b) 
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3.4. NON LINEAR AND TIME VARYING ELEMENTS MODELING  

Electrical power networks contain various types of nonlinear elements. The most 

common are nonlinear inductances representing saturation and hysteresis effects in 

transformer and reactor cores, nonlinear resistances of surge arresters, time varying 

resistances of electrical arc. The network contains usually relatively small number of 

nonlinear elements. Hence methods used for linear networks are adopted to find the 

solution.  

Several modifications have been presented to handle with nonlinear and time 

varying elements. There are based on a current source representation, piecewise-liner 

approximation or the compensation method.  

With use of compensation method nonlinear elements are represented by current 

injections. Compensation theory states that the branch with non-linear element can be 

excluded from the network and simulated as a current source connecting nodes k and 

m if the non-linear element is considered as load (Fig. 3.5a).  

 
First, the solution of the network without nonlinear element is found according to 

equation:  

 
kmThevkmkm
iRvv −=

)0(
, (3.10) 

and next, the characteristic of nonlinear element:  

 







= K,,, t

dt

di
ifv km

kmkm
, (3.11) 

where:  vkm(0) – voltage across nodes k and m without nonlinear element,  

RThev – Thevenin equivalent resistance.  

Iterative algorithm, e.g. Newton’s method is used to find the solution in this step. 

The compensation method can be used to solve networks with several nonlinear 

elements, if one nonlinear element is connected to the node.  

Piecewise approximation is often used for representation of saturation effect of 

magnetic cores (Fig. 3.5b). The solution method is linear, but the conductance of 

element should be changed once the voltage exceeds the knee point. 

Linear part of 

network 

k 

m 

ikm 

Fig. 3.5. Representing of nonlinear elements:  

compensation method (a), piecewise linear approximation (b). 

u 

i 

b) a) 

knee point 
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Formulation and solution of node equations  

After replacing network components by Norton equivalents, for network with n 

nodes the system of n equations can be formed:  

 
H

tt IiGv −= )()( , (3.12) 

where:  G – a nodal conductance matrix (size n×n),  
v(t) – a vector of node voltages (size 1×n),  
i(t) – a vector of nodal current source injections (size 1×n),  
IH – a vector of current history terms (size 1×n).  

Some of nodes have known voltages because voltage sources connected to node are 

grounded (zero potential). The equation (3.12) is rearranged and partitioned into sets 

with unknown node voltages (A) and known node voltages (B):  
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The unknown voltages are calculated from:  

 )()()()( tttt
BABABABHAAAAA
vGIvGIivG −=−−= , (3.14) 

and currents flowing through voltage sources can be calculated using: 

 )()()( ttt
BHBBBBABA
iIvGvG =++ . (3.15) 

The set of the linear equations can be solved in efficient way by triangular 

factorization of the augmented matrix GAA. The computation algorithm is as follows:  

1. Building matrices GAA and GBB. Triangularization of GAA using e.g. Gauss 

elimination technique.  

2. In each time step the vector on right-hand side of (3.15) is updated from 
known history terms and known current and voltage sources.  

3. The system of linear equations is solved for vA(t), using transformation 
during the triangularized matrix GAA. In this iteration process the 

symmetry of the matrix is exploited, i.e. the same triangularized matrix 

used for downward operations is also used in the back substitution. 

4. Updating the history terms IHA and proceeding next time step. 

The described algorithm steps are presented in Fig. 3.6 for better clarity.  

In case of three phase representation the single element of G matrix is replaced by 

3×3 submatrix. Current and voltage vector elements are replaced by vector of three 
elements corresponding to the certain phases.  

Example 3.1 

To illustrate the network solution algorithm transient response for step voltage for 

simple RLC circuit shown in Fig. 3.7a will be calculated for 2 time points using 
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trapezoidal integration rule. Transient calculations run with time step Ts = 0,1 ms and 

zero initial conditions, i.e. capacitor voltage and induction current at t=0 are equal to 

zero. The circuit parameters: E=100 V, R=4 Ω, L=1 mH, C=100 µF. 
The Norton equivalent of the circuit is shown in Fig. 3.7b. Voltage source is 

converted to the Norton equivalent (current source with resistance in parallel). 

 

 

Fig. 3.6. Steps of transient solution algorithm:  

1 – triangular factorization, 2 – forward reduction, 3 – backward substitution 
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According to Norton equivalent scheme (Fig. 3.7b ) the nodal equations can be 

formulated as: 
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The result of nodal conductance matrix building:  

 





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Calculations for t = Ts  
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05.205.0

05.03.0
  

Applying Gauss elimination technique to triangularize the matrix: 

a) division of first row by G11, 

b) multiplying of first row by –G21 and adding it to the second row, gives the 
following result:  

 






 −

166.4

333.83

041.20

016.01
 

C L R 
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i10 

a) b) 

Fig. 3.7. Simple RLC circuit (a) and their equivalent (b).  
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c) node voltages v1(Ts) and v2(Ts) calculated by backward substitution:  

 ( ) V041.2
041.2

166.4
2

==
s

Tv ,  

 ( ) ( ) V673.83333.83041.2016.0333.83016.0
21

=+⋅=+=
ss

TvTv ,  

d) current flowing in the circuit:  

 ( ) ( ) ( )( ) ( ) A082.4041.2637.8305.0
21

=−=−=
ssLs

TvTvGTi  

The same result is obtained with use of:  

 ( ) ( )( ) ( ) A082.4041.20.2
2

===
sCs

TvGTi . 

Calculations for t = 2Ts  

The updated values of current history terms:  

 ( ) ( ) ( ) ( )( ) A163.8
211212

=−+=
ssLssh

TvTvGTiTI ,  

 ( ) ( ) ( )( ) A163.8
22020

−=+−=
sCssh

TvGTiTI . 

and updated current vector 
( ) ( )

( ) 







=









−
−








=








−









163.8

836.16

163.8

163.8

0

25

0 20

1210

sh

shs

TI

TITi
.  

Applying Gauss elimination to the extended matrix:  

 








−

−

163.8

836.16

05.205.0

05.03.0
,  

i.e. division of first row by G11, multiplying of first row by –G21 and adding it to the 

second row gives the node voltages:  

 ( ) V371.92
2

=
s

Tv and ( ) V684.572
1

=
s

Tv  

The circuit current value:  

 ( ) ( ) ( )( ) ( ) ( ) A579.10163.8371.9684.5705.0
1221

=+−=+−=
shssLs

TITvTvGTi  

The analytical solution for current obtained from inverse Laplace transform gives:  

 ( ) ( ) ( )ttti 2000exp61000sin
3

650
−=  (3.17) 
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The comparison between discrete and exact values of circuit current is given in the 

table below.  

 i(t), A 

t, ms 
discrete 

value 

exact 

value 

0.1 4.082 8.105 

0.2 10.579 12.876 

3.5. MODELS OF POWER SYSTEM COMPONENTS  

3.5.1. INTRODUCTION 

An accurate simulation of transient phenomenon requires a representation of 

network components valid for a very wide frequency range (from DC to several 

MHz). An acceptable representation of each component throughout this frequency 

range is usually impossible in practice This chapter discusses modeling of the most 

important network components - overhead lines, insulated cables, transformers, 

arresters, network equivalents, rotating machines, circuit breakers. Their frequency-

dependent behavior is considered. 

3.5.2. OVERHEAD TRANSMISSION LINES AND CABLES  

In general two main model types of overhead lines for time-domain simulations are 

used: lumped parameters and distributed parameters models. The selection of the 

model depends on line length and range of frequency to be simulated.  

Lumped parameter models are stated for one, usually fundamental frequency and 

they are suitable for steady-state simulations or for frequencies similar to fundamental 

frequency. However, much more adequate models for transient analysis are with 

distributed nature and frequency dependence of parameters.  

The common rule for selecting the transmission line model is relation between 

wave travel time τl over line and simulation time step Ts. If τl < Ts then lumped 

parameter, usually π-section model assumed. Otherwise the frequency depended 
model should be selected. If the data describing line geometry are not available the 

Bergeron model can be used.  

The general guideline for modeling of power lines in different frequency ranges is 

presented in Tab. 3.4.  
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Lumped parameter models  

The most common lumped parameter model of transmission lines is nominal 

(coupled) model, as shown in Fig. 3.8. It should be underlined that it is valid only for 

fundamental frequency.  

An approximation for the distributed nature of a transmission line parameters is 

also possible by representing of line as an interconnection of many lumped parameter 

identical sections. Each section can be in form of π, T or Γ equivalent and contains 
series resistance, series inductance and shunt capacitance (shunt conductance is 

usually neglected). The parameters of each section are obtained by dividing total R, L, 

C line parameters by number of sections. The impedance parameters are usually 

available for typical conductor types and their geometrical configuration.  

Tab. 3.4. Guideline for overhead line modeling  [3.3]. 

Topic 0.1 Hz-3kHz 50 Hz-20 kHz 10 kHz-3 MHz 
100 kHz-50 

MHz 

Representation of 

transposed lines 

Lumped 

parameters 

multi-phase π 
circuit 

Distributed 

parameter 

multi-phase 

model 

Distributed 

parameter multi-

phase model 

Distributed 

parameters 

single phase 

model 

Line asymmetry Important 

Capacitive 

asymmetry is 

important, 

inductive is 

important, 

except for 

statistical 

studies, for 

which it is 

negligible 

Negligible for 

single-phase 

simulations, 

others 

Negligible 

Frequency 

dependent 

parameters 

Important Important Important Important 

Corona effect 

Important if 

phase conductor 

voltages can 

exceeded the 

corona 

inception 

voltage 

Negligible Very important Negligible 
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Linear, lumped parameter networks containing resistors, capacitors, inductors, and 

voltage and current sources can be represented by the following system of first-order 

ordinary differential equations and a set of output equations written in the form of 

state space formulation:  

 
( )

,

,0, 0

DuCxy

xxBuAxx

+=

=+=&
 (3.18) 

where:  x – a state vector;   

















=

nnnn

n

aaa

aaa

K

M

K

21

11211

A ;   

















=

nmnn

m

bbb

bbb

K

M

K

21

11211

B ;  

















=

nnnn

n

ccc

ccc

K

MM

K

21

11211

C ;  

















=

nmnn

m

ddd

ddd

K

MM

K

21

11211

D ;  

x0 – a vector of initial values; 

u – an excitation vector;  

Fig. 3.8. Nominal π coupled model of transmission line.  
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y – an output vector. 

 

In these equations the state vector x contains some of the capacitor voltages and 

inductor currents. Matrices A, B, C, and D are the constant real matrices with proper 

dimensions, and their entries depend on the values of the lumped parameters of the 

network.  

The solution in state space equation is given by:  

 ( )0ede
0

xBux
AAA t

t

t e += ∫ − ττ
. (3.19) 

Square matrix A is called system matrix and e
At
 is transient matrix defined as:  

 ( ) ( ) KK ++++= nt t
n

tt AAA1
A

!

1

!2

1
e

2
 (3.20) 

For digital analysis the discrete form of state variable equations is suitable. As a 

result state variable values in discrete time instances are obtained.  

Assuming that t = kTs, k = 0, 1, 2, the discrete approximation of equation 3.19 by 

trapezoidal rule gives:  

 ( )( ) ( ) )(
22

1

1

sss

ss

s
kTTkT

TT
Tk BuxAIAIx +








+








−=+

−

, (3.21) 

Fig. 3.9 shows the line model represented by connection of identical sections with 

n state variables. Assuming the capacitor voltages and inductor currents state matrix A 

has form:  

 

-R/L -1/L          

1/C  -1/C         

 1/L -R/L -1/L        

  1/C  -1/C       

… … … … … … … … … … … 

       1/C  -1/C  

        1/L -R/L -1/L 

         1/C  

 

Note that only non zero terms are presented.  
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Column vector B with n terms relating input (voltage at the beginning node) with 

state variables has the form:  

 [ ]TL 000/1 K=B .  

 
 

Line models with distributed parameters  

Fig. 3.10 shows small length section of transmission line with single conductor 

parallel to ground.  

 
Equations describing line currents and voltages in the time domain are as follows: 

 
( ) ( ) ( )

t

txi
LtxiR

x

txv

∂

∂
+=

∂

∂
−

,
','

,
, 

 
( ) ( ) ( )

t

txv
CtxvG

x

txi

∂

∂
+=

∂

∂
−

,
','

,
, 

where:  v(x, t) – the line voltage;  

i(x, t) – the line current;  

R’, L’, G’, C’ – line parameters per unit length.  

The single phase lossless transmission line (resistances R and shunt G 

conductances are neglected) can be described with use of partial differential equation:  

Fig. 3.9. Lumped parameter section transmission line model.  
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L R 

x2 

x1 L R 
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x3 L R 
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x4 xn 

R dx L dx 

C dx G dx 

dx 

k m 

Vk Vm 

Fig. 3.10. Section of power transmission line with distributed parameters.  
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( ) ( )

t

txi
L

x

txv

∂

∂
=

∂

∂
−

,
'

,
, (3.22) 

 
( ) ( )

t

txv
C

x

txi

∂

∂
=

∂

∂
−

,
'

,
, (3.23) 

The general solution of the equations gives:  

 ( ) ( ) ( )txftxftxi ϖϖ ++−=
21

, , (3.24) 

 ( ) ( ) ( )txfZtxfZtxv
CC

ϖϖ +−−=
21

, , (3.25) 

where: ( ) ( )txftxf ϖϖ −−
21

,  - arbitrary functions representing wave traveling at 

velocity ϖ  in a forward and backward direction respectively;  

'

'

C

L
Z

C
=  - a surge (characteristic) impedance;  

''

1

CL
=ϖ   a phase velocity.  

Multiplying equation (3.24) by ZC and inserting into equation (3.25) yields:  

 ( ) ( ) ( )txfZtxiZtxv
CC

ϖ−=+
1

2,, ,  (3.26) 

 ( ) ( ) ( )txfZtxiZtxv
CC

ϖ+−=−
2

2,, .  (3.27) 

Line propagation velocity is equal to:  

 ''CLd
d

==
ϖ

τ ,  (3.28) 

where: d – a length of the transmission line.  

Hence 

 ( ) ( ) ( ) ( )( )tiZtvtiZtv
kmCmkmCk

−+=−+− ττ .  (3.29) 

Rearranging equation 3.29 one can obtain:  

 ( ) ( )τ−+= tItv
Z

ti
mm

C

mk

1
)( .  (3.30) 

History term is given by:  

 ( ) )()(
1

τττ −−−−=− titv
Z

tI
kmk

C

m
.  (3.31) 
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Current at the node k is:  

 ( ) ( )τ−+= tItv
Z

ti
kk

C

km

1
)( , (3.32) 

and the current history term is as follows: 

 ( ) )()(
1

τττ −−−−=− titv
Z

tI
mkm

C

k
. (3.33) 

Fig. 3.11 presents the two-port model. There is no direct impedance connection 

among nodes k and m. The characteristic impedances and equivalent current sources 

are connected to the terminals. Current supplied by current source at node k at time 

instance t depends on the current and voltage at (t – τ) at the node m and similarly 
current supplied by source at node m at time t depends on the current and voltage at 

(t – τ) at the node k. It should be underlined that wave propagation time τ differs from 
the multiple of integration time step. History terms of currents of the actual traveling 

time are interpolated to give the correct traveling time. The presented basic 

transmission line model is called Bergeron model.  

 
To decouple multiphase line matrix equations the modal theory is applied. The 

diagonal matrices are then obtained and each mode can be analyzed independently as a 

single phase line.  

Frequency depended models 

Multiconductor transmission line is characterized in frequency domain by the 

following equations:  

 ( ) ( )ωω
ω

x

x

dx

d
IZ

V
=−
)(

, (3.34) 

 ( ) ( )ωω
ω

x

x

dx

d
VY

I
=−
)(

, (3.35) 

where: Z(ω), Y(ω) – the series impedance and the shunt admittance matrices.  

Im0(t-τ) G=1/Zc G=1/Zc Ik0(t-τ) 

k m 

vk(t) vm(t) 

ikm(t) imk(t) 

Fig. 3.11. The Bergeron model of a power transmission line.  
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The impedance matrix is complex and symmetric:  

 ( ) ( ) ( )ωωωω LRZ j+= , (3.36) 

and their component are frequency dependent.  

The shunt admittance is equal to:  

 ( ) ( )ωωω CGY j+= . (3.37) 

Note, that Z(ω) and Y(ω) are n×n matrices where n is the number of quantities 
describing conductors. Line shunt conductance G is usually neglected for overhead 

line models.  

The relationships among voltages and current at line terminals are as follows:  

 
( )
( )

( )( ) ( )( )
( )( ) ( )( )

( )
( )







−












=









ω
ω

ωγωγ

ωγωγ

ω
ω

mk

m

C

C

km

k

I

V

ll
Z

lZl

I

V

coshsinh
1

sinhcosh

 (3.38) 

where: ( ) ( )ωω '' YZZ
C

=  – a characteristic impedance;  

( ) ( )ωωγ '' YZ=  – a propagation constant;  

l – a total line length;  

Z’(ω) – a line impedance specified per unit length;  
Y’(ω) – a line admittance specified per unit length. 

If the detailed power line configuration is available EMTP program are usually 

capable of computing the line parameters with use of line input data:  

• (x,y) coordinates of each conductor and shield wire, 

• bundle size and spacing, 

• sag of phase conductors and protecting wires, 

• phase rotation at transposition structures, 

• physical dimensions of each conductor, 

• resistance or resitivity of conductors and shield wires, 

• ground resistivity of the ground return path. 

Other data used for line modeling in frequency domain:  

• lumped-parameter equivalent or nominal π-circuits at the specified 
frequency, 

• constant distributed-parameter model at the specified frequency, 

• frequency-dependent distributed parameter model, fitted for a given 

frequency range, 

• capacitance or the susceptance matrix, 

• series impedance matrix, 
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• resistance, inductance, and capacitance per-unit length for zero and 

positive sequences, at a given frequency or for the specified frequency 

range, 

• surge impedance, attenuation, propagation velocity, and wavelength for 

zero and positive sequences, at a given frequency or for a specified 

frequency range. 

Overhead line parameters are derived from the forms of Carson or Schellcunoff 

equations.  

It is generally impossible to obtain a closed-form time-domain solution for a 

general input signal waveform. Therefore, a numerical frequency to time domain 

transformation is used. It should be underlined that line model in frequency domain is 

used only for model parameter and transformation determination. Modeling algorithm 

is the same as in case of losses line with included resistance.  

Most of the EMTP programs are also capable of calculating the cable line 

parameters. Similarly to overhead lines, the basic equations describing cable line are 

described by equations (3.37) and (3.38). Z and Y parameters are calculated with used 

of cable geometry and material properties such as:  

• (x, y) coordinates of each conductor;  

• radius of each conductor,  

• burial depth of cable system, 

• resistivity and permeability of all conductors and surrounding medium,  

• permittivity of cable insulation.  

The way of transient computation is then similar as in case of overhead lines.  

3.5.3. TRANSFORMERS  

The modeling of transformer should take into consideration various physical 

phenomena appearing during transients. Transformer behavior is nonlinear, frequency 

dependent and many variations on core and coil construction are possible. There are 

many physical attributes and phenomena whose behavior may need to be correctly 

represented: core and coil configuration, self- and mutual inductances between coils, 

leakage fluxes, skin effect and proximity effect in coils, magnetic core saturation, 

hysteresis, and eddy current losses in core, capacitive effects. EMTP-type programs 

provide dedicated support to derive detailed transformer model.  

Transformers have relatively simple structure. However, their adequate 

representation in wide frequency range is very difficult. Hence, the guideline for 

transformer modeling for different frequency ranges was proposed as in Tab. 3.5. It 

should be noted that for higher frequencies winding capacities are considered and 

frequency parameter dependence.  
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Tab. 3.5. Guideline for power transformer modeling  [3.3]. 

Parameter/effect 0.1 Hz-3kHz 50 Hz-20 kHz 
10 kHz-3 

MHz 

100 kHz-50 

MHz 

Short circuit 

impedance 
Very important 

Very 

important 
Important Negligible 

Saturation Very important 
Very 

important, 
Negligible Negligible 

Iron losses Important 
2)
 Important

 1) 
Negligible Negligible 

Eddy currents Very important Important Negligible Negligible 

Capacitive coupling Negligible Important 
Very 

important 
Very important 

1)
 Only for transformer energization phenomena, otherwise important. 

2)
 Only for resonance phenomena. 

 

Many transformer models have been proposed for low frequency studies and the 

selection of most proper representation depends on many factors. The following 

approaches are commonly used in EMTP software to transformer representation for 

low-frequency and slow-front transients:  

• matrix representation based models,  

• topology based models.  

Matrix representation based models 

Matrix representation based models use the single- and three-phase n-winding 

transformers in the form of an impedance or admittance matrix. The derivation of 

parameters is possible from manufacturer data. For transformer representation by 

complex impedance matrix one can write: 

 ( )ILRIZV ωj+== , (3.39) 

and for simulation in the time domain:  

 
td

d i
LRiv += . (3.40) 

Using of admittance matrix description, especially in case of very small 

magnetizing currents is also possible:  

 UYI = , (3.41) 

Hence, the currents in time domain are:  

 ( )vRiL
i

+= −1

d

d

t
. (3.42) 
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The basic equivalent circuit of the single phase transformer model shown is shown 

in Fig. 3.12. For simplicity the resistances are neglected. It is assumed that it consists 

of two coupled coils. The voltages at the terminal are given by:  

 















=
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k
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k

i

i

tLL
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v

v

d

d
, (3.43) 

where  Lkk, Lmm – self-inductances of winding k and m respectively;  

Lkm, Lmk – mutual inductances between windings.  

 
The winding currents are expressed as: 

 




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
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, (3.44) 

where: 
mkkmmmkk

mm

kk
LLLL

L

−
=Γ ;  

mkkmmmkk

kk

mm
LLLL

L

−
=Γ ;  

mkkmmmkk

mk

km
LLLL

L

−

−
=Γ ;  

mkkmmmkk

km

mk
LLLL

L

−

−
=Γ . 

k ik(t) 

vk(t) 
Lkk Lmm 

Lkm 

m 

vm(t) 

im(t) 

ImH Γkk+Γkm IkH 

k m ik(t) im(t) 

Γmm+Γmk 

−Γmk 

a) 

b) 

Fig. 3.12. Transformer (a) and its discrete equivalent (b). 

45



 

 

Digital implementation of transformer model with use of trapezoidal integration 

formula can be expressed as:  

 ( ) ( ) ( ) ( ) ( ) ( )( )tvtv
T

tv
T

TtIti
mkkm

s

kkmkk

s

skHk
−Γ+Γ+Γ+−=

22
,  (3.45) 

where: ( ) ( ) ( ) ( ) ( ) ( )( )
smskkm

s

skkmkk

s

skskH
TtvTtv

T
Ttv

T
TtiTtI −−−Γ+−Γ+Γ+−=−

22
. 

Topology (duality) based models 

Topology (duality) based models are derived from a magnetic circuit model with 

use of the duality principle. The obtained models include the effects of saturation in 

each individual leg of the core, interphase magnetic coupling, and leakage effects. In 

the equivalent magnetic circuit, windings are represented by magnetomotoric sources, 

leakage paths appear as linear reluctances, and magnetic cores appear as saturable 

reluctances. The equations based on Kirchhoff laws for the magnetic circuits, similarly 

as for electrical networks are also formulated.  

Geometric based models use the formulation in which core topology is considered 

by use of magnetic equations and their coupling with electrical part.  

Summarizing of the approaches to transformer modeling is presented in Tab. 3.6.  

Tab. 3.6. Summarizing of power transformer models. 

Model Characteristic 

Matrix representation 

Consideration of phase-to-phase coupling and terminal 

characteristics, 

Only linear models can be represented, 

Saturation can be linked externally at the terminals in the form of 

non-linear elements, 

Reasonable accuracy for frequencies below 1 kHz. 

Topology (duality) 

based representation 

Duality-based models include the effects of saturation in each 

individual leg of the core, interphase magnetic coupling, and 

leakage effects. 

The mathematical formulation of geometric models is based on 

the magnetic equations and their coupling to the electrical 

equations, which is made taking into account the core topology. 

Models differ from each other in the way in which the magnetic 

equations are derived. 

3.5.4. ROTATING MACHINES  

Operation of the rotating machines depends on the interaction of electrical and 

mechanical part. The simple generator model consisting of electromotive force behind 

the reactance is adequate only for very short transient. For longer disturbances speed 

variations have the great influence on machine behavior. The mathematical model of 
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rotating machine for transient analysis depends on the specified frequency range. Tab. 

3.7 shows guideline for modeling of rotating machines.  

The detailed representation is required for low frequency transients. The modeling 

of coils, saturation, mechanical torque should be considered. Also voltage regulator 

and speed governor representation should be added into the model.  

Scheme of electrical part of synchronous generator and an equivalent circuit are 

shown in Fig. 3.12.  

Tab. 3.7. Guideline for rotating machine modeling  [3.3]. 

Parameter/effect 0.1 Hz-3kHz 50 Hz-20 kHz 10 kHz-3 MHz 100 kHz-50 MHz 

Representation  

Detailed 

representation of 

electrical and 

mechanical parts 

including 

saturation effect 

modeling  

A simplified 

representation of 

electrical part: 

an ideal AC 

source behind 

the frequency 

dependent 

transient 

impedance 

A linear per 

phase circuit 

which matches 

the frequency 

response of the 

machine 

A capacitance 

to ground per 

phase  

Voltage 

control  
Very important  Negligible Negligible  Negligible 

Speed control Important  Negligible
 

Negligible Negligible 

Capacitance   Negligible  Important Important Very important 

Frequency 

dependent 

parameters 

Important Important Negligible Negligible 
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A 

Fig. 3.13. Electrical part of synchronous generator (a) and their electrical equivalent (b). 
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The electrical part of the synchronous machine is described by the equation:  
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or in matrix form: 

 
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ψ
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where:  LS – a matrix of armature self and mutual inductances;  

LW – a matrix of field self and mutual inductances;  

LSW – a matrix of mutual inductances of field and armature.  

The self and mutual inductances vary with time and are expressed by the following 

equations:  

 γ2cos
SSAA

LLL ∆+= , 







−∆+= πγ
3

2
2cos

SSBB
LLL , 
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
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
+∆+= πγ
3

2
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SSCC
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






+∆−−== πγ
6

1
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SSBAAB
LMLL , 

 




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1
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+∆−−== πγ
6
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 γcos
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 







+== πγ
3

2
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ffCCf
MLL , 








+== πγ
3

2
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 







+== πγ
3

2
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QQCCQ
MLL , 

 0==
QffQ

LL , 0==
QDDQ

LL . 

Solving of these equations is possible in phase quantities. However, they are 

usually solved after transforming stator quantities into rotor-axis quantities, using the 

Park’s transformation. The transformation matrix is :  
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Application of the transformation yields:  
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or in matrix form:  
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where: 
2

3
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The flux-current-voltage equations in d-q frame can be written in the following 

form:  
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where: 



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

−== −

010

100

000
1 ωWWΩ . 

The electromechanical part of generator is described by the following differential 

equation:  

 
t

DPP
t

ST
em

S

rm

d

d

d

d
2

2 δδ
ω

−−= , (3.52) 

where:  ωS – a synchronous angular speed;  

δ  – a rotor angle;  
Tm  – a mechanical time constant;  

Sr  – a generator nominal power;  

Pm – a turbine mechanical power;  

Pe – a generator electrical power;  

D – a rotor damping coefficient.  
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Fig. 3.14. Incorporation of synchronous generator model in EMTP.  
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3.5.5. LOADS 

Loads connected to the power system are non-linear and their characteristics 

depend on system voltage and frequency. Different load dynamic profiles occur: non-

dynamic (e.g. resistive loads), slow dynamic (e.g. manually controlled loads), fast 

dynamic (induction motors, adjustable speed drives) and non-continuous (protection 

switching).  

Power system loads can be modeled by static and dynamic models. Static models 

are represented by constant active and reactive power, constant current or constant 

impedance models or combination of these types. Modeling of load dynamic 

characteristic load enables sensitivity to voltage and frequency changes. In some cases 

it is not possible or not feasible to model the dynamic behavior of individual loads and 

they are grouped into components with similar characteristics. Although there exist 

many types of loads, the most influential on dynamic behavior are induction motors. 

3.5.6. CIRCUIT BREAKERS  

Circuit breakers carry and break currents under normal and abnormal (short 

circuits) conditions. Normally breaker operates at closed position and when the 

tripping signal is obtained it opens contact and current flow is broken. The separation 

of the contacts causes the generation of an electric arc. The arc is usually quickly 

cooled by surrounding gas. The arc phenomenon is very complex and difficult to 

modeling and there is no generally accepted model. Guideline for circuit breaker 

modeling in different transient frequency ranges is presented in Tab. 3.8. 

In simulation programs circuit breakers are modeled by the following 

representations: 

• Ideal switch that is opened at first zero current crossing, after the 

obtaining tripping signal. Arc influence on the network is not 

considered,  

• The arc is modeled as a time-varying resistance. Resistance variation is 

determined with use of the breaker characteristic.  

• Dynamically varying resistance. 

Models of arc were proposed by Cassie and Mayr. The Cassie model is described 

by the following equation:  

 







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
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11
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2

2
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2
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i

v

v

dt

dg

g ττ
, (3.53) 
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and the Mayr model is expressed by:  

 
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


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
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
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−= 1

1
1

11

0

2

0
gP

i

P

vi

dt

dg

g ττ
, (3.54) 

where:  g  – an arc conductance,  

v  – an arc voltage;  

i  – an arc current;  

τ  – an arc time constant;  
P0  – a steady state power loss;  

v0  – a constant part of the arc voltage.  

Usually the following models for closing operation are used:  

• Ideal switch representation of circuit breaker. Its impedance changes 

rapidly from very large to very small value,  

• Assuming the existence of closing time when the arc can strike before 

the circuit breaker contacts are finally closed.  

Tab. 3.8. Guideline for modeling circuit breaker [3.3].  

Operation Mode 0.1 Hz-3kHz 50 Hz-20kHz 10 kHz-3 MHz 100 kHz-50 MHz 

Closing 

Mechanical  

pole spread 
important very important negligible negligible 

Prestrikes  

(decrease of 

sparkover  

voltage vs. 
time 

negligible important important very important 

Opening 

High current 

interruption  

(arc 
equations) 

important only 

for interruption 

capability studies 

important only  

for interruption 

capability studies 

negligible negligible 

Current  

chopping  

(arc 
instability) 

negligible 

important only  

for interruption  

of small  
inductive currents 

important only  

for interruption  

of small inductive 
currents 

negligible 

Restrike 

characteristic 

(increase of 

sparkover  

voltage vs. 

time) 

negligible 

important only  

for interruption  

of small inductive 
currents 

very important very important 

High 

frequency 

current i 
nterruption 

negligible 

important only  

for interruption  

of small inductive 
currents 

very important very important 
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Circuit breakers switching actions may have a significant influence on power 

network. In some cases modeling of breakers as ideal switch is exact enough. Exact 

modeling of arc-network interactions requires arc models whose parameters can be 

obtained only in experimental way.  

Application of switching device model can cause numerical oscillation (chatters). 

In such case voltage and current values oscillating around true values. The common 

reasons of chatters are a step change in current  through an inductor or a step change 

in voltage across a capacitor. An inductor voltage is equal to:  

 
dt

di
Lv = . (3.55) 

Applying the trapezoidal integration rule one can obtain:  

 ( ) ( ) ( ) ( )( )
s

s

s
Ttvtv

L

T
Ttiti −++−=

2
, (3.56) 

and solving for voltage across inductor:  

 ( ) ( ) ( ) ( )( )
s

s

s
Ttiti

T

L
Ttvtv −−+−−=

2
 (3.57) 

Assuming the unity step current change for i(t≥ 0)=1.0, the voltages across inductor 
are:  

v(t)= 2L/Ts 

v(t+Ts)= –2L/Ts 

v(t+2Ts)= 2L/Ts 

v(t+3Ts)= –2L/Ts 

… … 

The expected values of voltage v(t>0) is zero and it can be stated that numerical 

oscillations damage the simulation results. To prevent the numerical oscillations some 

artificial damping resistors are included in the model. However, the accuracy of 

simulation can suffer from such modification. Another way is to change the 

trapezoidal integration rule in case of discontinuity by Euler backward rule or 

interpolation steps [3.16].  

3.5.7. NETWORK EQUIVALENTS FOR TRANSIENT ANALYSES 

At present the main efforts concern on to find equivalent in time domain by use of 

discrete time network equivalent or to replace the external network using of lumped 

RLC circuit or transfer functions with frequency response approximating the 

characteristic of the original system.  
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Tab. 3.9. Frequency domain equivalent methods characteristics for EMTP analyses.  

Frequency domain 

Direct methods 

Foster 

equivalent 

Equivalent created by Foster method of circuit synthesis. The impedance-

frequency characteristic of the external system is described by:  

( ) ∑
= −

=
n

i i

i

ff

fA
ifZ

1
22

2

2j

π
, where: fi – i-th resonant frequency, Ai – residual 

correspondent to the i-th pole 

Good accuracy for limited frequency range. 

Lumped 

parameter 

circuit 

External system replaced by lumped RLC circuit whose frequency 

response approximates the response of external system. Model circuit 

consists of parallel branches corresponding to certain frequencies. The 

general admittance (resistances are omitted): 

( ) ( )
∑

= +
+

+
=

n

i i

is

s

sK
i

s

KsK
sY

1
22

0

ω
. where: Ks – constant, K0, Ki – residues of 

system admittance, ωi – series resonance frequencies.  

The method suitable for systems with available resonant frequencies. 

Correction 

filter 

Use of equivalent circuit with parallel RLC branches. Correction filter are 

used for the frequency ranges with large discrepancy between original and 

approximated impedance-frequency. The method is simpler and more 

accurate than optimization methods. 

Frequency 

response 

approximation 

Equivalent circuit based on parallel RLC branches for particular 

impedance-frequency characteristic. Each branch corresponds to the 

minimum at certain resonance frequency. 

Pole removal   Least square fitting to synthesize RLC equivalent circuit according to the 

driving-point function with respect to the frequency domain around 

resonance.  

Optimization methods 

Low-order 

rational 

function 

Network equivalent use the frequency response of the admittance 

functions over frequency range. The optimization method is used to 

minimize objective function involving amplitude and phase functions.  

Gradient 

optimization 

Minimization of the difference between the actual and equivalent system 

response according to the formula: 

( ) ( ) ( )( )mAxgAxgAxghJ ,,,,,, 21 K= , 

where: g – objective function, A1, A2…Am – independent variables at the m 

sample points, h- error criterion function. 

 

First group, discrete time Norton equivalents are obtained with use of response of 

external system to a sinusoidal signal used for identification of discrete time model 
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with use of least square method. The great variety of methods is applied for frequency 

domain modeling The general review of these methods (according to [3.7]) is 

presented in Tab. 3.9.  

The direct methods use circuit theory concepts, mainly the circuit synthesis 

techniques to obtain the adequate frequency response. Optimization methods take the 

advantage of the network admittance parameter identification.  

It should be noted that the equivalents have always the limited accuracy and the 

verification step is required before application. 

Example 3.2 

Discrete time Norton equivalent of the external network can be obtained with the 

use of an excitation signal (the multisinus signal) [3.1]:  

 ( ) ( )∑
=

+=
M

k

kkk
tfAtx

1

2sin φπ , 
T

l
f k

k
=  (3.58) 

where: Ak, fk, φk – an amplitude, a frequency and a phase of the k-th component 

respectively. 

The phase of k-th component can be derived from:  

 
( )

πφφ
M

mm
m

1
1

−
−= ,     Mm ,,2 K= , (3.59) 

Frequency spectrum of such signal is flat for the specified frequency range which 

can be adjusted in simple way.  

The equivalent can be described by parameter vector θθθθ. The relation between 
discrete voltages and current of equivalent circuit can be expressed by linear 

regression equation:  

 θXZ ⋅=  (3.60) 

where:  ( ) ( ) ( )[ ]Tpi�i�i 1,...,1, +−=Z  ;  

[ ]T
pp

ggggaaa ,...,,,,...,
21021

=θ  – a parameter vector;  

p – an assumed model order;  
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To obtain the circuit discrete equivalent the transient simulation with use of 

multisinus voltage excitation and discrete current are then registered. Assuming the 

model the order the X and Z matrices are formulated. The parameter estimates can be 

found with use of the least squares method:  

 ( ) ZXXXθ TT 1ˆ −
= , (3.61) 

Once the response of equivalent is found the mean square error between equivalent 

and simulation results is calculated. If the equivalent of the considered order satisfies 

the adequacy conditions, then it can be incorporated into EMTP solution routine. 

Otherwise, the model order is updated and the equivalent searching procedure is 

repeated. 

3.6. SOLUTION OF TRANSIENTS   

Mathematical description of electromagnetic transient has a form of set of first 

order differential equations with known initial conditions:  

 ( )tf
t

,
d

d
x

x
= , (3.62) 

where:  x  – a state variable vector,  

f(x)  – a vector function of state variables,  

and algebraic equations:  

 ( ) 0, =tg x . (3.63) 
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The objective is to find x as a function of t, with the initial values of x and t equal 

to x0 and t0. Numerical integration is used to find the solution x(t+Ts) with use of 

previous time solutions. Ts is a time interval between two adjacent time points and is 

called time step. Time step may be maintained constant over the integration interval or 

may be changed.  

Once the discrete equivalent circuits are formulated they are solved at discrete time 

points with the use of nodal circuit analysis methods. Conductance matrix is usually 

sparse and some decomposition techniques employed to improve computation speed 

and accuracy.  

Numerical integration methods produce unavoidable errors caused by:  

• round-off resulting from finite machine word length, used computer 

type and programming language,  

• truncation resulting from the mathematical approximation of the 

integral. This type of error depends only on the applied integration 

algorithm i.e. the way the approximation is made.  

During passing the integration algorithm it is expected to suppress numerical 

truncation error with simulation time, i.e. to preserve a numerical stability. Stability 

depends on the integrated equation, time step and the applied integration method. 

Another important topic is stiffness relating to time constants appearing in power 

system. Solution of linear differential equation set is linear combination of exponential 

functions. Each function describes individual system mode defined by system 

eigenvalues. Stiffness of the system depends on distribution of the eigenvalues: small 

values are related to slow dynamic changes and large values to fast dynamics. The 

large differences in system modes may result in some numerical and accuracy 

problems. Hence, the employed formula should be tailored to equation set stiffness.  

Due to great variety of possible power system operation conditions the selected 

integration scheme should ensure the sufficient accuracy and numerical stability. 

There are many methods to perform numerical integration, which use Taylor 

expansion or polynomial approximation. Generally, they can be divided into explicit 

and implicit. The value of integration of function in an explicit method is obtained 

without the value f(xn+1, tn+1) (e.g. forward Euler method). Otherwise the integration 

methods are called implicit (e.g. backward Euler). Some of the basic integration rules 

are shown in Tab. 3.10.  
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Tab. 3.10. Basic integration formulae for selected discrete integration methods.  

Ts =tn+1 – tn – integration time step.  

Integration method Integration formula Order 

Forward Euler ( )
nnsnn
tfT ,

1
xxx +=+  1 

Backward Euler ( )
111

, +++ +=
nnsnn
tfT xxx  1 

Trapezoidal 
( ) ( )[ ]

111
,,

2
+++ ++=

nnnn

s

nn
tftf

T
xxxx  

1 

Gears 2
nd
 order 

),(
3

2

3

1

3

4
1111 ++−+ +−=

nn

s

nnn
tf

T
xxxx  

2 

 

The first order methods are able to self-start. Higher order methods use the past 

values of  the integrated function, it is not possible to solve n+1 term for n = 0. In such 

case first terms in simulation are calculated with selected first order method. Higher 

order methods provide “smooth” approximation of integrated function and linear 

approximation is applied in first order methods. Therefore the accuracy for the same 

time step is usually better when higher order methods are used.  

The trapezoidal integration rule is mostly used in transient analyses. It is easy to 

programming, numerically stable and has reasonable accuracy. However, if the great 

accuracy is required, the small integration time step should be applied and 

computational efforts grow considerably.  

PROBLEMS  

3.1. Find the discrete Norton equivalents for circuits shown in Fig. 3.15 applying 

trapezoidal integration rule. 

 
3.2. Form the discrete Norton equivalent for circuit presented in Fig. 3.16 applying 

trapezoidal rule and write the node equations. Solve them for three time points 

(0, Ts, 2Ts). Circuit parameters: E – step voltage 40 V (applied at t=0), 

Fig. 3.15. Circuits for Problem 3.1.  

L 

R 

C R 

b) 
L 

a) 

C R 

c) 
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R1 = 2 Ω, R2 = 5 Ω, R3 = 5 Ω, L1 = 1 mH, L2 = 1 mH, C1 = 1 µF, Ts = 1 ms. 

Zero initial conditions. 
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4. POWER SYSTEM MODEL REDUCTION. 

NETWORK TRANSFORMATION 

4.1. GENERAL CONSIDERATIONS 

Power-system model reductions are made because of [4.1]-[4.3]:  

− practical computational limitations  (the required size of computer 
memory, and  computing time),  

− there is no necessity to model parts of the system  far away from a 
disturbance with great accuracy, 

− parts of the system, which do not belong to the considered utility,  are 
considered  as external subsystems, 

− maintaining the relevant databases, in which data from the whole system 
are collected, would be very difficult and expensive. 

The methods for producing the equivalents of an external subsystem can be divided 

as follows [4.2]: 

− methods which do not require any knowledge of the external subsystem,  
− methods requiring certain knowledge  of the configuration and the 
parameters  of the external subsystem itself. 

The latter of the mentioned methods are model-reduction ones.  

One can distinguish the following groups of model-reduction methods: 

− methods of physical reduction,  
− methods of topological reduction, 
− methods of modal reduction.  

Methods of physical reduction ensure choosing appropriate models for the system 

elements (generators, loads etc.). They select models depending on how influential an 

individual element is in determining the system response to a particular disturbance.  

Elements, which are electrically close to the disturbance, are modelled with higher 

accuracy. 

Methods of topological reduction rely on eliminating and/or aggregating selected 

nodes in order to reduce the size of the equivalent network and the number of 

generating units modelled. If they are used together with physical reduction, they give 

an equivalent model that comprises equivalents of standard system elements such as 

generating units, lines, nodes etc. 

The methods of topological reduction are also called methods of network 

transformation. 

The third group of the model-reduction methods includes methods of modal 

reduction. These methods use linearised models of the external subsystem to 

eliminate, or neglect, the unexcited system modes  
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4.2. NETWORK TRANSFORMATI

While the process of elimination of network nodes is performed the following rule 

is in force: when nodes are eliminated from the network model, the currents and nodal 

voltages at the retained nodes are unchanged. 

In this subsection, node elimination by matrix partitioning is considered.

Before any nodes are eliminated from the network (

 

where: E – denotes the set of eliminated nodes, 

R – denotes the se

I  – a vector of current injection,

V  - a vector of nodal voltages,

Y  – a submatrix of the nodal admittance matrix.

 

Fig. 4.1. The representation of the considered network before elimination of nodes.

Transforming the equations 

 

where: RRR YYY −=
1−−= EEREI YYK

1
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Taking into account the equations 

 

NETWORK TRANSFORMATION  

4.2.1. NODE ELIMINATION 

While the process of elimination of network nodes is performed the following rule 

n nodes are eliminated from the network model, the currents and nodal 

voltages at the retained nodes are unchanged.  

node elimination by matrix partitioning is considered.
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denotes the set of eliminated nodes,  

denotes the set of retained nodes, 

a vector of current injection, 

nodal voltages, 

a submatrix of the nodal admittance matrix. 

 

. The representation of the considered network before elimination of nodes.
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Taking into account the equations (4.1) and (4.2), one can ascertain, that

RRRR IVYI ∆+= . 

While the process of elimination of network nodes is performed the following rule 

n nodes are eliminated from the network model, the currents and nodal 

node elimination by matrix partitioning is considered. 

) we have:  

(4.1) 

. The representation of the considered network before elimination of nodes. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

, one can ascertain, that 

(4.6) 
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where:  

 

The vector EI  as well as the vector 

(4.6). It should be noted that the vector 

The equation (4.6) can be considered as the equation describing the reduced 

network (Fig. 4.2), in which the above

are not present. In the new network, the current injections differ from the ones at the 

same nodes of the original network. The difference is shown by equation 

Fig. 4.2. The reduction of the network by elimination of nodes.

The matrix RY  in the equation 

matrix IK  in the equation 

Apart from the presented way of modelling the original network one can consider 

another one, assuming that a current injection at each eliminated node is equal to zero. 

In this situation, a load at each eliminated node is represented by the admittance

 

where:  i  – an index of the node,

EiS  – a complex power at the node 

VEi – a magnitude of the voltage at the node 

EIR IKI =∆ . 

as well as the vector EV  are not directly present in the equation 

. It should be noted that the vector RI∆  depends upon the vectors EI

can be considered as the equation describing the reduced 

, in which the above-mentioned eliminated nodes (from the set 

the new network, the current injections differ from the ones at the 

same nodes of the original network. The difference is shown by equation (

 

. The reduction of the network by elimination of nodes. 

in the equation (4.6) is called a transfer admittance matrix and t

in the equation (4.7) is called a distribution matrix.  

Apart from the presented way of modelling the original network one can consider 

other one, assuming that a current injection at each eliminated node is equal to zero. 

In this situation, a load at each eliminated node is represented by the admittance

2

*

Ei

Ei
Ei

V

S
Y = . 

an index of the node, 

a complex power at the node i, belonging to the set of nodes 

a magnitude of the voltage at the node i. 

(4.7) 

are not directly present in the equation 

E  and EV .  

can be considered as the equation describing the reduced 

mentioned eliminated nodes (from the set E) 

the new network, the current injections differ from the ones at the 

(4.7). 

mittance matrix and the 

Apart from the presented way of modelling the original network one can consider 

other one, assuming that a current injection at each eliminated node is equal to zero. 

In this situation, a load at each eliminated node is represented by the admittance 

(4.8) 

, belonging to the set of nodes E, 
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The admittance EiY  is taken into account when the self admittance at the node i is 

determined. In the considered case, the self admittance at the node i differs from the 

one in the earlier case by EiY . 

In the considered case, we have the following two sets of equations derived from 

(4.1) 

 ERERRRR VYVYI += . (4.9) 

 EEERERE VYVYI +==0 . (4.10) 

From the equation (4.10) we have 

 REREEE VYYV
1−−= , (4.11) 

and taking into consideration the equation (4.9), we get  

 
( )

( ) .
1

1

RRREREERERR

REREERERRRR

VYVYYYY

VYYYVYI

=−=

=−+=
−

−

 (4.12) 

In the considered case, the vector RI∆ , which occurs in the equation (4.6), is equal 

to the vector with zero elements.  

The second from the considered methods of node elimination by matrix 

partitioning, has a certain drawback. In the transformed model, the equivalent shunt 

branches have large conductance values, and in efect  the branches of the equivalent 

network may have a poor X/R ratio causing convergence problems for some load-flow 

computer programs. 
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Example 4.1. 

Let us consider the power system from Fig. 4.3. Parameters of the branches of that 

system are in Tab. 4.1. Voltages at the nodes, power and current injections in the 

power system from Fig. 4.3 are in Tab. 4.2. The nodal admittance matrix for the 

considered system is in Tab. 4.5. Let us assume that: (i) the set {1,2, 3}is the set of 

retained nodes, (ii) the set {4, 5, 6, 7, 8, 9}is the set of eliminated nodes. In this 

situation, the vectors of currents RI , EI , the vectors of voltages RV , EV  and the 

matrices RRY , REY , ERY , EEY  are as it is shown in Tab. 4.3 – Tab. 4.9. Utilizing 

the equations (4.3), (4.4), we calculate the matrices: RY , IK . These matrices are 

presented in Tab. 4.10 and Tab. 4.11. RRVY  and RI∆ , i.e. components of the sum in 

the formula (4.6) and also RI  calculated from this formula are shown in Tab. 4.12. 

The currents RI  are calculated under assumption, that at the nodes 1, 2 and 3 are the 

same voltages as before elimination of the nodes: 4, 5, 6, 7, 8 and 9. Finally, we can 

ascertain that after elimination of the nodes: 4, 5, 6, 7, 8 and 9 the currents and nodal 

voltages at the retained nodes, i,e, at the nodes: 1, 2 and 3 are unchanged. 

 

  

Fig. 4.3. The considered power system. 
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Tab. 4.1. The parameters of the branches of the power system from Fig. 4.3. 

i j Rij Xij Bij 

1 4 0.0000 0.0576 0.0000 

4 5 0.0170 0.0920 0.1580 

5 6 0.0390 0.1700 0.3580 

3 6 0.0000 0.0586 0.0000 

6 7 0.0119 0.1008 0.2090 

7 8 0.0085 0.0720 0.1490 

8 2 0.0000 0.0625 0.0000 

8 9 0.0320 0.1610 0.3060 

9 4 0.0100 0.0850 0.1760 

 

Tab. 4.2. Voltages at the nodes, power and current injections in the power system from Fig. 4.3. 

i Vi δVi Pgi Qgi PLi QLi Ii δIi 

1 1.00 0 71.95 24.07 0.00 0.00 0.76 -18.50 

2 1.00 9.67 163.00 14.46 0.00 0.00 1.67 4.60 

3 1.00 4.77 85.00 -3.65 0.00 0.00 0.85 7.23 

4 0.99 -2.41 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.98 -4.02 0.00 0.00 90.00 30.00 0.97 -22.45 

6 1.00 1.93 0.00 0.00 0.00 0.00 0.00 0.00 

7 0.99 0.62 0.00 0.00 100.00 35.00 1.08 -18.67 

8 1.00 3.80 0.00 0.00 0.00 0.00 0.00 0.00 

9 0.96 -4.35 0.00 0.00 125.00 50.00 1.41 -26.15 

 

Tab. 4.3. The elements of the vectors RI , RV . 

N
o
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t 

N
o
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o
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n
o
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e 

RI  RV  

Magnitude 

p.u. 

Phase angle 

degrees 

Magnitude 

p.u. 

Phase angle 

degrees 

1 1 0.76 -18.50 1.00 0.00 

2 2 1.64 4.60 1.00 9.67 

3 3 0.85 7.23 1.00 4.77 
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Tab. 4.4. The elements of the vectors EI , EV . 
N
o
. 
o
f 

el
em
en
t 

N
o
. 
o
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n
o
d
e EI  EV  

Magnitude 

p.u. 

Phase angle 

degrees 

Magnitude 

p.u. 

Phase angle 

degrees 

1 4 0.00 0.00 0.99 -2.41 

2 5 0.97 -22.45 0.98 -4.02 

3 6 0.00 0.00 1.00 1.93 

4 7 1.07 -18.67 0.99 0.62 

5 8 0.00 0.00 1.00 3.80 

6 9 1.41 -26.15 0.96 -4.35 

Tab. 4.5. The nodal admittance matrix for the power system from Fig. 4.3. 

1 2 3 4 5 6 7 8 9 

1 j 17.36 0 0 j 17.36 0 0 0 0 0 

2 0 -j 16.00 0 0 0 0 0 j 16.00 0 

3 0 0 j 17.06 0 0 j 17.06 0 0 0 

4 
j 17.36 0 0 

3.31- 

j 39.31 

-1.94+ 

j 10.51 
0 0 0 

-1.37+ 

j 11.60 

5 
0 0 0 

-1.94+ 

j 10.51 

3.22-

j 15.84 

-1.28+ 

j 5.59 
0 0 0 

6 
0 0 j 17.06 0 

-1.28+ 

j 5.59 

2.44-

j 32.15 

-1.16+ 

j 9.78 
0 0 

7 
0 0 0 0 0 

-1.16+ 

j 9.78 

2.77- 

j 23.30 

-1.62+ 

j 13.70 
0 

8 
0 j 16.00 0 0 0 0 

-1.62+ 

j 13.70 

2.8- 

j 35.45 

-1.19+ 

j 5.98 

9 
0 0 0 

-1.37+ 

j 11.6 
0 0 0 

-1.19+ 

j 5.98 

2.55- 

j 17.34 

 

68



 

 

Tab. 4.6. The matrix RRY . 

1 2 3 

1 j 17.36 0 0 

2 0 -j 16.00 0 

3 0 0 j 17.06 

Tab. 4.7. The matrix 
REY . 

1 2 3 4 5 6 

1 j 17.36 0 0 0 0 0 

2 0 0 0 0 j 16.00 0 

3 0 0 j 17.06 0 0 0 

Tab. 4.8. The matrix 
ERY . 

1 2 3 

1 j 17.36 0 0 

2 0 0 0 

3 0 0 j 17.06 

4 0 0 0 

5 0 j 16.00 0 

6 0 0 0 

Tab. 4.9. The matrix 
EEY . 

1 2 3 4 5 6 

1 

3.31- 

j 39.31 

-1.94+ 

j 10.51 
0 0 0 

-1.37+ 

j 11.60 

2 

-1.94+ 

j 10.51 

3.22-

j 15.84 

-1.28+ 

j 5.59 
0 0 0 

3 
0 

-1.28+ 

j 5.59 

2.44-

j 32.15 

-1.16+ 

j 9.78 
0 0 

4 
0 0 

-1.16+ 

j 9.78 

2.77- 

j 23.30 

-1.62+ 

j 13.70 
0 

5 
0 0 0 

-1.62+ 

j 13.70 

2.8- 

j 35.45 

-1.19+ 

j 5.98 

6 

-1.37+ 

j 11.6 
0 0 0 

-1.19+ 

j 5.98 

2.55- 

j 17.34 
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Tab. 4.10. The matrix RY . 

1 2 3 

1 0.54-j 4.34 -0.24+j 2.43 -0.30+j 2.42 

2 -0.24+j 2.43 0.39-j 4.95 -0.15+j 2.95 

3 -0.30+j 2.42 -0.15+j 2.95 0.45-j 4.90 

Tab. 4.11. The matrix 
IK . 

1 2 3 4 5 6 

1 0.75-j 0.03 0.55-j 0.02 0.14+j 0.02 0.15+j 0.02 0.15+j 0.01 0.55-j 0.03 

2 0.14+j 0.01 0.15+j 0.01 0.17+j 0.009 0.48-j 0.01 0.69-j 0.02 0.33+j 0.01 

3 0.14+j 0.02 0.35+j 0.006 0.71-j 0.03 0.41-j 0.006 0.18+j 0.01 0.16+j 0.02 

Tab. 4.12. The elements of the vector RI  calculated from the formula (4.6), and the elements of the 

vectors RRVY , and RI∆ , which are components of the sum in the formula (4.6). 

N
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e 

RI  RRVY  RI∆  

Magnitude 

p.u. 

Phase 

angle 

degrees 

Magnitude 

p.u. 

Phase 

angle 

degrees 

Magnitude 

p.u. 

Phase 

angle 

degrees 

1 1 0.76 -18.50 0.72 146.69 1.46 -25.68 

2 2 1.64 4.60 0.80 43.49 1.13 -21.56 

3 3 0.85 7.23 0.46 101.15 1.00 -20.37 

4.2.2. NODE AGGREGATION USING THE DIMO’S METHOD 

The aim of the method is replacing a group of nodes {A} by an equivalent node a 

(Fig. 4.4) [4.1]-[4.3].  

In the first step of the transformation, some fictitious branches are added to the 

aggregated nodes, constituting the set {A}. 
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Fig. 4.4. The reduction of the network by aggregation of nodes using the Dimo’s method. 

The admittance of each of the fictitious branches is expressed by the formula 
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To obtain an equivalent node operating at nonzero voltage an extra fictitious 

branch with negative admittance is usually added to node a (Fig. 4.4) 
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Features of aggregation of nodes using Dimo’s method 

4. If the assumption,  that admittances of the fictitious branches are constant ,  is not 
valid,  the obtained equivalent will only imitate the external network accurately.  

5. The Dimo’s method produces a large number of fictitious branches  due to the 
elimination of node f and nodes { A } . 

6. A result of the Dimo’s method may be branches with negative admittances,  of 
which real parts have essential  significance.   This fact  may cause convergence 

problems  during calculations 

4.2.3. NODE AGGREGATION USING THE ZHUKOV’S METHOD 

Aim of the Zhukov’s method is the same as it is for the Dimo’s method, i.e. it is 

replacing a set of nodes {A} by a single equivalent node a (Fig. 4.5) [4.2]. 

The method ensures satisfaction of the conditions: 

1. The currents and voltages, i.e. RI  and RV , at the retained nodes cannot be 

changed. 

2. 
{ }
∑
∈

=
Ai

ia SS , where iS  - power injection at the aggregated node i.   

Before aggregation of nodes, the network is described by the formula 
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where A – denotes the set of aggregated nodes. 

After aggregation of nodes, the following relationship is valid 
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Fig. 4.5. The reduction of the network by

The condition: „The currents and voltages 

cannot be changed.” is satisfied when

 RRY

or 

 

If the above condition is to be satisfied for any vector 

 

where Aa VV
1−=ϑ . 

The condition: =
i

aS

 

what is equivalent with 

 
**
RaRa VYV

 

 

 

. The reduction of the network by aggregation of nodes using the Zhukov’s method.

The currents and voltages RI  and RV , at the retained nodes 

” is satisfied when  

aRaRRRARARRR VYVYVYV +=+  

aRaARA VYVY = . 

If the above condition is to be satisfied for any vector AV , it must hold that 

ϑ= RARa YY , 

{ }
∑
∈ Ai

iS is satisfied when 

***
AAaa IVIV = , 

.
**T**T**
AAAARARAaaaa VYVVYVVYV +=+  

of nodes using the Zhukov’s method. 

, at the retained nodes 

(4.17) 

(4.18) 

, it must hold that  

(4.19) 

(4.20) 

 (4.21) 
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If the equation (4.21) is to be satisfied for any vector AV , it must hold that 

 ARaR YY
T*ϑ=  (4.22) 

and 

 ϑϑ= AAaA YY
T*

. (4.23) 

One can note, that:  

1. The admittances of the equivalent branches linking the equivalent node with 

the retained nodes depend on ϑ , and hence on the voltage angle at the 

equivalent node δa. 

2. To have equivalent branches with low resistances the angle δa is assumed to 
be calculated from: 

for steady-state analysis 
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, (4.24) 

for aggregation of a group of generators  in  the transient stability model 
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, (4.25) 

where  snimii STM ω=  the inertia coefficient of the unit installed at the i-th 

aggregated node.  

Features of aggregation of nodes using the Zhukov’s method 

1. The admittances in the equivalent Zhukov’s network depend on the vector ϑ . 

This means that an equivalent network obtained for an initial (pre-fault) state is 

only valid for other states (transient or steady-state), if { }Aii ∈ϑ  can be assumed 

to remain constant.  

2. The Zhukov’s method does not introduce fictitious branches between the retained 
nodes {R}. The Zhukov’s aggregation introduces some equivalent shunt 

admittances at these nodes.  

3. If the vector ϑ  is complex then Zhukov’s equivalent admittance matrix is not 

generally symmetric (
T
RaaR YY ≠ ). This means that if aiia YY ≠  for i ∈ {R}, then 
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the values of the admittances in the equivalent branches obtained after 

aggregation are direction dependent. 

PROBLEMS 

4.1. What are the reasons for power-system model reductions? 

4.2. How can we distinguish model-reduction methods? 

4.3. What is an admittance of the fictitious branch, which is added to the node a 

(Fig. 4.5), when the node aggregation with the use of the Dimo’s method is 

utilized? What does this admittance depend on? 

4.4. What is the nodal admittance matrix after node aggregation with the use of the 

Zhukov’s metod? 

4.5. What are differences between the Dimo’s method and the Zhukov’s metod? 
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5. POWER SYSTEM MODEL REDUCTION. 

AGGREGATION OF GENERATING UNITS. 

EQUIVALENT MODELS 

OF THE EXTERNAL SUBSYSTEM 

5.1. INTRODUCTION  

Continued development and interconnection of power systems results in increase in 

model dimension and complexity. Modeling and analysis of systems with more and 

more complex  structure is challenging task. Despite the rapid growth of computing 

capabilities there is still need of using system equivalents. Equivalent can be defined 

as simplified model which can represent the original system without loss of any 

significant characteristic behavior. It can be stated that in practice usually there is no 

need to model entire power system in details. Using equivalents seems to be 

advantageous:  

• simplified representation by eliminating the elements that are influential 

in power system operation but they are out of interest,  

• avoiding serious difficulties with construction of detailed full scale 

system model, e.g. problems with data availability,  

• improving computational efficiency and simplification of result 

analysis.  

Some drawback of using equivalents concerns on possibility of obtaining 

inaccurate results. In addition, using simplified representation is usually valid over a 

limited range of operating conditions. It is worth noting that applying of simplification 

rules may lead to creation the models with elements and parameters not existed in 

original system.  

Generally, model reduction methods can be classified into the following groups:  

• physical reduction – elements without great influence on operation of 

analyzed system are replaced by very simple models,  

• topological reduction – using circuit-theoretic methods do develop 

equivalents. elimination and/or aggregation of power network nodes in 

order to simplify the network structure and reduce the number of 

generating units,  

• modal reduction – reduction of the linearized differential equation set 

describing system in order to suppress the irrelevant system modes.  

• identification technique reduction – using real-time data to develop the 

equivalent by identification or parameter estimation methods without 

detailed description of the power network.  
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Topological reduction combined with physical reduction techniques are mainly 

used in practice. The presented further topology reduction techniques are particularly 

suitable for static analyses such as load flow. These methods extended by generator 

coherency recognition and aggregation are also used for dynamic studies, e.g. transient 

stability. It is worth noting that topological reduction methods can be easy 

incorporated into power system analysis software. Some other power system 

equivalent types and application are reviewed in [5.1]. 

For developing the power system equivalent the whole system is divided into 

internal subsystem and external subsystem, as shown in Fig. 5.1.  

 
The external subsystem is connected with internal one via tie lines adjacent to 

boundary buses. Internal subsystem is part of the system under study and with detailed 

representation of network elements, usually equipped with own energy management 

system. External subsystem is replaced by equivalent network which contains only a 

few boundary nodes and some nodes remained after original network transformations. 

Eliminated nodes are completely removed from equivalent and aggregated group of 

nodes is replaced by one node. In addition, branch parameters of equivalent are also 

modified.  

5.2. EQUIVALENT MODELS OF EXTERNAL SUBSYSTEMS 

The node elimination and aggregation presented in Chapter 4 can be used to 

develop the equivalent for static steady state. After identification of boundary nodes 

which cannot be eliminated, eliminated and aggregated nodes are selected. The 

network transformation are applied in order to obtain static equivalent.  

 

{L} 

{G} 

{B} 

External 

subsystem 

Internal 

subsystem 

Tie lines 

Fig. 5.1. Partitioning of power system into internal and external subsystem. {B} – set of boundary 

nodes, {G} – set of external subsystem generator nodes, {L} – set of external subsystem load nodes. 
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Equivalent for the external subsystem for dynamic studies is made in the following 

steps:  

1. Identification of external subsystem and boundary nodes.  
2. Elimination/aggregation of the load nodes in the external subsystem.  
3. Recognition of coherent groups of generators.  
4. Aggregation of the coherent groups of generators.  

After dividing power system into internal and external subsystem the sets of 

retained and eliminated nodes in external network are distinguished. Retained nodes 

belong to external subsystem being also a node of equivalent network. Nodes which 

are in original external subsystem but do not appear in of equivalent (their presence is 

approximated by equivalent) are defined as eliminated nodes. Load nodes are 

eliminated from external subsystem by topological reduction. After identification of 

coherent generating units, each coherent group is represented by one equivalent 

generator. The resulting equivalent network of external subsystem contains only 

border nodes and nodes with aggregated generating units connected.  

G 

G 

Fig. 5.2. Example power system  

divided into internal subsystem, external subsystem, and boundary nodes. 

Exernal subsystem 

Boundary nodes 

Internal subsystem 
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5.2.1. ELIMINATION AND AGGREGATION NODES 

Considering the external subsystem in separately from internal part as shown in 

Fig. 5.2 the following network equations can be derived:  
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where: IB , IG , IL – injection current vectors for boundary, generation and load nodes 

respectively;  

VB , VG , VL VR – nodal voltage vectors for boundary, generation and load 

nodes respectively;  

YBB, YGG, YLL –self-admittance matrix derived for boundary generation and 

load nodes respectively;  

YBG, YBL – mutual-admittance matrices for boundary nodes;  

YGB, YGL – mutual-admittance matrices for generation nodes;  

YLB, YLG – mutual-admittance matrices for load nodes. 

After elimination of load nodes, the node currents for retained nodes (boundary and 

generating nodes) can be calculated from:  
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. (5.2) 

The load node elimination can be expressed in simpler form. Let assume that 

generating and boundary nodes belong to the retained node set {R}. The equation 

(5.2) can be re-written in the form:  
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. (5.3) 

Elimination of load nodes by network transformation yields:  

 LIRRR IKVYI += , (5.4) 

where:  LRLLRLRRR YYYYY
1−−= , 

1−= LLRLI YYK . 

The matrix YRR is also called transfer matrix and matrix KI is distribution matrix. It 

should be underlined that the currents in retained nodes depend on load node current.  
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If the loads in eliminated nodes are replaced by constant admittances then node 

currents IL = 0 and then term KI IL in (5.3) vanishes. For load power SLi= PLi+jQLi in 

the node i and the node voltage Vi the equivalent load admittance is derived from:  

 
22

j
i

Li

i

Li

Li
V

Q

V

P
Y −= . (5.5) 

The equivalent admittances are added (with appropriate sign) to corresponding 

diagonal terms of YLL matrix. 

Equation (5.2) and (5.3) describe the equivalent network consisting only of 

boundary and generator nodes. Hence, it is also called PV equivalent (similarly as 

generating node type in load flow studies) or PV-Ward equivalent (this equivalent 

method was originally proposed by J. B. Ward in the mid of the 20-th century) [5.11].  

It should be underlined that Ward equivalent is accurate at the operating point at 

which is derived. If the operating point moves away from the base point then the 

equivalent model does not represent the external subsystem accurately.  

Some analyses require adjustment of power demand in external subsystem and 

flows through tie lines. In such case some selected nodes are replaced by the Dimo’s 

REI equivalent.  

 

 
 

The objective of radial equivalent independent (REI) method originally proposed 

by Dimo [5.3] is to replace external network by aggregating injections of a group of 

the nodes belonging to external subsystem. Radial links connect fictitious node which 

is added to the internal system and aggregated node. Each radial branch admittance is 

chosen in a such way as to make the terminal voltage of all the added branches equal. 

The nodes in external system are grouped according to a certain common criterion 

IG 

{G} {B} 

External 

subsystem 
IB 

Fig. 5.3. Load node elimination: network before transformation (a), network after transformation (b).  

{B} – set of boundary nodes, {G} – set generation nodes, {L} – set of load nodes. 

a) b) 

IG

{G} {B} 

PV equivalent  

of external 

subsystem 

IB 

{L} 

IL 
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such as geographical or electrical distance, operation control area, generation or load 

type.  

Steps of formulation REI equivalent for external subsystem are shown in Fig. 5.4.  

 
Complex power Sf injected into node f is an algebraic sum of node power Sk in 

external subsystem:  
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c) 

If f 

If f 

Vf 

0 

Fig. 5.4. External subsystem reduction using REI method: original subsystem (a), network with 

additional branches (b), network after elimination of node 0 (c).  

{B} – boundary node set, {E }– external subsystem node set. 
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Node currents for f and k can be calculated from the relationships:  

 ( )
00

*

0
VVy

V

S
II

ff
f

f

ff
−=










== ,  (5.7) 

 ( )
kk

k

k

k
VVy

V

S
I −=








=

00

*

. (5.8) 

It is convenient to set V0 = 0. Hence, the REI admittances are:  
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The voltage Vf at the equivalent node is equal to the weighted average of the 

voltages at the aggregated nodes: 
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Network matrix equation for REI equivalent shown in Fig. 5.4b is as follows:  
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Because V0 and node current IE and I0 are equal to zero the matrix equation (5.12) 

can be rewritten in the following form:  
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where: YBB – a self admittance matrix for boundary nodes;  

YEB, YBE – mutual admittance matrices for boundary and external subsystem 

nodes;  
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Node 0 and nodes from set {E} can be eliminated with use of the node elimination 

method (e.g. with Gauss elimination). After removing these nodes the network 

equation of the equivalent :  
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where:  Y’BB – a self admittance matrix for boundary nodes after elimination;  

Y’Bf, Y’fB – mutual admittances for boundary and equivalent node;  

Y’ff – a self admittance of equivalent node. 

REI networks can be also derived multiple equivalent nodes, e.g. for generating 

and load power separately (Fig. 5.5).  

 

{B} 
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external 

subsystem 
IB 

IG 
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Fig. 5.5. External subsystem reduction using REI for generating and load nodes. 

83



 

 

Summarizing, in Ward equivalents it is difficult to analyze generation and load 

variations in external subsystem. Due to the presence of generation and load node (or 

nodes) in the REI network, investigation of generation and load changes in the 

subsystem is much more convenient. However, admittances of fictitious branches in 

the REI network (significant resistances, negative admittances) do not have simple 

physical interpretation.  

5.2.2. GENERATOR COHERENCY RECOGNITION 

The step before aggregation of generating units is identification of coherent groups 

of generators. The classical method for coherency identification is simulation in time 

domain. The response of the system to the specified disturbance is computed and rotor 

angle changes of generators are compared. The generators which swing together (have 

similar speed deviation) are considered as coherent (Fig. 5.6).  

The generating nodes can be aggregated if the coherency condition is satisfied:  

 ( ) ( ) ( ) ( )Ttttt
ijji

,0,
0

∈≤=− εδδδ , (5.15) 

where:  δi(t), δj(t) – generator rotor angles;  

ε   – an assumed angle tolerance level;  
T  – a simulation time.  

Several methods for generator coherence identification can be divided into the 

following groups:  

• simulation of the system perturbation with use of non-linear model,  

• simulation of the system perturbation with use of linearized model,  

• using relationships describing system parameters and perturbation 

without simulation – coherence prediction.  

 

 

t 

δ 

|δi (t)-δj (t)| < ε 

Fig. 5.6. Rotor angle variations of coherent generators 

δi(t) 

δj(t) 
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The methods of coherency identification use various techniques to recognize such 

coherent groups, e.g.: 

• concept of distance measure,  

• singular point analysis,  

• equal angular deviation,  

• mean square criterion,  

• Taylor series expansion,  

• frequency response,  

• energy function.  

Identification of generator coherent groups in the presence of certain perturbation 

and system parameters is also possible without making time domain simulation, i.e. 

the coherence prediction.  

The real power produced by the i-th generator in the external subsystem is [5.6]:  
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where: Vi  – a transient electromotive force of the i-th generator;  

Vk  – a voltage at the border node,  

θ’i, θk, θl – node voltage angles ;  

Gii, Gik, Gil, Bik, Bil –elements of a transfer admittance matrix (conductances 

and susceptances),  

{B}  – a set of boundary nodes,  

{G} – a set of generator nodes. 

Neglecting Gik, Gil and assuming that the perturbation cause the change in voltage 

angle of the border node k from initial value θk0 by ∆θk, i.e. θk=θk0 + ∆θk  and voltages 

of remaining nodes do not change, for ∆θk ≈0, cos ∆θk ≈1 and sin ∆θk ≈ ∆θk , the 

change of active power as a function of ∆θk is given by:  

 ( )
kikki

hP θθ ∆≈∆∆ , (5.17) 

where:  ( )0cos kiikkiik BVVh θθ −=  – synchronization power between i-th generator and 

k-th border node.  

The change in synchronization power cause the rotor acceleration:  
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where:  Mi – an inertia of i-th generator;  

δI – a rotor angle of i-th generator. 
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If the rotor accelerations of generators i and j caused by the perturbation are equal, 

the generator are considered as electromechanically coherent:  
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= ,    i∈{G}, k∈{B}. (5.19) 

The equation corresponds to the fact that the parameter hik of equivalent branch 

determines the influence of change in electrical state of node k to the power injected 

by i-th generator. The value 
i

ik

M

h
determines the generator rotor acceleration. The 

change in electrical state of node k cause the same rotor accelerations of coherent 

generators.  

The condition of coherence is not usually exactly satisfied. The practical rule for 

identification the coherence is the difference between maximal and minimal value of 

synchronization power does not exceed the assumed tolerance level εh:  
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The value εh is usually assumed to be dependent on distance of a certain generator 

from border nodes.  

The coherency identification algorithm contains the following steps [5.6]:  

1. Elimination of load nodes and obtaining PV-equivalent.  
2. Grouping all the generators in the external subsystem in one coherent 

group.  

3. Ordering all the equivalent lines in ascending order according to the 
values of synchronization power.  

4. Taking the next equivalent line with terminal nodes i and j until no lines 
left. If all the lines are taken stop the algorithm. 

5. If the generator i or j is not suitable for grouping, go to p. 4.  
6. If the condition (5.10) is not satisfied for pair i and j go to p. 4. Otherwise 

create group {g} consisting generators i and j.  

7. Search all the generators for a given generator e which satisfy the 
condition (5.10) for the group {g, e} and gives a minimum value for the 

difference 
i

ik

Gi
i

ik

Gi M

h

M

h

∈∈
−minmax . If such generator cannot be found create 

new group {g} and go to p. 4. Otherwise go to p. 8.  

8. Mark generator g as non-eligible and include it to group {g}. Go to p. 7. 
Simplified flowchart of the algorithm is presented in Fig. 5.7.  
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Formulation of PV equivalent including border and generating nodes 

START 

Including all the generators to one coherent group 

Ordering equivalent lines in ascending order with respect to the synchronous power  

Considering next equivalent line connecting nodes i nad j  

Are any lines left? 

Is generator i or j 

grouped? 

Is criterion (5.10) 

satisfied for pair i,j? 

Create group with generators i and j 

Search for other generators satisfying criterion (5.10) 

Is coherent generator 

found? 

Add generator to the group 

STOP 

N 

Y 

Y 

N 

Y 

Y 

N 

N 

Fig. 5.7. The flow chart of the coherent prediction algorithm. 
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5.2.3. AGGREGATION OF GENERATING UNITS  

After identification of coherent groups, each group is aggregated and replaced to 

one equivalent generating units as shown in Fig. 5.8. In addition the network is 

modified to preserve the steady state power flow conditions. Generator nodes 

belonging to coherent group are linked together and network parameters are updated 

with use of the selected method.  

In dynamic analyses the generator in coherent group can be represented by 

classical generator model with electromotive force behind transient reactance. Such 

modeling method assumes neglecting of the control system that exists in the 

generating units.  

Classical model is valid only for few cycles after disturbance. Otherwise, the swing 

equation should be solved to simulated rotor angle and speed changes in time domain. 

Considering group coherent generators {g}, and using the second order motion 

equation description gives:  
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where:  Mi  – an inertia;  

ωi  – a rotor speed of the i-th generator;  

δi  – a rotor angle of the i-th generator;  

Di  – a dumping coefficient;  

Pmi  – a mechanical power of the i-th generator;  

Pei  – an electrical power of the i-th generator; i ∈{g}. 
 

The power generated by equivalent unit is equal to the sum of power generated by 

the aggregated units. It corresponds to the synchronous rotation of masses one 

common rigid shaft. The motion equation for equivalent generator is:  

 
{ } { } { } { }

ω
ω









−−=








∑∑∑∑
∈∈∈∈ gi

i
gi

e
gi

m
gi

i
DPP

t
M

iid

d
. (5.22) 

The inertia of the equivalent generator is given by:  
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damping coefficient:  
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electrical and mechanical power:  
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For classical generator model the equivalent transient reactance is calculated from 

parallel connection of reactances of aggregated generators:  
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Although aggregation with use classical models is still able to provide a good 

approximation a detailed aggregation of the control systems: exciter, power system 

stabilizer, governor is also takes into account. These control system equivalent 

parameters are obtained from identification procedure. Inclusion of control parameters 

usually improves the accuracy during time domain simulations. 

 

Fig. 5.8. Aggregation of coherent group of generators:  

network before aggregation (a), network after aggregation (b). {g} – coherent group. 
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Zhukov aggregation method 

After insertion of equivalent generator for each coherent group network should be 

updated to preserve steady state load flow. Due to identification of n coherent 

generator groups the network equation needs to be re-arranged into the following 

form:  
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where: YBgi – an admittance matrix for the network regarding to boundary nodes and 

generating nodes belonging to the i-th coherent group, i = 1, 2, …, n;  

Ygigj – an admittance matrix for the network regarding to nodes belonging to 

the  i-th and j-th coherent group; i, j = 1, 2, …n;  

Vgi  – a voltage vector for nodes belonging to the i-th coherent group;  

Igi  – a current vector for nodes belonging to the i-th coherent group.  

Aggregation of generating nodes for each coherent group yields:  
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The admittances can be calculated by applying Zhukov aggregation from the 

following equations:  
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The voltage magnitude and phase for aggregated nodes in steady state static 

analysis can be calculated as:  
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where:   Sj  – an apparent power injected into the j-th node;  

{gi}  – a set of nodes belonging to the i-th coherent generator group, 

For dynamic analyses equivalent node voltage is weighted sum of aggregated node 

voltages:  
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where:   Mj  – an inertia of generating unit at j-th node;  

{gi}  – a set of nodes belonging to i-th coherent generator group. 

Example 5.1 

Replace the external subsystem shown in Fig. 5.9 by PV aggregated equivalent for 

dynamic study. Generators connected to nodes 2 and 3 are recognized as coherent and 

modeled as electromotive force behind transient reactance X’d2 = X’d3 = 0.015. Nodes 

2’ and 3’ are internal generator nodes. Inertia of generators M2 = M3 = 6.5.  

 

 
 

G G 

Fig. 5.9. Example external subsystem for dynamic PV aggregated equivalent. 
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Branch and node parameters are given in Tab. 5.1.  

Tab. 5.1. Brach parameters of system shown in Fig. 5.9. 

Node i Node j 
R,  

p.u. 

X,  

p.u. 

B,  

p.u. 

1 5 0,02 0,50 0,0 

2 4 0,02 0,10 0,0 

3 4 0,02 0,10 0,0 

4 5 0,03 0,12 0,0 

4 6 0,07 0,15 0,0 

5 6 0,07 0,20 0,0 

2 2’ 0,00 0,015 0,0 

3 3’ 0,00 0,015 0,0 

Tab. 5.2. Node data obtained from load flow study. 

Node, i 
PGi,, 

p.u. 

QGi,, 

p.u. 

PLi,, 

p.u. 

QLi,, 

p.u. 

Vi,  

p.u. 

Ii,  

p.u. 

1 - - - - 1,032-j0,038 0,129-j0,055 

2 0.250 0.021 - - 1,018-j0,061 0,244-j0,038 

3 0.250 0.021 - - 1,018-j0,061 0,244-j0,038 

4   0.200 0.020 1,009-j0,085 -0,195+j0,040 

5   0.250 0.025 1,003-j0,101 -0,244+j0,050 

6   0.180 0.020 0,996-j0,106 -0,177+j0,040 

 

Alternatively, load connected to eliminated nodes can be replaced by constant 

shunt admittances:  

 j0.023 - 0.195
0.085 009.1

020.0j200.0j
222

4

44

4
=

+
−

=
−

=
V

QP
y LL

L
,   

 j0.025 - 0.246
0.101003.1

025.0j250.0j
222

5

55

5
=

+
−

=
−

=
V

QP
y LL

L
,  

 j0.021 - 0.179
0.106 0.996

020.0j180.0j
222

6

66

6
=

+
−

=
−

=
V

QP
y LL

L
,  

and then load node currents are zero IL = 0. 
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The electromotive forces of generators: 

( ) j0.057 - 1.018038.0j244.0015.0j061.0j018.1j 2

'

222 =−+−=+= IXVE
d

, 

( ) j0.057 - 1.018038.0j244.0015.0j061.0j018.1j 3

'

333 =−+−=+= IXVE
d

. 

Admittance matrix Y constructed for network with admittance load representation:  

 

 1 2' 3' 2 3 4 5 6 

1 
0,08-

j2,00 
0 0 0 0 0 

-0,08+ 

j2,00 
0 

2' 0 -j66,67 0 j66,67 0 0 0 0 

3' 0 0 -j66,67 0 j66,67 0 0 0 

2 0 j66,67 0 
1,92-

j76,28 
0 

-1,92+ 

j9,62 
0 0 

3 0 0 j66,67 0 
1,92- 

j76,28 

-1,92+ 

j9,62 
0 0 

4 0 0 0 
-1,92+ 

j9,62 

-1,92+ 

j9,62 

8,56- 

j32,57 

-1,96+ 

j7,84 

-2,55+ 

j5,47 

5 
-0,08+ 

j2,00 
0 0 0 0 

-1,96+ 

j7,84 

3,85- 

j14,32 

-1,56+ 

j4,45 

6 0 0 0 0 0 
-2,55+ 

j5,47 

-1,56+ 

j4,45 

4,29- 

j9,95 

 

Set of retaining nodes (generator and boundary nodes): {R}={B}∪{G}={1, 2’, 3’} 
and set of eliminated load nodes {L}={2, 3, 4, 5, 6}. Matrix Y is split into the self and 

mutual admittance submatrices:  

 

















−

−

−

=

67.66j00

067.66j0

0000.2j08.0

RRY ,  

 















 +−

=

000067.66j

00000

000.2j08.0000

RLY ,  

 























+−

=

000

0000.2j08.0

000

67.66j00

067.66j0

LRY , 
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





















−+−+−

+−−+−

+−+−−+−+−

+−−

+−−

=

95.9j29.445.4j56.147.5j55.200

45.4j56.132.14j85.384.7j96.100

47.5j55.284.7j96.157.32j56.862.9j92.162.9j92.1

0062.9j92.128.76j92.10

0062.9j92.1028.76j92.1

LL
Y

 

Transfer matrix calculated from (5.4):  

 

















++

++

++

=

j4.614 - 0.874   j3.825  0.593-j0.756  0.026-

j3.825  0.593-  j4.614 - 0.874j0.756  0.026-

j0.756  0.026-j0.756  0.026-j1.542 - 0.149

RY .  

The next step is aggregation of nodes 2’ and 3’. The voltage in aggregated node:  

 1.021
5.65.6

1.0215.61.0215.6

32

'33'22

1
=

+
+

=
+

+
=

MM

EMEM
V q

g
, 

 0.056
5.65.6

0.056)(5.60.056)(5.6

32

'33'22

1
−=

+
−+−

=
+

+
=

MM

MMa

g

θθ
θ . 

Voltage of aggregated node is equal to electromotive forces of generator. Hence, 

transformation ratio is simply:  

 11,11,11,1 === ϑϑϑ gg , 

Admittance matrices for aggregated PV equivalent are calculated with use of re-

arranged transfer matrix YR are calculated from (5.28) - (5.31) and then:  

 j1.542 - 0.149' =
BB
Y , 

 j1.512 + -0.0521, =gB
a
Y , 

 j1.512 + -0.052,1 =Bg
a
Y , 

 j1.578 - 0.5631,1 =gg
a
Y . 

Equivalent network matrix:  

 








−+−

+−−
=








=

578.1563.0512.1052.0

512.1052.0542.1149.0'

1,1,1

1,

jj

jj

gg
a

Bg
a

gB
a

BB

eq

YY

YY
Y . 
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Slow coherence aggregation algorithm  

The coherent generators are aggregated at generator internal nodes. The machine 

internal node voltages are computed and these nodes are linked to a common bus via 

phase shifters to preserve power flows. Let consider the part of the system containing 

two coherent generators as shown in Fig. 5.10.  

 

The algorithm is as follows [5.1]:  

1. Computation of voltages of machine internal nodes with use power flow 
calculation results. Using complex nodal power the node current injection is 

calculated.  

2. Creating the common node p. Calculation of common bus voltage Vp with use 

of inertial weighted average of the internal generator voltages Ei, i ∈{a, b}. 

 
ba

bbaa

p
MM

EMEM
V

+
+

=  (5.34) 

where:  Mi – inertia of i-th generator;  

Ei – complex internal generator voltage i-th generator.  

3. Adding new lines connecting bus p with buses a and b. Calculation of 
complex voltage transformation ratios:  

 { }bai
E

V
i

i

i

p

i ,,e j ∈==
φ

ϑϑ . (5.35) 

The parameters of new lines are the series connection of reactance jX’di and 

transformer with complex ratio ϑi, i ∈{a, b} (Fig. 5.10b). Shunt parameters 
are neglected.  
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4. Computation of inertia and transient reactance of the equivalent generator:  

 
baeq

MMM +=  (5.36) 

 

ba

eq

dd

d

XX

X

'

1

'

1

1
'

+
= . (5.37) 

5. Creating of bus q. This bus cannot be used as generator internal node and the 
branch connecting nodes p and q with reactance –jX’deq is added, and then to 

a bus r with line reactance jX’deq.  The node p has the same voltage as node r. 

Bus q is used as terminal and bus r as aggregated generator internal voltage. 

The voltage at bus q is equal to Vq and the power flow to the buses a and b.  

6. Adjusting generation at buses a, b, q. Generations at buses a, b are set to zero. 
The generation on the new terminal bus q is set equal to the power transfer to 

buses a and b. Bus p does not have any generator or load, and can be 

eliminated (Fig. 5.10c). 

 

Ea jX’da 

Eb 
jX’db 

a 

b 

jX’da 

jX’db 

a 

b 

p 

q r -jX’deq jX’deq 

  

  

Vp 

b 

a 

jX’da 

jX’db 
p 

G 

G 

  

  

a) 

b) 

c) 

G 

Fig. 5.10. Inertial coherency generator aggregation steps. 
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Example 5.2 

Aggregate generating units connected to the nodes 4 and 5 as shown in Fig. 5.11 

with use of inertial coherence method. Assume classical generator model 

(electromotive force behind transient reactance). Branch data are as in Example 5.1. 

Node data obtained from load flow study are presented in Tab. 5.3. 

 

Tab. 5.3. Load flow study results for system presented in Fig. 5.11. 

Node, i 
PGi,, 

p.u. 

QGi,, 

p.u. 

PLi,, 

p.u. 

QLi,, 

p.u. 

Vi,  

p.u. 

Ii,  

p.u. 

4 0.30 0.085 - - 1.0035 - j0.114 0.285 - j0.117 

5 0.30 0.061 - - 1.0085 - j0.084 0.291 - j0.084 

 

Generating unit data:  

Inertia: M4 = 6.5, M5 =3.0,  

Transient reactances: X’d4 = 0.12, X’d4 = 0.18.  

Inertial aggregation of generating unit is made in the following steps: 

1. Generator internal voltages calculated from data:  

Electromotive forces behind transient reactances:  

( ) j0.0797 - 1.01731167.0j2858.012.0j1140.0j0035.1j 4

'

444 =−+−=+= IXVE
d

, 

( ) j0.0319 - 1.02340843.0j2905.018.0j0842.0j0085.1j 5

'

555 =−+−=+= IXVE
d

. 

or in polar form:  
0781.0j

4 e0204.1 −=E , 0311.0j

5 e0239.1 −=E  

 

2. Common bus voltage:  

( ) ( )
j0.0646 - 1.0192

0.35.6

j0.0319 - 1.02340.3j0.0797 - 1.01735.6

54

5544 =
+
+

=
+

+
=

MM

EMEM
V p

 

G G 

Fig. 5.11. Example system for dynamic inertial aggregation. 
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3. Voltage transformation ratios:  

0149.0j

4

4
e0008.1j0.0149 + 1.0007

j0.0797 - 1.0173

j0.0646 - 1.0192
====

E

V
pϑ , 

0321.0j

5

5 e9974.0j0.0320 - 0.9969
j0.0319 - 1.0234

j0.0646 - 1.0192 −====
E

V pϑ . 

4. Equivalent inertia and transient reactance:  

5.90.35.6
54

=+=+= MMM
eq

, 

072.0

18.0

1

12.0

1

1

'

1

'

1

1
'

54

=
+

=
+

=

dd

d

XX

X
eq

 

The network scheme with aggregated units is shown in Fig. 5.12. 

 

Slow coherence aggregation algorithm  

The slow coherency aggregation uses an impedance modification to the inertial 

aggregation. Hence, the slow coherency aggregation can be considered as an inertial 

aggregation with impedance correction.  

Slow coherency aggregation procedure uses the linearization at the generator 

terminal buses. The fast inter-machine variables are then eliminated, and the power 

network is reconstructed from the reduced linearized model. 

The slow coherency aggregation is as follows [5.1]:  

1. After performing the steps 1 and 2 for inertial coherence algorithm the swing 

equations for generators at the operating point are linearized.  

 
( ) ( ) ( )

i

di

iiii

i

di

iii

i

di

iiii

ii
X

VE
V

X

E

X

VE
H θ

θδθδ
δ

θδ
δ ∆

−
+∆

−
−∆

−
−=∆

'

cos

'

sin

'

cos
2 00000000000&& ,(5.38) 

 { }bai
X

V
V

XX

E
I

i

di

i

i

di

j

i

di

i

i

i

,,
''j

e

'

00
0

∈∆+∆+∆−=∆ θδ
θ

, (5.39) 

where:  Hi  – an inertia,  

Ei0 – an internal generator voltage magnitude,  

j0.12 

4 

5 

q r 
-j0.072 j0.072   

  

G 

j0.18 

1.0008ej0.0149 

0.9974e-j0.0321 

p 

Fig. 5.12. Inertial coherency generator aggregation results. 

98



 

 

Vi0 – a generator terminal voltage,  

θi0 – a terminal bus voltage angle,  

δi0 – a rotor angle,  

∆Ii – a current injection. 
Defining the following vectors:  

 








∆

∆
=∆



















∆

∆

∆

∆

=








∆

∆
=

b

a

b

a

b

a

b

a

I

IV

V

Izx ,,

θ
θδ

δ
. 

The equations can be written in matrix form as:  

 zKxKIzKxKx
21 43
, +=∆+=&&  (5.40) 

2. Transforming into slow and fast variables. 

When the machines form a slow coherent group, their centre of angle as the slow 

variables can be obtained, and the inter-machine oscillations as the fast variables. To 

perform the slow coherency aggregation, the original machine angles are transformed 

to slow and fast variables. The slow aggregate variable and fast local variable are 

defined as:  

 
abf

ba

bbaa

s
HH

HH
δδδ

δδ
δ −=

+
+

= . (5.41) 

The linearized model after applying the transformation results in:  

 

z
K

K

KK

KK








+









∆

∆








=













∆

∆

22

21

1413

1211

f

s

f

s

δ
δ

δ
δ
&&

&&

, (5.42) 

 
[ ] zKKKI

43231
+









∆

∆
=∆

f

s

δ
δ

. (5.43) 

3. Creating of slow subsystem. 

Neglecting the fast dynamic component ∆δf,  the quasi steady-state of slow 

component:  

 
( )zKKK 2213

1

14 +∆−=∆ −
sf δδ

. (5.44) 
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After neglecting fδ̂∆  one can obtain:  

 
zKKIzKK

sssssss 4321
+∆=∆+∆=∆ δδδ&& , (5.45) 

where: 
13

1

1412111 KKKKK
−−=s

, 

22

1

1412212 KKKKK
−−=s

, 

13

1

1432313 KKKKK
−−=s

, 

22

1

143244 KKKKK
−−=s

. 

Equation (5.42) represents the linearized model for the slow subsystem. The next 

step is to reconstruct a power network whose linearization would yield equation 

(5.45). The terms K1s, K2s and K3s are needed to construct lines connecting bus to the 

original generator terminal buses a and b, and the term K4s is needed for the lines 

interconnecting buses a and b. The reconstruction will in general require phase 

shifters. In addition, the reconstruction from K4s will not satisfy the network flow 

condition. As a result, balancing the power flow is achieved by adding loads to these 

buses. It is also possible that the impedances from the K4s reconstruction are much 

larger than those from the K2s, such that the K4s terms can be neglected. 

5.3. DYNAMIC EXTERNAL-SUBSYSTEM-EQUIVALENT 

METHODS 

The great variety of methods for obtaining external system equivalent for both 

steady state and transient operation have been proposed. Topological reduction and 

coherency approach rely on elimination and aggregation of nodes to reduce equivalent 

network complexity are presented previously. The other main approaches to dynamic 

equivalent system are as follows:  

• Infinite bus approach: external system is represented by voltage source 

with constant voltage magnitude and frequency. Dynamical interactions 

between internal and external subsystem are neglected. The model is 

very simple but inaccurate. 

• Modal approach: set of nonlinear differential equations is linearized and 

eigenvalues are analyzed. The system matrix is diagonalized and modes 

having small influence on system are neglected. Assuming the 

linearized state equation describing the power system:  

 
uDxCy

uBxAx

∆+∆=∆

∆+∆=∆&
, (5.46) 
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where:  A, B, C, D – state matrices;  

∆x – a state vector;  
∆u – an input vector;  
∆y – an output vector,  

the eigensolution is given by:  

 ( ) ( )( )∑
=

∆=∆
n

i
i

t

i
it

1

0e xΨΦx
λ

,  (5.47) 

where:  ΦΦΦΦI – the i-th right eigenvector;  

ΨΨΨΨI – the i-th left eigenvector;  

λI – the i-th eigenvalue;  

n – a system order.  

The participation of each state on the mode e
λit
 regarding intensity and 

phase angle is described by the complex right eigenvector ΦΦΦΦi. The 

excitation of the modes depends on the left eigenvector ΨΨΨΨi and the initial 

state.  

The reduction of the system order relies on elimination of the modes 

having small influence on system. Different criteria for mode rejection 

can be applied. The concept of participation factors assessment is often 

proposed. Usually the single modes and given state variable dependence 

is investigated with used of participation factors defined as the 

sensitivity of the i-th eigenvalue to the k-th diagonal element of state 

matrix A:  

 
kk

i

ik a
p

∂
∂

=
λ
.  (5.48) 

where:  pik – a complex participation factor of the state variable xk and 

eigenvalue λi. 

Using this approach full knowledge on power system parameters is 

required. New variables obtained during modal analysis do not have 

simple physical interpretation.  

• Identification approach: data obtained from internal system are used. 

The external system is represented by equivalent with much more 

simpler structure. An error objective function is used to adjust 

equivalent parameters subject to minimize discrepancies between 

original and equivalent system response. It requires few information on 

external system and external system complexity may be significantly 

reduced.  

Summary of the power reduction methods is presented in Tab. 5.4.  
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5.4. AGGREGATION OF DISTRIBUTION NETWORKS 

WITH DISTRIBUTED GENERATION 

Distributed Generation (DG) are small generating units embedded in distribution 

network. With the constantly increase in DG penetration their impact on power 

network is noticeable, e.g. changes in power flow values and directions, influence on 

stability etc. and cannot be neglected.  

Typically, the power network with DG consists a great amount of generating units, 

transformers, lines and feeders, capacitor banks etc. Building the detailed model of 

such network requires many efforts and usually long computation time at simulation 

step. Instead of using complete model, employing the simplified equivalent following 

the behavior of the network with satisfied accuracy can be considered.  

Most of these units, such as small thermal and hydro power plant, wind turbines, 

are based on using induction generators. Further, such type of unit is considered.  

A example of typical distribution power network with DG is shown in Fig. 5.13.  

 
According to 0 the following assumption for creating the equivalent are made:  

• active and reactive power flows in the considered network are known,  
• generator terminal voltages are assumed to be nominal,  
• aggregated induction generator parameters are derived from no-load and rotor-
lock test of the parallel operation of individual machines.  

No load impedance of i-th machine is as follows:  

 ( )
imisisinl XXRZ
,,,, j ++= , (5.49) 

where:  Rs,i – a stator resistance;  

Xs,i – a stator leakage reactance;  

Xm,i – a magnetizing reactance.  

Hence, the equivalent no-load impedance:  

Fig. 5.13. Power network with connected distributed generators (a) and their equivalent (b). 
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 ( )
eqmeqseqsn

i inl

eqnl XXR

Z

Z
,,,

1 ,

, j
1

1
++==

∑
=

,  (5.50) 

where: n – a number of machines in a group. 

 

The impedance of i-th machine for rotor lock:  

 ( ) ( )
irisirisirl XXRRZ
,,,,, j +++= , (5.51) 

where:  Rr,i – a rotor resistance;  

Xr,i – a rotor reactance, 

and the equivalent impedance of n parallel induction generators:  

 ( ) ( )
eqreqseqreqsn

i irl

eqrl XXRR

Z

Z
,,,,

1 ,

, j
1

1
+++==

∑
=

,  (5.52) 

where: n – a number of machines in a group. 

It should be underlined that different types of machines can differ in parameters, so 

they can be divided into the corresponding sub-groups.  

Equivalent generating active and reactive power is obtained from:  

 ∑
=

=
g

i
iGeqG

PP
1

,,
,  (5.53) 

 ∑
=

=
g

i
iGeqG

QQ
1

,,
,  (5.54) 

where:  PG,i, QG,i – an active and a reactive power of the i-th generating unit;  

g – a number of generating units.  

Similarly, the equivalent load power is derived as:  

 ∑
=

=
g

i
iLeqL

PP
1

,,
,  (5.55) 

 ∑
=

=
L

i
iLeqL

QQ
1

,,
,  (5.56) 

where:  PL,i, QL,i – an active and a reactive power of the i-th load;  

L – a number of loads.  

The slip of aggregated generator is obtained from 0:  

 
eqG

g

i
ii

eq
P

sP

s
,

1

∑
== ,  (5.57) 

103



 

 

where: si – a slip of the i-th machine.  

Equivalent inertia constant:  

 
eqG

g

i
ii

eq
P

PH

H
,

1

∑
== ,  (5.58) 

and equivalent moment of inertia:  

 
2

2

s

eqeq

eq

PH
J

ω
= ,  (5.59) 

where: ωs – a synchronous angular speed.  

Aggregated transformer parameters are derived from the losses of each device. The 

overall active and reactive power losses:  

 ∑
=

=∆
t

i
iiTeqT
IRP

1

2

,,
3 ,  (5.60) 

 ∑
=

=∆
t

i
iiTeqT
IXQ

1

2

,,
3 ,  (5.61) 

where:  RT,i, XT,i – a resistance and a reactance of the i-th transformer;  

Ii – a phase current in the branch representing the i-th transformer;  

t – a number of transformers.  

Hence, the parameters of equivalent transformer:  

 
2

,

,
3

eq

eqT

eqT
I

P
R

∆
= ,  (5.62) 

 
2

,

,
3

eq

eqT

eqT
I

Q
X

∆
= ,  (5.63) 

where: 
( ) ( )

k

eqLeqGeqLeqG

eq
V

QQPP
I

3

2

,,

2

,,
++−

=  – a current magnitude for the aggregated 

system;  

Vk – a line voltage magnitude the node k (see Fig. 5.13).  

Equivalent line parameters are derived from the following equations:  
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where:  
j

jj

j
V

QP
I

3

22 +
=  – a feeder current magnitude;  

Vj – a line voltage magnitude at the node j.  

Applying the equivalent procedure is advantageous especially when significant 

number of generator operates in parallel, e.g. in wind farms. However, it should be 

underlined that model simplification can lead to the inaccuracies and the equivalent 

should be assessed if it is capable of giving satisfactory results.  

Tab. 5.4. Power network equivalent technique summary.  

Equivalence 

approach 
Requirements Application Equivalent form 

Infinite bus No On-line 

Voltage source with 

constant voltage  

and frequency 

Modal analysis 
Linearized detailed 

model 

Off-line with small 

disturbances 
Modal quantities 

Topological 

reduction and 

coherency 

Detailed model 
Off-line with large 

disturbances 

Aggregated equivalent 

model 

Identification 

techniques 

Impedance 

characteristics of 

boundary nodes 

On-line Equivalent circuit 

PROBLEMS  

5.1. In Fig. P.5.1 power system shown where an internal and external subsystems 

are distinguished Determine static Ward and REI equivalent of external 

subsystem. Network parameters and load flow results for base case are in Tab. 

P.5.1-Tab.P.5.3.  

Tab. P.5.1. Branch data for Problem 5.1.  

Nodes Parameters 

i j 
R,  

p.u. 

X,  

p.u. 

6 11 0,09498 0,19890 
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6 12 0,12291 0,25581 

6 13 0,06615 0,13027 

9 10 0,03181 0,08450 

9 14 0,12711 0,27038 

10 11 0,08205 0,19207 

12 13 0,22092 0,19988 

13 14 0,17093 0,34802 

Tab. P.5.2. Load flow data of external system for Problem 5.1.  

Node i 
Vi,  

p.u. 
θi,  

rad 

PLi,  

p.u. 

QLi ,  

p.u. 

10 1,05 -0,26 0,09 0,058 

11 1,06 -0,26 0,035 0,018 

12 1,06 -0,26 0,061 0,016 

13 1,05 -0,26 0,14 0,058 

14 1,04 -0,28 0,15 0,05 

 

Tab. P.5.3. Boundary node voltages and injections for Problem 5.1.  

Node i 
Vi,  

p.u. 
θi,  

rad 

Pinj,i,  
p.u. 

Qinj,i , 

p.u. 

6 1,07 -0,25 0,33 0,13 

9 1,06 -0,26 0,15 0,078 
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5.2. Check the coherency of the generators in power system shown in Fig. P.5.2. If 

the coherency conditions are satisfied form coherent group and perform the 

aggregation of generating units with use of Zhukov and inertial coherence 

algorithm. Assume that generators are represented by classical model 

(electromotive force behind transient reactance). The system data are given in 

Tab. P.5.4-Tab.P.5.7. 

 

G4 

 

G5 

34 

33 

Fig. P.5.2. External subsystem scheme for Problem 5.2. 

 

Internal 

subsystem 

External subsystem  
Boundary bus  

20 19 

G 

G 

1 

2 3 

4 
5 

9 

7 

8 

6 11 10 

14 13 12 

Fig. P.5.1. Power system for Problem 5.1.     external subsystem. 
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Tab. P.5.4. Generator data for Problem 5.2. 

Generator 
M,  

p.u. 

X’d,  

p.u. 

G4 28,6 0,043 

G5 26,0 0,132 

Tab. P.5.5. Branch parameters for Problem 5.2.  

Node i-j 
R,  

p.u. 

X,  

p.u. 

tap,  

p.u. 

19-20 0.00 0.014 1.06 

19-33 0.00 0.014 1.07 

20-34 0.00 0.018 1.009 

Tab. P.5.6. Load flow data for Problem 5.2.  

Node, i 
Vi,  

p.u. 
θi,  

rad 

PGi,  

p.u. 

QGi ,  

p.u. 

PLi,,  

p.u. 

QLi ,  

p.u. 

20 0.99 -0.0799 - - 6.80 1.03 

33 0.997 0.0358 6.32 1.0897 - - 

34 1.01 0.0107 5.08 1.6700 - - 

Tab. P.5.7. Boundary node voltages and injections for Problem 5.2.  

Node i 
Vi,  

p.u. 
θi,  

rad 

Pinj,i, 

 p.u. 

Qinj,i,  

p.u. 

19 1.05 -0.055 -4.54 -0.597 
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6. REAL-TIME MODELLING OF POWER SYSTEM  

A real-time model is a quasi-static computer based mathematical representation of 

current conditions in a power network [6.1], [6.2]. The real-time model is extracted at 

intervals  from „snapshots” of real-time measurements as well as from static network 

data. Real-time measurements are analog measurements and the status of switching 

devices. Static network data include a basic configuration and parameters of a 

network. 

The process of building real-time power system model is presented in the Fig. 6.1 

 

 

Fig. 6.1. The process of building real-time power system model. 

6.1. DETERMINATION OF TOPOLOGY MODEL 

The topology model says about present connections in a power system [6.1]-[6.6], 

[6.10]. Topology model is determined by the network topology processor from the 

telemetered status of circuit breakers.  

Network topology can be described using terms of: 

− bus sections and circuit breakers,  

− buses and branches. 

6.1.1. BUS SECTION/CIRCUIT BREAKER TOPOLOGY MODEL 

All equipment (generators, load feeders, shunt reactors, transformers, transmission 

lines, etc.) are connected to bus-sections. Bus-sections within one voltage level at a 

substation may be connected together by circuit breakers. An exemplary power system 

with this level of detail is shown in Fig. 6.2. The data associated with a part of the 

exemplary power system, which is distinguished by the gray circles, are given in 

Tab. 6.1. 

 

Determination  of  

topology model  

Observability 

checking 

Bus Load 

Forecast  

Factors 

Bad data 

 detection  

& identification 

Building  of  

external model 

Yes 

No 

Real-time data Real-time 

model 

State  

estimation 

Panalty factors 
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Fig. 6.2. The example of a bus section/circuit breaker topology model.

Tab. 6.1. Description of topology using terms of bus section and circuit breaker

 

 

6.1.2

In the bus/branch topology model, buses and branches are distinguish

more exactly an electrical bus 

elements of a power system such as power lines, transformers, 

shunts, etc. A branch represents a 

. The example of a bus section/circuit breaker topology model. 

. Description of topology using terms of bus section and circuit breaker

2. BUS/BRANCH TOPOLOGY MODEL 

us/branch topology model, buses and branches are distinguish

more exactly an electrical bus is a common electrical connection among different 

elements of a power system such as power lines, transformers, generators, loads, 

shunts, etc. A branch represents a power line or a transformer. 

 

. Description of topology using terms of bus section and circuit breaker. 

 

us/branch topology model, buses and branches are distinguished. A bus, 

is a common electrical connection among different 

generators, loads, 
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The bus/branch topology model is determined using

circuit breaker is on, a connection is modeled. If a circuit breaker is off, no connection 

is modeled.  Each of the buses must be identified together with the generation, loads, 

and shunts at these buses.

Status of circuit breakers changes in real time and therefore the bus/branch 

topology is expected to change. 

of circuit breakers, the network topology processor must determine the new to

There are several methods to convert bus section/circuit breaker topology into 

bus/branch topology.  

The bus/branch topology model

6.3. That exemplary system is the same as the system for which the 

breaker topology model 

from Fig. 6.3, are collected

Fig. 

6.1.3. DESCRIPTION OF TOPOL

An incidence matrix of a power network represents interconnection of the branches 

with respect to the nodes. As it was previously, the branch represents 

transformer. Saying “node”, we mean “electrical node”.

Let: 

C - an incidence matrix, 

n - a number of nodes in a power network,

b – a number of branches in a power network.

Under the mentioned assumptions 

− Cij = -1 if the branch 

− Cij = 1 if the branch 

− Cij = 0 if the branch 

where: i ∈ {1, 2, …, b}, 
j ∈ {1, 2, …, n}.

logy model is determined using circuit breaker status data. If a 

circuit breaker is on, a connection is modeled. If a circuit breaker is off, no connection 

is modeled.  Each of the buses must be identified together with the generation, loads, 

these buses. 

Status of circuit breakers changes in real time and therefore the bus/branch 

topology is expected to change. In this situation, whenever there is a change of s

of circuit breakers, the network topology processor must determine the new to

There are several methods to convert bus section/circuit breaker topology into 

bus/branch topology model for an exemplary power system is shown in 

ystem is the same as the system for which the bus section/circuit 

 is presented in Fig. 6.2. The data associated with the 

collected in Tab. 6.1. 

 

 

6.3. The example of a bus/branch topology model. 

DESCRIPTION OF TOPOLOGY USING INCIDENCE MATRIX

incidence matrix of a power network represents interconnection of the branches 

respect to the nodes. As it was previously, the branch represents a power line or a 

transformer. Saying “node”, we mean “electrical node”. 

 

a number of nodes in a power network, 

a number of branches in a power network. 

Under the mentioned assumptions C is a b × n matrix and: 
1 if the branch i is incident to the node j and it is directed away,

= 1 if the branch i is incident to the node j and it is directed towards,

= 0 if the branch i is not incident to the node j. 

},  

}. 

circuit breaker status data. If a 

circuit breaker is on, a connection is modeled. If a circuit breaker is off, no connection 

is modeled.  Each of the buses must be identified together with the generation, loads, 

Status of circuit breakers changes in real time and therefore the bus/branch 

In this situation, whenever there is a change of status 

of circuit breakers, the network topology processor must determine the new topology. 

There are several methods to convert bus section/circuit breaker topology into 

power system is shown in Fig. 

bus section/circuit 

associated with the model 

MATRIX 

incidence matrix of a power network represents interconnection of the branches 

power line or a 

and it is directed away, 

and it is directed towards, 
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Tab. 6.2. Description of topology using terms of bus and branch. 

No Name 
From 

bus 

To  

bus 

Status at 

the bus 

“from” 

Status at 

the bus 

“from” 

1 G1 1 0 ON  

2 TR1 1 2 ON ON 

3 LN1 2 4 ON ON 

4 LN2 2 3 ON ON 

5 LN3 3 4 ON ON 

6 OB1 4 0 ON  

7 OB2+OB3 3 0 ON  

8 OB4 2 0 ON  

 

In Fig. 6.4, there is presented the incidence matrix for the power system, for which 

the bus section/circuit breaker topology model is shown in Fig. 6.2 and the bus/branch 

topology model in Fig. 6.3. 

 

 1 2 3 4 

TR1 1 -1 0 0 

LN1 0 1 0 -1 

LN2 0 -1 1 0 

LN3 0 0 -1 1 
 

Fig. 6.4. The example of an incidence matrix for the power system. 

 
The incidence matrix is determined on the base of the bus/branch topology model. 

6.2. STATE ESTIMATION 

The state estimation is a calculation process which enables obtaining the best 

estimate of the power system state vector [6.1], [6.2], [6.7]-[6.9]. Power system state 

vector is a vector whose elements are bus voltage magnitudes and angles throughout 

the network. 

State estimation is a key function for obtaining a real-time network model. Inputs 

for a state estimation are: 

− a topology model,  

− measurement data from a power network.  
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6.2.1. MEASUREMENT DATA FOR STATE ESTIMATION 

In the classical approach, the set of measurement data for state estimation includes:  

− active and reactive  power flows, 

− active and reactive  power injections, 

− voltage magnitudes, 

− current magnitudes (sometimes). 

In the modern approach, we also utilise:  

− voltage phasors, 

− current phasors. 

6.2.2. BAD DATA AND TOPOLOGY ERRORS IN STATE ESTIMATION 

Problems of bad data and topology errors are essential problems in state estimation 

[6.1], [6.2], [6.7]-[6.9]. Bad data is a data burdened with unusually large measurement 

error (caused by meter-communication system failures). Usually, we assume that such 

an error has a module which is much larger than standard deviation of distribution 

describing measurement noise, e.g. larger than 6 standard deviations. Topology error 

is improper modelling of any connection in a power network. 

Bad data and topology errors have disadvantageous impact on state estimation. 

They can be cause of divergence of an estimation process. They can decrease accuracy 

of state estimation results, as well. Therefore, there is necessity of detection and 

identification of bad data and topology errors in or also before state estimation starts.  

Detection means a test to determine whether bad data or topology errors are 

present. Identification means determination of data which are bad or connection which 

is improperly modelled. 

It should be underlined that topology errors occur rare but their consequences are 

much more severe than it is in the case of bad data. 

Identified bad data are eliminated from a data set utilized by state estimation. In the 

case of identification of topology error the correction of topology model is made. The 

next step is repetition of observability checking and estimation calculations. Such 

iteration process is repeated until tests do not detect bad data or topology errors in 

inputs for state estimation calculations. 

6.3. NETWORK OBSERVABILITY 

A network is observable, when sufficient measurement data are available so that 

the entire state vector can be estimated [6.1], [6.2]. In other words, for the observable 

network the state estimation can be made.  

Network observability is dependent on: 
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− the locations and types of available measurements, 

− the network topology.  

Normally, the metering system for the controlled portion of the network is 

designed so that the network will not only be observable, but also redundant. The 

network is redundant if  the metering system provides measurement data whose 

number is larger than 2n – 1 (n – a number of nodes).  

There are different methods for checking network observability. They can be 

divided into the following classes:  

− numerically based methods,  

− topologically based methods. 

An observability test is performed every time when there is a change in the set of 

available measurement data or the network topology. If the entire network is not 

observable, unobservable buses should be determined. The unobservable buses have to 

be either removed from the state estimator calculation or made observable by adding 

pseudo-measurements.  

If there are unobservable buses, a state eatimation is performed for observable 

islands of buses. 

6.4. BUS LOAD FORECAST FACTORS 

Using results of state estimation, the ratio of each bus MW load to the system MW 

load (and also the power factor) is calculated every few minutes [6.1], [6.2]. The 

mentioned factors are utilized for forecasting the bus loads for a given system MW 

load and a given month, day, and time. Purposes of the considered forecast are: 

− utilization of the forecasted complex loads as pseudo-measurements to make 

the buses observable if they are unobservable due to communication and RTU 

failure,  

− automatic specification of all the bus loads from a given system MW load.  

6.5. EXTERNAL NETWORK MODELLING 

The internal system is the observable part of a system solved by the state estimator 

[6.1], [6.2]. It is assumed that the unobservable parts of a system are either lumped 

into the external system or made observable by using pseudomeasurements  
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6.6. PENALTY FACTORS 

In the economic dispatching of generation, the sensitivity of the transmission losses 

to the individual generation levels is taken into account by penalizing the incremental 

cost functions of the generators [6.1], [6.2].  

The penalty factors are given by:  

 

gi

i

P

L
PF

∂
∂

−
=
1

1
 (6.1) 

where:  L   – the system loss, 

Pgi – the real power output of the i-th generator  

With the availability of the real-time network model it is possible to calculate the 

penalty factors right after the external model calculation is completed.  

6.7. PROCEDURES 

UTILIZING RESULTS OF REAL-TIME MODELLING 

The most important procedures, which utilize results of real-time modelling, are: 

− contingency analysis, 

− optimal power flow with security constraints,  

− optimal power flow with security constraints  and post-contingency 

rescheduling,  

− dispatcher training simulator. 

PROBLEMS 

6.1. What is a purpose of real-time modelling of a power system? 

6.2. What are the main stages of real-time modelling of a power system? 

6.3. Describe the topology of any power system using terms of bus section and 

circuit breaker. 

6.4. Create a bus/branch topology model for the power system considered in the 

previous problem. 

6.5. What is a purpose of utilization of the power-system state estimation? 

6.6. What is necessary condition to perform a power-system state estimation 

process? 

6.7. Where are utilized results of power-system state estimation? 
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7. WEIGHTED LEAST SQUARES  

POWER SYSTEM STATE ESTIMATION 

7.1. LINEAR LEAST SQUARES ESTIMATION 

The name least squares or weighted least squares results from the criterion for 

finding the solution of the overdetermined set of equations made if more 

measurements than state variables are available. The linear form of the equations is 

assumed:  

 Axy = , (7.1) 

where:  y = [y1, y2, … , ym]
T
 – a measurement (output) vector;  

x = [x1, x2, … , xn]
T
 – a state variable vector;  

m - a number of measurements, 

n - a number of state variables, 

A – a m×n matrix with, m > n (matrix has more rows than columns). 
In general, the equation (7.1) does not have the solution. In addition, measurement 

data are burdened by errors and therefore one can write:  

 eAxy += ,  (7.2) 

where: e – a vector representing measurement errors. 

The solution of least square problem is based on the assumption that measurement 

errors are independent random variables and they have the same distribution with zero 

mean and variance equal to 1:  

 { } { } Iee0e == TEE .  (7.3) 

Searching for the estimates of state variables can be considered as the optimization 

problem based on the minimization of the following objective function:  

 ( ) ( ) ( ){ } xAAxxAyyyxAyxAyx ˆˆˆ2ˆˆˆ
TTTTT

EJ −−=−−= . (7.4) 

The conditions for the minimum of the objective function are following:  

 
( ) ( )
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x

x

x

x JJ
. (7.5) 

The solution for the power system state estimation is: 

 ( ) yAAAx TT 1

ˆ
−

= . (7.6) 
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7.2. LINEAR WEIGHTED LEAST SQUARE ESTIMATION 

Let suppose that for measurement errors E{e} = 0 and the covariance matrix is as 

follows:  

 { }T
eeR E= , 

where { } jimjieeE ji ≠== ,,,2,1,,0 K . 

The objective function for the weighted least square estimation is to minimize: 

 ( ) ( ) ( ){ } xARAxxARyyyRxAyRxAyx ˆˆˆ2ˆˆˆ
1111 −−−− −−=−−= TTTTT

EJ , (7.7) 

and the solution of the estimation is:  

 ( ) yRAARAx 111
ˆ

−−−= TT . (7.8) 

Assuming that the matrix R is diagonal (the measurement errors are not 

correlated):  
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then the objective function is:  

 ( ) ( ) ( ){ } ( )
∑

=

−

σ
−

=−−=
m

i ii

iiT yy
EJ

1

2

1 ˆ
ˆˆˆ xAyRxAyx , (7.10) 

where: xAy ˆˆ = . 

The difference between measured and estimated value:  

 yyr ˆ−=  (7.11) 

is called measurement residuals. The expected value and covariance matrix of 

residuals are: 

 { } ( ) ( ) TTE AAWAArr
11cov0

−−== . (7.12) 

and diagonal (random variables are independent).  
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Example 7.1 

Calculate the state estimates obtained with use of least squares for the 

overdetermined set of equations: 
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Compare the estimation results for the following cases:  

a) without weighting matrix (or with unity weighting matrix), 
b) with weighting matrix 
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Writing equations in matrix form, one can obtain:  
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a) according to equation (7.8), the estimate of vector x is calculated as follows:  
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the residuals:  
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b) the weighted least square estimates calculated with used of equation (7.8): 
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and the residuals:  
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It can be noticed that the considerable reduction of residuals is obtained for 

measurement with better accuracy stated by weighting factors in matrix R.  

Example 7.2 

Calculate estimates of voltages at nodes 1 and 2 in the DC circuit shown in Fig. 

7.1. Find branch current and voltage estimates of sources. Meter readings are z1=5.1V, 

z2=4.2V, z3=13.7A, z4=11.4A. Resistances of all branches are assumed R=0.5Ω. 
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The state vector contains node voltages 

 TVV ][
21

=x .  

Knowing nodal voltages enables all other voltages and currents in circuit to be 

calculated. 

According the Kirchhoff and Ohm’s laws the functions related measurements and 

state variables can be evaluated:  

 z1 = V1+e1,  

 z2 = V2+e2,  

 ( )
32132113

1211
eV

R
V

R
eVV

R
V

R
z +−=+−+= ,  

 ( )
42142214

2111
eV

R
V

R
eV

R
VV

R
z ++−=++−−= .  

Voltage measurement are assumed to be more accurate than ampmeter readings 

and the weight matrix is as follows:  
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Fig. 7.1. DC circuit for the state estimation calculations. 
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The measurement function is linear (state variable estimates can be calculated 

directly). Hence: 
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Node voltage estimates are calculated from:  
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The branch current estimates:  

 A715.11ˆ2ˆ4ˆ
211 =−= VVI , 

 A741.8ˆ4ˆ2ˆ
212 =+−= VVI . 

The estimates of source voltages are:  

 V219.11362.5715.115.0ˆˆˆ
111 =+⋅=+= VIRE , 

 V237.9866.4741.85.0ˆˆˆ
222 =+⋅=+= VIRE . 

7.3. NONLINEAR WEIGHTED LEAST SQUARE ESTIMATION 

From practical point of view very important is the case when the measurements are 

a nonlinear function of the state variables:  
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 ( ) exz += h , (7.13) 

where:  z  – a measurement vector;  

h(x) – a non-linear function of state variables,  

e  – a measurement-error vector with zero-mean ( ( ) 0=eE ) and with the 

covariance matrix:  

 ( ) Ree =TE . (7.14) 

The state estimate x̂ should minimize the objective function: 

 ( ) ( )[ ] ( )[ ]xzRxzx ˆˆˆ 1
hhJ

T −−= −

. (7.15) 

Using Taylor series expansion around the point x
(k)
 and neglecting higher order 

terms the measurement function can be linearized:  

 ( ) ( ) ( ) ( ) ( ) ( ))()()(
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)( kkk

k

k h
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hh xxHxxx
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x
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∂

∂
+≈ , (7.16) 

where: H – the Jacobi matrix, i.e. the matrix of partial derivatives of the measurement 

function elements with respect to state variables:  
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The incremental version of equation (7.8) can be written as:  

 zRHxHRH ∆=∆ −− 11 ˆ TT
 (7.18) 

where: )(
ˆˆˆ

k
xxx −=∆ , 

( ))(ˆ k
h xzz −=∆ . 

The matrix defined as:  

 HRHG
1−= T  (7.19) 

is called also the gain matrix. 

The estimate of state is given by: 

 ( ) ( )( ))(11111 ˆˆ kTTT h xzRHGzRHHRHx −=∆=∆ −−−−−

. (7.20) 

The estimate can be found with use the iterative scheme: 
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( ) ( ) ( )( ) ( ) ( )( ))(11)(11 ˆˆˆ kTkkTkkk h xzRHHRHxx −+= −−−+

, (7.21) 

where: k – an iteration number.  

Example 7.3 

Find the state estimate with use of nonlinear weighted least squares for:  
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The Jacobi matrix of measurement function:  
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The state variable estimate value at the k-th iteration can be calculated from: 
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The solution for each iteration is shown in Tab. 7.1. 

Tab. 7.1. The estimation solutions for each iteration.  

k )(ˆ kx  

1 0.9000 

2 0.8560 

3 0.8378 

4 0.8304 

5 0.8274 

6 0.8262 

7 0.8258 
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7.4. POWER SYSTEM STATE ESTIMATION 

7.4.1. GENERAL DESCRIPTION 

Theoretical background for power system state estimation was originally proposed 

in early 1970’s [7.3]-[7.5]. State of the power system is described by node voltage 

magnitudes and angles (voltages can be also express in rectangle form). Only the 

voltage magnitudes can be measured directly. However, it is possible to calculate 

phase angle values using redundant real-time data acquired from the system. These 

data are processed by state estimator. It is special computational routine calculating 

bus voltage magnitudes and angles. Using state variables other estimated quantities 

can be calculated (e.g. not measured voltage magnitudes, branch power flows). State 

estimation produces results which are similar to these obtained from standard power 

flow. The difference is in applied computational method and used input data.  

The general scheme for power system real-time modeling is presented in Fig. 7.2.  

 
The state estimator acquires the measurements delivered by Supervisory Control 

and Data Acquisition (SCADA): voltage magnitudes at most of the buses, active and 

reactive power flows in lines and transformers, active and reactive power injections at 

buses with generators and loads, discrete statuses of switching devices. Every short 

period of time (usually few seconds) the measurement units are scanned and the 

measurement set is sent to the control center. Topology processing step determines the 

current power network connectivity with use of reported ON/OFF statuses of 

switching equipment. The result is bus-branch connectivity model or more detailed 

topology model at the bus section level. In the initial step some measurement data 

with outstanding gross errors are rejected and measurement set consistency test is 

performed.  

Topology processor 

Elimination of data 

burdened  with 

gross errors 

Measurement 

consistency 

checking 

ON/OFF 

statuses 

Analog 

measurement 

data 

Observability 

analysis 

State 

estimation 

Bad data 

detection and 

removing 

Estimate of 

system state 

Fig. 7.2. Real-time power system modeling steps.  
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In real-time environment some of measurements may be unavailable and some 

network configuration changes may occur. The observability test checks whether 

sufficient measurement data set is available so that the state vector can be estimated.  

Bad data detection module decides whether bad measurements with large errors are 

present using redundant measurement data set and state estimation results. After 

rejection of detected bad measurement data, state estimation is re-calculated. Finally, 

state estimation produces average estimate of the all state variables being the best fit 

of the input measurement data. 

In state estimation the number of processed data is much greater than in the number 

of data required for standard power flow. As a consequence the number of equations is 

also greater than the number of state variables. However, the data redundancy is 

advantage because it enables elimination of bad data and perform estimation in case 

when the part of measurement set is unavailable.  

To compute power system state estimation non-linear weighted least squares 

procedure is adopted. Flow chart for calculation of state estimates is presented in Fig. 

7.3 

 

Initialize the state vector with flat start, k=0 

Calculation of the gain matrix G(x
(k)
)= (H(x

(k)
))

T
 H(x

(k)
) 

Calculation of (H(x
(k)
))

T 
R
-1
 (z−h(x(k))) 

Decomposition of the gain matrix for finding ∆x(k) 

max|∆x(k)| < ε or  
k>kmax 

x
(k+1)

= x
(k)
+∆x(k) 

k=k+1 

N 

Y 

STOP 

START 

Fig. 7.3. Algorithm for calculations of power system state estimation.  

127



 

 

First, flat starting point is assumed as initial values of state vector estimates. 

The Jacobi and gain matrices are constructed with use of initial state vector. The next 

step in algorithm is calculation of differences between measurement values and 

measurement function values h(x). Gain matrix is decomposed for finding the 

incremental values of state estimates ∆x(k). Convergence criterion is checked. If the 
performance is not met the state vector is updated and iteration counter is incremented. 

Next iteration of computations is performed. The calculations are continued until 

reaching the convergence or maximal number of iterations (if the convergence is not 

reached).  

7.4.2. POWER SYSTEM MODEL FOR STATE ESTIMATION 

State variable vector contains node voltage angles and magnitudes:  

 [ ]T
nn

VVV ......
2132

θθθ=x , (7.22) 

where: n – a number of nodes in power network.  

Note that voltage angle θ1 is not included in state vector. Similarly as in 
conventional power flow it is reference and their value is assumed to be zero.  

Network equations relating node current injections and node voltages: 
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 (7.23) 

or in matrix form:  

 VYI =  (7.24) 

where:  I  – a node current injection vector;  

V  – a node voltage vector;  

Y – an admittance matrix.  

The term Yij is mutual admittance between the nodes i and j and it has the sign 

which is opposed to the sign of the branch series admittance. The self admittance Yii is 

equal to the sum of series admittances of branches connected to node i and shunt 

admittances at node i. The assumed branch model for deriving measurement function 

is shown in Fig. 7.4. 
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The active and reactive power injected at node i are:  
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where:  Pi, Qi – a nodal active and reactive power at the node i;  

n – a number of nodes in a power network;  

ijijij jBGY +=  –  the i-j element of an admittance matrix;  

The presented form of network equations is called hybrid form because 

admittances are given in rectangular coordinates and voltages in polar coordinates. 

Branch active and reactive power flows  

 ( ) ( ) ( )( )
jiijjiijjiijijiij

bgVVggVP θθθθ −+−−+= sincos'2 , (7.27) 

 ( ) ( ) ( )( )jiijjiijjiijijiij bgVVbbVQ θ−θ−θ−θ−+−= cossin'2
, (7.28) 

where:  Pij, Qij – at the node i;  

ijijij
jbgy += – an admittance of the series branch connecting the  buses i 

and j.  

ijijij jbgy ''' +=  – an admittance of the shunt branch connected at the bus j.  

Branch current magnitudes are calculated from:  
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22 +
= , (7.29) 

yij=gij+jbij 

y’ij=g’ij+jb’ij y’ji=g’ji+jb’ji 

i j 

Vi Vj 

Fig. 7.4. Two port π branch equivalent.  
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 ( ) ( )( )
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VVVVbgI θθ −−++= cos22222 , (7.30) 

The measurement Jacobi matrix is constructed with use of the following structure:  
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H
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θθ

θθ

θθ

θθ

, (7.31) 

where:  Pinj – a vector of active power node injection measurements;  

Qinj – a vector of reactive power node injection measurements;  

Pbrn – a vector of active power flow measurements at branch terminal;  

Qbrn – a vector of reactive power flow measurements at branch terminal;  

Ibrn – a vector of branch current magnitude measurements;  

V – a vector of node voltage magnitude measurements.  

Elements of the Jacobi matrix are partial derivatives of Pi, Qi, Pij, Qij (the equations 

(7.25) - (7.28)) with respect to state variables. The equations (7.25) - (7.28) used for 

calculation of Pi, Qi, Pij, Qij are derived for the branch model shown in Fig. 7.4. The 

terms of the Jacobi matrix are as follows: 

a) active and reactive power injections:  

 ( ) ( )( )∑
=

−−+−−=
∂
∂ n

j
iiijiijjiijji

i

i BVBGVV
P

1

2cossin θθθθ
θ

, (7.32) 

 ( ) ( )( ) jiBGVV
P

jiijjiijji

j

i ≠−−−=
∂
∂

,cossin θθθθ
θ

, (7.33) 

 ( ) ( )( )∑
=

+−+−=
∂
∂ n

j
iiijiijjiijj

i

i GVBGV
V

P

1

sincos θθθθ ,  (7.34) 

 ( ) ( )( )
jiijjiiji

j

i BGV
V

P
θθθθ −+−=

∂
∂

sincos , i ≠ j, (7.35) 
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 ( ) ( )( )∑
=

−−+−=
∂
∂ n

j
iiijiijjiijji

i

i GVBGVV
Q

1

2sincos θθθθ
θ

, (7.36) 

 ( ) ( )( )
jiijjiijji

j

i BGVV
Q

θθθθ
θ

−−−−=
∂
∂

sincos , i ≠ j. (7.37) 

 ( ) ( )( )∑
=

−−−−=
∂
∂ �

j
iiijiijjiijj

i

i BVBGV
V

Q

1

cossin θθθθ ,  (7.38) 

 ( ) ( )( )
jiijjiiji

j

i BGV
V

Q
θθθθ −−−=

∂
∂

cossin , i ≠ j. (7.39) 

b) active and reactive power branch flows:  

 ( ) ( )( )
jiijjiijji

j

ij
bgVV

P
θθθθ

θ
−−−=

∂

∂
cossin , (7.40) 

 ( ) ( )( )
jiijjiijji

j

ij
bgVV

P
θθθθ

θ
−−−−=

∂

∂
cossin , (7.41) 

 ( ) ( )( ) ( )
iijijjiijjiijj

i

ij
VggbgV

V

P
'2sincos ++−+−−=

∂

∂
θθθθ , (7.42) 

 ( ) ( )( )
jiijjiiji

j

ij
bgV

V

P
θθθθ −+−−=

∂

∂
sincos , (7.43) 

 ( ) ( )( )
jiijjiijji

i

ij
bgVV

Q
θθθθ

θ
−+−−=

∂

∂
sincos , (7.44) 

 ( ) ( )( )
jiijjiijji

j

ij
bgVV

Q
θθθθ

θ
−+−=

∂

∂
sincos , (7.45) 

 ( ) ( )( ) ( )
ijijijiijjiijj

i

ij
bbVbgV

V

Q
'2cossin +−−−−−=

∂

∂
θθθθ , (7.46) 

 ( ) ( )( )
jiijjiiji

j

ij
bgV

V

Q
θθθθ −−−−=

∂

∂
cossin . (7.47) 

c) branch current magnitudes:  

 ( )
jiji

ij

ijij

i

ij
VV

I

bgI
θθ

θ
−

+
=

∂

∂
sin

22

,  (7.48) 
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 ( )
jiji

ij
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j

ij
VV
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bgI
θθ

θ
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∂

∂
sin

22

, (7.49) 

 ( )( )
jiji

ij

ijij

i

ij
VV

I

bg

V

I
θθ −−

+
=

∂

∂
cos

22

, (7.50) 

 ( )( )
jiij

ij

ijij

j

ij
VV

I

bg

V

I
θθ −−

+
=

∂

∂
cos

22

, (7.51) 

d) nodal voltages  

 1=
∂
∂

i

i

V

V
, 0=

∂
∂

j

i

V

V
, 0=

∂
∂

i

i
V

θ
, 0=

∂
∂

j

i
V

θ
. (7.52) 

Example 7.4 

Consider example 3-bus power system as shown in Fig. 7.5. For the given network 

model, measurement system, volt- and wattmeter readings find the estimates of state 

variables with use of WLS estimation. Parameter and measurement data:  

Branch reactances: X12= j0.15 p.u., X13= j0.10 p.u., X23= j0.09 p.u.. 

Voltmeters: V1=1.020 p.u.,  V2=1.015 p.u., V3= 1.012 p.u.. 

Active power flows: P1=0.60 p.u., P2=0.20 p.u., P13=0.47 p.u.,  P23=0.32 p.u..  

Measurement variances: σ2V1=σ2V1=σ2V3 = 0.001,   σ2P1=σ2P2=σ2P13 = σ2P23 =0.005 

 
State variable and measurement vectors defined for example system:  

 [ ] [ ]TT
VVVxxxxx
3213254321

θθ==x   

 [ ] [ ]TT
VVVPPPPzzzzzzz
3212313217654321

==z   

1 2 

3 

Fig. 7.5. Three-bus power system to illustrate state estimation.  

� - active power flow measurement • - voltage measurement. 
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Because branch resistances are  assumed to be zero, the admittance matrix:  

 












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
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09.0

1
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1
j

09.0

1
j
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1
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1
j

15.0

1
j

10.0

1
j

15.0

1
j

1.0

1

15.0

1
j

jjj

jjj

jjj

333231

232221

131211

BBB

BBB

BBB

Y .  

Covariance matrix for measurements: 

  R = diag{σ2P1  σ2P2  σ2P13  σ2P23  σ2V1  σ2V1  σ2V3}= 

 





























=

001.0

001.0

001.00

005.0

005.0

0005.0

005.0

.  

Functions for the measurements are defined as follows:  

a) measurement for power injection P1:  

( ) ( ) ( ) ( ) ( )
2531433113312112211

sin
1.0

1
sin

15.0

1
sinsin xxxxxxBVVBVVh −+−=−+−= θθθθx  

b) measurement for power injection P2:  

( ) ( ) ( ) ( )
21541433223321212212

sin
09.0

1
sin

15.0

1
sin)sin( xxxxxxxBVVBVVh −+=−+−= θθθθx

c) measurement for branch power flow P13:  

( ) ( ) ( ) ( )
2532533113313

sin
1.0

1
sin

1.0

1
sin xxxxxxbVVh −=−







−−=−−= θθx , 

d) measurement for the branch power flow P23:  

 ( ) ( ) ( ) ( )
215421543223324

sin
09.0

1
sin

09.0

1
sin xxxxxxxxbVVh −=−







−−=−−= θθx ,  

e) measurement for the voltage magnitudes V1, V2, V3:  

 ( )
315

xVh ==x ,  
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 ( )
426

xVh ==x ,  

 ( )
537

xVh ==x .  

The measurement Jacobi matrix has the following structure: 
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Calculation of corresponding partial derivatives yields:  
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Assuming flat starting point for iterations:  

 [ ]T0.10.10.10.00.0ˆ )0( =x , 
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−
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0000.00000.00000.00000.100000.0

0000.00000.00000.01111.116667.16
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)0(
H , 

 

 ( ) [ ]Th 0120.00150.00200.03200.04700.02000.06000.0)0( =− xz .  

The increment of state vector is found from:  

 
( ) ( )( )

[ ] .0.01200.01500.02000.0473-0.0192-

ˆˆ
)0(1)0(1)0(1)0()0(

T

TT h

=

=−=∆ −−−
xzRHHRHx

 

Updating the vector of state estimates according to:  

 [ ]T1.01201.01501.02000.0473-0.0192-ˆˆˆ
)0()0()1( =∆+= xxx .  

Repeating calculations until tolerance level ( ) 410ˆmax −<∆x  is reached after 3 

iterations gives the final solution (angles are given in rad and voltages in p.u.):   

 [ ]T1.01201.01511.01990.0459-0.0178-ˆ =x .  

Performance index for state estimation:  

 ( ) ( )[ ] ( )[ ] 0060.0ˆˆˆ
1 =−−= − xzRxzx hhJ

T
 . 

State vector estimates and measurement functions can be used for calculation of 

estimates of other quantities: power branch flows and node injections, currents, power 

losses etc.  

PROBLEMS  

7.1. In the DC circuit shown in Fig. P.7.1, the loop currents I’1 and I’2 are 

considered as state variables. Find WLS estimates of state variables. Using the 

estimates determine branch currents, source voltages and voltage drops at 

resistaces.  

Resistances: R1 = 1Ω, R2 = 2Ω, R3 = 3Ω.  
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Meter readings: z1 = V1 = 7.98V, z2 = V2 = 9.03V, z3 = I1 = 1.96A.  

Measurement weights are set to 10.0 for voltmeters and 1.0 for ampmeter.  

 
 

7.2. In the simple power system shown in Fig. P.7.2 the meter readings are as 

follows:  

z1 = P12 = 2.50 p.u., σ2P12 = 0.05, 
z2 = P21 = -2.48 p.u., σ2P21 = 0.05, 
z3 = Q12 = 0.50 p.u.,  σ2Q12 = 0.05, 
z4 = V1 = 1.00 p.u., σ2V1 = 0.01, 
z5 = V2 = 0.99 p.u., σ2V2 = 0.01, 
Line reactance: X12 = j0.10 p.u.. 

1. Determine WLS estimates of node voltages assuming stop criteria 

|∆x|<10-3 and calculate performance index J(x).  
2. Change measurement deviations to: σ2V1 =σ2V2 =0.1, σ2P12 = σ2P21 =0.5, 

σ2Q12=0.5. Re-calculate WLS state estimation and performance index 
J(x). Compare the results with values obtained in point 1.  

 
7.3. In the simple power system shown in Fig. P.7.3, the meter readings are as 

follows:  

z1=P1 = 1.3 p.u., σ2P1 = 0.01, 
z2=P2 = 0.5 p.u., σ2P2 = 0.01, 
z3=P3 = 0.8 p.u., σ2P3 = 0.01, 
z4=Q2 = 0.05 p.u., σ2Q2 = 0.01, 

1 2 

Fig. P.7.2. Two-bus system for the problem 1.  

Measurements: • - voltage � - active power � - reactive power 

V1 

A1 

 E1  E2 R3 

R1 

Fig. P.7.1. DC circuit for the state estimation.  

R2 

V2 I’1 I’2 

1 I1 

I3 

I2 
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z5=Q3 = 0.10 p.u., σ2Q3 = 0.01, 
z4 = P13 = 0.70 p.u., σ2P13 = 0.01, 
z5 = P23 = 0.10p.u., σ2P23 = 0.01, 
z6 = Q13 = 0.15 p.u., σ2Q13 = 0.01, 
z7 = Q23 = 0.02 p.u., σ2Q23 = 0.01, 
z8 = V1 = 1.00 p.u., σ2V1 = 0.005, 
branch reactances: X12 = X13 = X23 = j0.10 p.u..  

1. Determine WLS estimates of node voltages assuming stop criteria 

|∆x|<10-3 and calculate performance index J(x).  
2. Remove z2, z4, z5, z7 from measurement set. Re-calculate WLS state 

estimation, performance index and compare with results obtained in point 

1.  
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8. ALTERNATIVE FORMULATION  

OF THE POWER SYSTEM STATE ESTIMATION 

8.1. INTRODUCTION 

In this chapter, some alternative formulation of the power system state estimation 

are presented. Wide review of power system state estimation can be found in [8.5]. 

This chapter focuses on the decoupled formulation, the orthogonal factorisation, the 

hybrid method, and the Peters and Wilkinson method, the equality constrained normal 

equation formulation, and the augment matrix approach with the Hachtel matrix.  

8.2. DECOUPLED FORMULATION OF WLS STATE ESTIMATION 

It was observed that sensitivity of real power equations to changes in the 

magnitude of bus voltages and active power equations to changes in the phase angle of 

bus voltages are very low, especially for high voltage system which has large margin 

of stability [8.9], [8.10]. These observations allow to partition measurement equations 

into two parts: 

– real power measurements, 

– reactive power measurements, and voltage magnitude. 

Basing on above observations, the vector of measurements can be partitioned in the 

following way: 

 [ ]T

Q,V

T

P

T
zzz = , (8.1) 

and 

 ( )( )
( )( ) ( )( )
( )( ) ( )( )






=

k

Q,V/V

k

Q,V/δ

k

P/V

k

P/δk

xHxH

xHxH
xH

, (8.2) 

 







=

Q,V

P

R0

0R
R . (8.3) 

Ignoring off diagonal blocks 
P/VH  and 

Q,V/δH  in the Jacobi matrix H, the gain 

matrix can be written in the following way: 
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( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( )

( )( )






=

=








⋅⋅

⋅⋅
= −

−

k

Q,V/V

k

P/δ

k

Q,V/VV

kT

Q,V/V

k

P/δp

kT

P/δk

xG0

0xG

xHRxH0

0xHRxH
xG

1

1

, (8.4) 

 

 ( )
( ) ( )[ ]

( ) ( )[ ]
( )

( ) 







=













−−

−−
=

−

−

)(xg

)(xg

)(xhz)R(xH

)(xhz)R(xH
)g(x

k

Q,V

k

P

k

Q,VQ,VQ,V

kT

Q,V/V

k

PPP

kT

P/δk

1

1

, (8.5) 

which leads to decoupled formulation where phase angle and magnitude of voltages 

are calculated alternatingly. The steps of two algorithms are given below: 

Algorithm 1 

1. Set the iteration index k = 1 and all bus voltages at the flat start, i.e. 
Vi = 1 pu δi = 0 for all i = 1, 2,…, �.  

2. Build 
( )( )k

P/δ xH  and 
( )( )k

Q,V/V xH . 

3. Calculate gain matrixes  
( )( )k

P/δ xG and 
( )( )k

Q,V/V xG . 

4. Calculate 
( )
)(xg k

P  and 
( )
)(xg

k

Q,V . 

5. Solve ( )( ) ( ) ( )( ) ( ))(xgδδxG k

P

kkk

P/δ −=−⋅ +1
. 

6. Solve ( )( ) ( ) ( )( ) ( ))(xgVVxG k

Q,V

kkk

Q,V/V −=−⋅ +1
. 

7. Check if 
( ) ( )( ) ε<−+ kk δδ 1

 and 
( ) ( )( ) ε<−+ kk VV 1

. If yes, stop. Else, 

continue. 

8. Go to step 2. 

Algorithm 2 

1. Set the iteration index k = 1 and all bus voltages at the flat start, i.e. 
Vi = 1 pu δi = 0 for all i = 1, 2,…, �. 

2. Build ( ) ( )( )kk

P/δ VδH , .  

3. Calculate gain matrix  ( ) ( )( )kk

P/δ VδG , .  

4. Calculate 
( ) ( )

)V(δg kk

P , . 

5. Solve ( ) ( )( ) ( ) ( )( ) ( ) ( ))V(δgδδVδG kk

P

kkkk

P/δ ,, 1 −=−⋅ +
. 

6. Build 
( ) ( )( )kk

Q,V/V VδH ,1+
. 

7. Calculate gain matrix  
( ) ( )( )kk

Q,V/V VδG ,1+
.  
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8. Calculate 
( ) ( )

)V(δg
kk

Q,V ,1+
.  

9. Solve ( ) ( )( ) ( ) ( )( ) ( ) ( ))V(δgVVVδG kk

Q,V

kkkk

Q,V/V ,, 111 +++ −=−⋅ . 

10. Check if  and . If yes, stop. Else, 

continue. 

11. Go to step 2. 

8.3. DISADVANTEGES 

OF NORMAL EQUATION WLS ESTIMATION 

It has been observed that under certain circumstances Normal Equation (NE) is 

prone to numerical instabilities. Numerical instabilities can appear when the 

calculation problem is ill-conditioned [8.3]. 

If the estimation process is ill-conditioned then measurement errors have 

significant influence on computational process. The measure of the ill-conditioning is 

a condition number. If the condition number is large, even small errors in 

measurement data may cause large errors in a state vector. The ill-conditioning of 

the estimation process often leads to a worse convergence of the process, convergence 

to wrong solution or even to lack of the convergence of this process. The reasons of 

ill-conditioning can be large differences in values of the elements of the matrix R, 

existence long and short lines connected with the same bus, large proportion of 

injection measurements or existence of virtual measurements. The condition number is 

defined as: 

 ( )
Gm

GM

λ
λ

=Acond , (8.6) 

where: λGm, λGM – a minimal eigenvalue and a maximal one (by moduli) of the matrix 

A, A ∈ {G, U, L, F} respectively. 

Example 8.1  

If we recall normal equation formulation:   

 ( )( ) ( ) ( )( ) ( ) ( )[ ])h(xz)R(xHxxxG
kkTkkk −=−⋅ −+ 11 , (8.7) 

where 

 ( )( ) ( )( ) ( )( )kkTk
xHRxHxG ⋅⋅= −1 . (8.8) 

( ) ( )( ) ε<−+ kk
δδ

1 ( ) ( )( ) ε<−+ kk
VV

1
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It can be seen that for the matrix H: 



















=

ε
ε

ε

00

00

00

111

H
. 

However ( ) 3rank =H , if floating is 1e-10 for ε = 0.5e-5, the ε
2
 = 0 and 

( ) 1rank =⋅HH
T  

















≈
















+

+

+

=

111

111

111

111

111

111

2

2

2

ε
ε

ε
HH

T . 

Although such extreme situation never happens in practice, this example illustrates 

weakness of normal equations formulation [8.3].  

In this chapter, several, numerically more robust methods will be presented. 

8.3.1. ORTHOGONAL FACTORIZATION 

For HWH 21=
~

and [ ]h(x)zWz∆
21 −=~ , where ( )21diag kσ= −

W  is the weighting 

matrix, the normal equation of WLS can be written in the following way: 

 z∆H∆xHH
G

~~~~
⋅=⋅ TT

321 . (8.9) 

In this method matrix H
~
 is decomposed in the following way: 

 QRH =
~

, (8.10) 

where  Q - an m×m orthogonal matrix which Q
-1
= Q

T
, 

R - a m×n upper trapezoidal matrix (first n rows are upper triangular while 

remaining rows are null. 

Further partitioning Q and R leads to the reduced form: 

 [ ] UQ
0

U
QQH n0n =








⋅=

~
. (8.11) 

Using the property IQQ =⋅ T . Equation (8.9) can be written as:  

 z∆H∆xHQQH ~~~~
⋅=⋅⋅⋅ TTT , (8.12) 
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 z∆QR∆xRR ~⋅⋅=⋅⋅ TTT , (8.13) 

 z∆QU∆xUU n
~⋅⋅=⋅⋅ TTT . (8.14) 

Finally, last expression leads to: 

 z∆Q∆xU n
~⋅=⋅ T
. (8.15) 

Orthogonal factorization is more robust than Normal Equation. The drawback of 

this approach is the need to obtain and store matrix Q which is much denser than the 

gain matrix G [3, 5]. 

8.3.2. HYBRID METHOD 

Using properties (8.11) that:   

 
TTT

nn QUHUQH ⋅=⇒=
~~

. (8.16) 

And substituting for 
T

n

T
QU ⋅  in equation (8.12) the hybrid method can be written 

in the following way: 

 z∆H∆xUU ~~
⋅=⋅⋅ TT . (8.17) 

Hence, in the hybrid method, there is no need to store the matrix Q. 

In the hybrid method, the orthogonal transformation is made on the matrix H
~
 

instead of the Cholesky decomposition of the gain matrix G [8.3], [8.5], [8.6]. This 

fact allows avoiding situation mentioned in the example 8.1. 

8.3.3. PETERS AND WILKINSON METHOD 

In this method decomposition LU of H
~
 is performed [8.3], [8.5], [8.7]. 

 , (8.18) 

where  L  – the m×n lower trapezoidal matrix (mark that it is not the same matrix as 

the matrix L in the Cholesky decomposition), 

U  – the n×n upper triangular matrix (note that this matrix is different from the 

U matrix in the orthogonal or hybrid method).  

Normal equation can be written in the following way:  

 z∆H∆xHH
G

~~~~
⋅=⋅ TT

321  (8.19) 

which can be transformed as follows:  

 z∆LU∆xULLU ~⋅⋅=⋅⋅⋅⋅ TTTT , (8.20) 

ULH ⋅=
~
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 z∆L∆xULL ~⋅=⋅⋅⋅ TT , (8.21) 

 z∆L∆yLL ~⋅=⋅⋅ TT , (8.22) 

where: 

 . (8.23) 

Algorithm of method 

1. Perform the LU decomposition of H
~
 

2. Using the Cholesky factorization of LL ⋅T , followed by the 

forward/backward substitution, compute ∆y (8.22) 

3. Compute ∆x by backward substitution using (8.23) 

8.3.4. EQUALITY-CONSTRAINED WLS STATE ESTIMATION 

Using of very high weights for virtual measurements, such zero-injections, cause 

ill-conditioning of the matrix G [8.3], [8.5]. One way to solve this problem is 

considering equations related to zero-injection measurements as equality constrains. 

This problem of state estimation can be considered as minimization of the objective 

function J(x) under the constraints c(x) = 0: 

 ( ) ( )[ ] ( )[ ]xhzRxhzx
1 −−= −T

JMinimize
2

1
, (8.24) 

 , (8.25) 

where  c(x) = 0 - an equation set related to zero-injection measurements, 

( ) 1
WR

−=σ= 2
diag k

 – a diagonal matrix of measurement covariances. 

The formulated problem can be solved with the use of the method of Lagrange 

multipliers, using the function: 

 ( ) ( ) ( )xcλxx
T

JL −=  (8.26) 

where λ - a vector of multipliers. 

The solution of the state estimation is obtained in a certain iteration manner from 

the following equation set: 

 
( ) ( ) ( )( )[ ]

( )( ) 








−

−
=









−

−
⋅

−+

k

kTkk

xc

xhzRH

λ

xx
F

11

 (8.27) 

F is a coefficient matrix. 

∆xU∆y ⋅=

( ) 0xc =tosubjected
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 







=

−

0C

CHRH
F

1 TT

 (8.28) 

Excluding zero-injections measurements in the NE/C method causes that matrix   

R
-1
 has no longer so differentiated values and one of the main sources of ill-

conditioning of the estimation calculation process has been eliminated. Consequently, 

the NE/C method should be more numerically stable than the NE method. However, 

the coefficient matrix F from (8.28) is indefinite. This fact causes that row-pivoting 

must be combined with sparsity-oriented techniques during the LU factorization to 

preserve numerical stability. However, we can expect that additional computation 

should not be too extensive [8.3], [8.5]. 

It is noteworthy that the condition number of the coefficient matrix can be 

improved by scaling the term of the Lagrange function corresponding to the objective 

function. After the scaling, the Lagrange function can be written as [8.3]: 

 ( ) ( ) ( )xcxJxL
T

sα λ−=  (8.29) 

where λλ α=s
.  

Now, the following nonlinear-equation set is solved in following way: 

 
( ) ( ) ( )( )[ ]

( )( ) 








−

−
=









−

−
⋅







 −+−

k

kT

s

kkTT αα

xc

xhzRH

λ

xx

0C

CHRH
11 1

 (8.30) 

It is noteworthy that α = 1 may lead to conditioning even worse than for the NE 

method. The factor α should be chosen as: 

 . (8.31) 

8.3.5. AUGMENT MATRIX APPROACH 

The need to perform calculation of HRH
1−T  is a disadvantage of the equality 

constrained WLS method [8.3], [8.5]. Augmented matrix approach may overcome this 

drawback. The problem of state estimation can be considered as minimization of the 

objective function J(x) under the constraints c(x) = 0 and r – z + h(x) = 0, i.e.: 

 ( ) rRrx
1 ⋅⋅= −TJMinimize

2

1
 (8.32) 

 . (8.33) 

The formulated problem can be solved with the use of the method of Lagrange 

multipliers, using the function: 

i
iiRmin=α

( )
( ) 0xhzr

0xc

=+−

=tosubjected
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 ( ) ( ) ( ) ( )( )xhzrµxcλxx +−−−= TT
JL  (8.34) 

The solution of the state estimation is obtained in a certain iteration manner from 

the following equation set 

 ( ) ( )

( )( )[ ]

( )( ) 















−

−

=

















−⋅
















+

k

k

kkTT

xc

0

xhz

λ

xx

µ

0C0

C0H

0HR
1  (8.35) 

The coefficient matrix in this method is called the Hachtel’s matrix. As in the 

previous method proper scaling of weight matrix improves conditioning: 

 ( ) ( )

( )( )[ ]

( )( ) 















−

−

=

















−⋅















+

−

k

k

kkTT

xc

0

xhz

λ

xx

µ

0C0

C0H

0HR
1

1α
. (8.36) 

8.4. GUIDELINES FOR PROGRAMMING IN MATLAB® 

As it can be seen one of the major problem is solving linear equation bAx = where 

A is square n×n matrix, b, x are n rows vectors. It is not recommended to solve this 

problem in the following way [8.1]: 
 

x=inv(A)*b 

 

It is recommended to use backslash divide “\”: 
 

x=A\b 

 

In this way the specific algorithm is used. Depends on A the appropriate method is 

used for solving this problem. Bellow there are information for sparse matrices. 

Checking which algorithm is used, during solving the mentioned equation, can be 

done in the following way 
 

spparms('spumoni',1)  

x=A\b 

spparms('spumoni',0)  

Example for normal equations: 
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Gx=H’*W*H  %H–Jacobi matrix,  W-weighted matrix  

gx=H’*W*dz  %dz=z-h(x) –residue of measurements 

 

Theoretically the gain matrix should be symmetric, but because of some round off 

error during calculation of H’*W*HH’*W*HH’*W*HH’*W*H, can be asymmetric. Therefore solving in this 
way: 

 

deltax=Gx\gx 

 

the LU decomposition instead Cholesky decomposition may be employed. If we 

want to use Cholesky decomposition it can be done in the following ways: 
 

L=chol(Gx,’lower’); 

deltax= L’\(L\gx); 

 

or we can made the gain matrix real symmetrical using  0.5*(Gx+Gx’) instead of 

Gx; 
 

deltax=(0.5*(Gx+Gx’))\gx;  

 

In this way Matlab® automatically uses Cholesky decomposition if the gain matrix 

is real sparse (band density is lower than 0.5).  

 

Example for orthogonal factorization: 
 

H_t=W.^0.5*H; 

dz_t=W.^0.5*dz;   

[Q,R]=qr(H_t); 

[m,n]=size(H_t);   

Qn=Q(:,1:n); 

U=(R(1:n,:));     

deltax=U\(Qn'*dz_t); 

 

Example for hybrid method: 
 

deltax=U\(U'\(H_t'*dz_t)); 
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Example for Peters Wilkinson Method: 
 

[L,U]=lu(H_t); 

Lt_L=L’*L; 

 

In this method we need to use similar operation as in NE if we want to employ 

Cholesky factorization: 
 

L_chol=chol(Lt_L,’lower’);  

deltay=L_chol’\(L_chol\(L’*dz_t)); 

 

or: 
deltay=(0.5*(Lt_L + Lt_L‘))\(L’*dz_t)); 

 

The deltax is computed in the following way 

 
deltax=U\deltay; 

8.5. EXAMPLES OF MATRICES 

Example 8.2 

Considering the power system presented in the example 2.1 with measurements 

given in Tab. P.8.1. 

Tab. P.8.1. Measurements of 4-bus power system 

Measurement Type 
Value 

p.u. 
kkR
 

p.u. 

1 

2 

3 

4 

5 

6 

7 

8 

V1 

V2 

P2 

Q2 

P12 

P13 

Q12 

Q13 

1.0011 

0.9895 

0.0000 

0.0000 

-0.5123 

-0.9731 

0.0281 

-0.1098 

0.004 

0.004 

0.001 

0.001 

0.008 

0.008 

0.008 

0.008 
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8.5.1. MATRICES FOR NORMAL EQUATION FORMULATION 

( )( )
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
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∂
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∂

∂
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∂

∂
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∂∂∂∂δ∂δ∂δ∂
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00000.1000

76.1200.808.3600.15000.400.9
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0000.1580.140000.5
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0000.500.50000.15

2

1

2

13

12

2

13

12

4321432

V

V

Q
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P

P

P

VVVV

0
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
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






−−

−−

−−−−−

−−−

−−

−−−

−−−−−

=

1627.01020.04601.01913.000510.01148.0

1020.00836.03246.01362.00510.000710.0

4601.03246.03840.15900.01148.00723.00029.0

1913.01362.05900.02577.00638.00200.00438.0

00510.01148.00638.01627.01020.04561.0

0510.000723.00200.01020.00839.03220.0

1148.00710.00029.00438.04561.03220.03633.1

1090xG

 

Cholesky decomposition of G 
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
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




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−−

−

⋅=
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00651.02433.00198.06157.05993.01923.0

004092.06132.06026.25587.20078.0

0004049.01054.10848.11186.0

00002450.02032.02352.1

000002799.08722.0

0000006923.3

1040
xL
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8.5.2. MATRICES FOR ALTERNATIVE FORMULATION  

OF WLS ESTIMATION METHOD 

( )( )
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Orthogonal and hybrid method 
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0000.00000.00000.00000.00000.01921.01593.09684.0

0000.00161.00789.04700.01236.05555.06699.00
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Peters and Wilkinson method 
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00000.15700.02595.01481.00704.00175.0

0000000000.1

00000000.19440.00

0000000.14444.02112.00524.0

0
xL

 

( )( )





























−

−

−−−

−

−−−−

−−−−

⋅=

0250.0000000

0680.00690.000000

1570.03232.04811.00000

2657.01944.08141.03472.0000

2040.19127.06193.34723.13031.000

2755.19007.08341.36259.13211.01986.00

04000.09000.05000.02755.18000.05755.3

1040
xU

 

PROBLEMS 

8.1. Consider power system from example 8.2. P2 and Q2 are zero-injection 

measurement. Obtain condition number of: 

− the gain matrix from NE method, 

− U matrix  from orthogonal method, 
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− coefficient matrix from NE with equally constrained,  

− Hachtel matrix. 

8.2. The same as problem 1, investigate influence of weigh matrix on condition 

number.  

8.3. Investigate influence of scaling parameters α  on condition number of Hachtel 

matrix.   
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9. NETWORK OBSERVABALITY ANALYSIS 

9.1. INTRODUCTION 

The set of available measurements in power system are used by power system state 

estimator in order to estimate the system state. Before installation of power system 

state estimator network, observability analysis should be carried out in order to check 

adequacy of existing measurements configuration. If system appears unobservable it is 

necessary to add addition meters in particular locations. During exploitation some 

measurements may fail, topology may change. Therefore it is necessary to perform 

observability analysis on-line. During this analysis there is no possibility to add any 

additional measurements if system appears unobservable, but it is possible to 

distinguish a observable islands. In this situation each island will have its own phase 

angle phase reference. Network observability analysis has to detect such cases and 

identify all existing observable islands before execution of power system state 

estimation [9.2]. 

Observability analysis can be carried out using fully coupled or decoupled 

measurement equations. Both approaches have some drawbacks. Using fully coupled 

model may lead to non-uniqueness of the solution. This can be illustrated by 

considering the following case of two bus system [9.2]. 

Example 9.1. 

Consider the power line presented in Fig. 9.1, where: V1 = 1.00 p.u., V2 = 0.99 p.u., 

Q12
 
= 0.80 p.u., X12

 
= 0.20 p.u.  

 

 

Fig. 9.1. 7-bus test system and its measurements 

If we set 01 =θ  as reference, the 
2θ  can be calculated by solving the following 

equation: 
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Both solutions are equally likely. The decoupled approach does not have such 

disadvantage. At the beginning, analysis based on P-θ  model and then on Q-V model 

should be performed. Observability of power system consists of intersection of results 

from these two models. However, active and reactive power measurements usually 

occur in pairs and second step can be avoided.  

The theory of observability has evolved into two classes of algorithms: numerically 

and topologically. In literature numerous algorithms of these approaches can be found. 

In [9.1], review of most of them is presented. 

Topological approaches use the decoupled measurement model and graph theory. 

They are free of round-off errors because floating point operations are not employed. 

The topological methods can be several times faster than numerical ones [9.4]. 

However decoupled measurement model excludes using them when current magnitude 

measurements are present.  

Numerical approaches may use fully coupled or decoupled models. They are based 

on the numerical factorization of the measurement Jacobi or gain matrix. Advantage 

of numerical methods is that they allow the use of existing routines for sparse 

triangular decomposition and sparse vector methods. However they require floating 

point operations so they are prone to round-off errors [9.1], [9.2], [9.4]. This chapter 

focuses on numerical method based on the nodal model and topological method.  

9.2. THE METHOD BASED ON THE NODAL MODEL  

For observability analysis a linearized measurement error free model can be 

employed:   

 ∆xH∆z ⋅= , (9.1) 

where:  ( )
)h(xz∆z

0−= , ( )0
xx∆x −= , 

( )
x

xh
H

∂
∂

= , 

∆z  -  the mismatch between the measurement vector and its calculated 

value at an estimate x
(0)
. 

Ignoring the week coupling P-V and Q-θ , the decoupled formulation can be 
written as: 

 ∆δH∆z δPP ⋅= , (9.2) 

 ∆VH∆z VVQ,VQ, ⋅= . (9.3) 

 

As it was mentioned before, power and reactive power measurements usually occur 

in pairs only P-θ  test can be performed. Further, it should be checked if at least one 
voltage measurements exists per observable island. 

154



 

 

For observability analysis, all system branches can be assumed to have impedance 

of j1.0 p.u., shunt parameters are neglected and all bus voltages can be set equal 1.0 

p.u. Therefore, power flows in all power system branches can be written as: 

 AδPb = , (9.4) 

where ( ) ( ) PδPp

T

δPδP

T

δP tGzHHHδ ⋅=⋅= −− 11
, (9.5) 

Pb - a vector of branch flows, 

A - a branch-bus incidence matrix, 

δ  - a vector of bus voltage phase angles, 

Branches which have nonzero flows, i.e. 0≠bP are unobservable. 

9.2.1. DETERMINING THE UNOBSERVABLE BRANCHES 

For observability analysis, matrix 
δPH contains all columns unlikely in state 

estimation when reference bus (column) is removed. In practice, the equation (9.5) is 

solved using the Cholesky decomposition. Since 
δPH contains all columns it is not 

full-rank, therefore during Cholesky decomposition of the gain matrix T

δP LLG ⋅= at 

least one pivot point is zero. When zero pivot is encountered, it is replaced by 1.0 and 

the corresponding element of vector Pt  is assigned an arbitrary value. This values 

should be various, this can achieved by assigning integer numbers in increasing order, 

for example: 0,1,2, etc.[9.2] 

Example 9.2. 

Consider the system and measurement configuration shown in Fig. 9.2. 

 

 
Fig. 9.2. 7-bus test system and its measurements 

 

Incidence matrix A is created in the following way: 
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 ( )








−=

otherwise0

branchofterminalreceivingtheisbusif1

branchofterminalsendingtheisbusif1

, ij

ij

jiA . (9.6) 

For considered system, the matrix A can be written in the following way 

 



































−

−

−

−

−

−

−

−

−

=

1100000

0110000

1000100

0010100

0010010

0001010

0000110

0001001

0000011

A
. 

For observability analysis, as it was mentioned before, all system branches can be 

assumed to have impedance of j1.0 p.u., shunt parameters are neglected and all bus 

voltages can be set equal 1.0 p.u. Using this assumption The Jacobi matrix can be 

written in the following way: 

− for power injection measurement  

 ( )








−=
∑

otherwise0

tmeasuremenofbranchesconnectedofendsotherfor1

tmeasuremenofbusinjectionfor

, th

th

i

i

jiH , (9.7) 

where:  ∑ – a number of connected branches to the j-th  bus,  

− for power flow measurement  

 ( )








−=

otherwise0

branchofendotherfor1

placed ist measuremen wherebranch  of endfor1

,

thi

jiH . (9.8) 
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For the considered power system the gain matrix can be written in the following 

way: 

 





























−−

−−

−−−

−

−−

−−

−−

=⋅=

4200200

2230210

03100430

0002002

2240310

0130132

0002024

δP

T

δPδP HHG ,  

where 























−

−

−−

−−−

−−

=

0001010

0010100

2100100

0130110

0000112

δPH
. 

During Cholesky decomposition one zero pivot point is encountered and replaced 

by 1.0 

     





























−−

−−−

−−

−

=

0000.104142.16325.02649.100

00000.17071.03162.09487.07071.00

007071.05811.15811.11213.20

0006325.03162.07071.00000.1

00005811.17071.00

000004142.10000.1

0000000000.2

L
 

and right hand side vector is equal to: 

 [ ]1000000=T

Pt . 

The estimated state is obtained by: 

 ( ) [ ]TT 1024244=⋅⋅=
−

P

1
tLLδ , 

and branch power flows are equal to: 

 [ ]Tb 121020200 −== AδP . 
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Non-zero flow indicates that the corresponding branch is not observable.  

 

 
Fig. 9.3. 7-bus test system and its measurements and unobservable branches 

9.2.2. DETERMINING THE OBSERVABLE ISLAND 

The procedure of identifying unobservable branches can be also used in 

determination of the observable islands in the system. Procedure needs to be 

performed  in the following way: 

1. Perform procedure of determination unobservable branches. 

2. Identify and remove all unobservable branches and all injections that are 
incident to these unobservable branches. 

3. If unobservable branches are found go to step 1. Else determine 
observable branches. 

It must be mentioned that sometimes the determination of observable islands is 

done in the first iteration as in the example 9.2. 

 Example 9.3. 

For the system presented in Fig. 9.4, matrix A can be built in the following way: 

 



































−

−

−

−

−

−

−

−

−

=

1100000

1010000

0110000

0101000

0010100

0001010

0000110

0000101

0000011

A
. 
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Fig. 9.4. 7-bus test system and its measurements 

the Jacobi and gain matrices can be built as below: 

 

















−−

−−

−−

=

2110000

0102010

0000112

δPH
, 

 





























−−

−−

−

−−

−

−−

−−

=

4220000

2212010

2110000

0204020

0000112

0102122

0000224

δPG
. 

 
During Cholesky decomposition four zero pivot points are encountered and 

replaced by 1.0: 

 





























−

−

−

−

=

1020000

0110010

0010000

0001020

0000101

0000011

0000002

L
 

and right hand side vector is equal: 

 [ ]3201000=T

Pt , 
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the estimate state is obtained by: 

 ( ) [ ]TP

T 3241000=⋅⋅=
−
tLLδ

1
 

and branch flows are equal: 

 [ ]Tb 112141000 −−−−== AδP . 

Non-zero flow indicates that the branch is not observable.  

 

 
Fig. 9.5. 7-bus test system and its measurements and unobservable branches 

It can be seen that after first procedure of determining the unobservable branches, 

branches: 2-4, 3-5, 4-6, 5-6, 5-7, 6-7 can be removed from further consideration. 

Measurements: P4, P7 as injections incident to unobservable branches have to be 

removed. 

Now matrix A and can be written as follows:  

 

















−

−

−

=

0000110

0000101

0000011

A . 

The Jacobi and gain matrices without P4 and P7 measurements can be written as:   

 [ ]0000112 −−=δPH  

 





























−

−

−−

=

0000000

0000000

0000000

0000000

0000112

0000112

0000224

δPG
. 
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During Cholesky decomposition six zero pivot points are encountered and replaced 

by 1.0: 

 





























−

−

=

1000000
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0010000
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0000101

0000011
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L
 

and right hand side vector is equal: 

 [ ]5432100=T

Pt  

and branch flows are equal: 

 [ ]Tb 0.15.05.0 −−== AδP . 

Finally, all branches in considered system are declared unobservable. 

  

Fig. 9.6. 7-Final results of identified observable islands 

9.3. TOPOLOGICAL OBSERVABILITY ANALYSIS METHOD  

As it aforementioned, topological observability concept employs graph theory and 

decoupled measurement model. As it was defined in [9.8] that, given power network is 

solvable, if and only if, it is possible to find a tree which contains all buses. This leads 

to the concept of maximal forest of full rank (or simply maximal forest). 

The tree is built according to the following rules: 

− flow measurements, if assigned, must be assigned to the corresponding 

measured branch, 
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− injection measurements, if assigned, are assigned exactly to one of its 

incident branches. 

 

Example 9.4. 

For the power system from example 9.2., the following graph of possibilities of 

each measurement can be formed: 

 
Fig. 9.7. The component graph for the 7-bus network from example 9.2. 

At the beginning we have to construct the tree of flow measurements: 

 
Fig. 9.8. Tree containing flow measurements 

Injection measurements: at bus 1 we can assign to branches 1-2 or to 1-4, at bus 5 

to branches 5-2, 5-3 or 5-6 and at bus 7 to branches 7-3 or 7-6. It must be mentioned 

that there is no way to predict the correct sequence for processing injections. 

Implementation of method requires proper back-up and re-assignment if injections if it 

is necessary. Fig. 9.9 presents tree containing flow measurements and proposition of 

injection measurements assigned to single branches.  
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Fig. 9.9. Tree containing flow and injection measurements 

It can be seen that it is impossible to build a single tree which will contain all 

busses. Therefore it is necessary to identify the observable islands. This can be done 

by removing the injections which have at least one incident branch and does not form 

a loop with the branches defined as a forest. Accordingly we have to discard injections 

at buses 5 and 7. According to Fig. 9.10 obtained results are the same as in numerical 

method.   

   

Fig. 9.10. Final tree containing flow and injection measurements 

PROBLEMS 

9.1. Consider system shown in Fig. P.9.1. Use the topological and numerical 

observability method to determine: 

− all irrelevant branches, 

− all irrelevant injection, 

− all observable islands, 

− all unobservable branches. 

9.2. Suggest the location and type of a set minimum number of measurements to 

be added to the measurement list in order to make the system observable. 
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P/Q injection measurement

Voltage measurement

P/Q flow measurement

5

6

 

Fig. P.9.1. The 6-bus power system. 
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10. BAD DATA DETECTION AND IDENTIFICATION 

10.1. INTRODUCTION 

Power system state estimation is mainly aimed at providing a reliable information 

about power system ie.: power flows, bus powers, and voltages. In order to this, it 

should detect measurement errors, identify and eliminate them. We can distinguish the 

following errors: 

• Small measurements errors may appear because of various reasons. They are 

related with uncertainty of metering systems and communications errors. 

Small measurements errors are filtered during standard state estimation 

procedure. 

• Large measurement errors appear when the meters have large biases which 

can be caused by: wrong connections, damage. Unexpected interferences in 

telecommunication system may also lead to large errors. Large measurements 

errors should be: detected, identified and eliminate. 

• Incorrect topology information may mislead state estimator and provide to 

wrong identification of large measurement errors. This situation is far more 

complicated. 

Some bad data such: negative voltage magnitudes, measurements several orders of 

magnitude larger or smaller than expected values are easy to detect apriori state 

estimation. However, sometimes it is not possible to detect bad data in this way and it 

is necessary to equip state estimator with more advanced tool for bad data detection.  

In this chapter we will focus on the bad data detection and identification techniques 

which related with WLS method. For this method dad data detection and identification 

is performed only after the estimation process by analyzing measurements residuals 

[10.1]. 

10.2. FEATURES OF MEASUREMENT ERRORS 

The non-linear equation relating the measurements and the state vector are:  

 ( ) exhz +⋅= , (10.1) 

where:  x – a vector n×1 of true states (unknown),  

z – a vector m×1 of measurement (known), 

h(x) – the nonlinear measurement function, 

e – a vector m×1 of random errors. 
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Bad data detection and identification are performed by analyzing the measurement 

residual vector, 

 )xh(zr ˆ−= , (10.2) 

where: x̂ – the estimated value of x. 

It must be noted that however measurement errors are not correlated, independent 

measurement residuals may be correlated, which can be approximated as follows 

[10.1]: 

 eSr ⋅= , (10.3) 

where residual sensitivity matrix S is given by: 

 ( ) 111 −−− ⋅⋅⋅⋅⋅−= RHHRHHIS TT , (10.4) 

where R = cov(e) = ( )2kdiag σ . 

Using above properties and fact that E(e)=0, the residual covariance matrix Ω can 

be obtained as follows: 

 ( ) ( ) ( ) 0=⋅⋅=⋅= eSeSr EEE , (10.5) 

 ( ) [ ] [ ] RSSRSSrrSrrΩr ⋅=⋅⋅=⋅⋅⋅=⋅== TTTT
EECov . (10.6) 

10.3. TYPES OF MEASUREMENTS, 

BAD DATA DETECTABILITY AND IDENTIFIABILITY 

Measurements may have various properties and influence on state estimation, 

according to their values and location. The following types of measurement can be 

distinguished [10.1]: 

1. Critical measurements: Elimination of this measurement leads to 
unobservability of power system. Measurement residual of a critical 

measurement is always zero. 

2. Redundant measurement: Non-critical measurements. Only redundant 
measurements may have nonzero measurement residuals  

3. Critical pair: Two redundant measurements which simultaneous removal 
from set of measurements leads to unobservability of power system.  

Detection belongs on determination if given set of measurements contains any bad 

data. Identification it is a finding out of specific “wrong” measurement. Only 

redundant measurement containing bad data can be identified. In other words critical 

measurements and critical pair may contain bad data and one never find out about it.  
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10.4. METHODS  

FOR BAD DATA DETECTION AND IDENTIFICATION 

Problem of bad data processing has been presented in many papers. In this chapter, 

three methods are described: the χ2-test, normalized residuals and hypothesis testing 

identification (HTI). 

10.4.1. USE OF CHI
2
 DISTRIBUTION FOR BAD DATA DETECTION  

IN WLS STATE ESTIMATION. 

 

Fig.10.1. χ2 Probability Density Function 

 

Fig.10.1 presents the χ
2 
probability density function (p.d.f). The area under curve 

represents the probability of finding x in a corresponding region, for example [10.1]: 

 { } ( )duuxx
t

x

t ∫
∞

=≥ 2Pr χ . (10.7) 

It represents the probability of x being larger than a certain threshold xt. For error 

probability equal 0.05 and degrees of freedom equal 5, the threshold xt is equal 11.071 

which can be found in statistical tables or calculated in such software as Matlab®. 
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In WLS estimation when there is no bad data the index J(x) follows Chi-square 

distribution. The computed value of J(x) is compared as follows [10.5]: 

 ( ) αχ ,
2

nmxJ −> . (10.8) 

where: ( ) [ ] [ ]h(x)zRh(x)zx
1 −−= −T

J , 

m – a number of measurements, 

n – a number of state variables, 

α – the probability of false alarm. 

 

If relation is true, then data is suspected to be biased by large error. The detection is 

calculated assuming a certain probability for false alarms.   

Example 10.1. 

Considering the following 4-bus system and its measurement configuration shown 

in Fig. 10.2 

 

 
Fig.10.2. 4-bus system and its measurement 

The corresponding network data are given below: 

Tab. 10.1. Data of 4-bus power system 

Bus k Bus m 
R 

p.u. 

X 

p.u. 

B  

p.u. 
Tap 

1 

1 

2 

2 

2 

3 

3 

4 

0.02 

0.02 

0.05 

0.00 

0.06 

0.06 

0.10 

0.08 

0.20 

0.25 

0.00 

0.00 

- 

- 

- 

0.98 

 

The number of state variables, n for considered system is 7 (four voltages 

magnitude and three voltage phase angles). There are altogether m=12 measurements, 

i.e. two voltage magnitude measurements 3 pairs of real/reactive flows and two pairs 
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of real/reactive injections, where bus 2 is a zeroinjection bus with attributed higher 

weights for measurements. Therefore, the degree of freedom is equal 5.  

The base case of power flow is used to generation of measurements by adding 

Guasian distributed errors. In first case no bad data is introduced, where in second one 

measurement P12 is changed intentionally in order to simulation bad data. Tables 

below present results for load flow and both cases of estimation.  

Tab. 10.2. State Variables 

Bus  

no: 

Load Flow Results 
Estimated State 

No Bad Data On Bad Data 

V δ V δ V δ 

1 

2 

3 

4 

1.000 

0.9858 

0.9682 

0.9977 

0.0000 

-1.7171 

-3.1426 

-2.8589 

1.0024 

0.9881 

0.9706 

0.9999 

0.0000 

-1.7162 

-3.1404 

-2.8629 

1.0038 

0.9874 

0.9707 

1.0000 

0.0000 

-2.0901 

-3.3505 

-3.8327 

Tab. 10.3. Measurements 

Meas. 

no: 

Meas. 

Type 

Real 

Value 

No Bad Data One Bad Data 

Measured 

Value 

Estimated 

Value 

Measured 

Value 

Estimated 

Value 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

V1 

V2 

P2 

P4 

Q2 

Q4 

P12 

P13 

P32 

Q12 

Q13 

Q32 

1.0000 

0.9858 

0.0000 

-0.2500 

0.0000 

-0.1000 

-0.5162 

-0.9625 

0.2571 

0.0285 

-0.1087 

0.0393 

1.0011 

0.9895 

0.0000 

-2.2486 

0.0000 

-0.1010 

-0.5123 

-0.9731 

0.2452 

0.0281 

-0.1098 

0.0386 

1.0024 

0.9881 

0.0000 

0,2503 

0.0000 

-0.1019 

-0.5178 

-0.9666 

0.2584 

0.0279 

-0.1089 

0.0389 

1.0011 

0.9895 

0.0000 

-2.2486 

0.0000 

-0.1010 

-0.7684 

-0.9731 

0.2452 

0.0281 

-0.1098 

0.0386 

1.0038 

0.9874 

0.0001 

-0.0882 

-0.0014 

-0.3830 

-0.6279 

-1.0287 

0.2326 

0.0247 

-0.1125 

0.0434 

J(x) 2.58 18.98 

 

The test threshold at 95% confidence level can be obtained using Matlab® function 

CHI2INV as [10.1]: 

 
 CHI2INV(0.95,5)= 11.0705    
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As it can be seen J(x) is lower than 11.0705 only in first case so no data is 

suspected, in the second J(x) is higher, therefore the bad data is detected.  

10.4.2. UTILIZATION OF NORMALIZED RESIDUALS 

FOR BAD DATA DETECTION 

AND IDENTIFICATION IN WLS STATE ESTIMATION 

The main drawback of the χ2-test described above is indirect approach. Therefore 

normalized residuals should be more accurate for the bad data detection than the χ2-

test. Normalized value of residuals can be obtained in the following way [10.1]: 

 

ii

i�

i

r
r

Ω
= . (10.9) 

where:  h(x)zr −= , ( ) TT HHRHHRΩ ⋅⋅⋅⋅−=
−1

, 

r - a vector of measurement residues, 

R - a variance matrix, 

H - a Jacobi matrix. 

The measurement with the largest normalized residual and larger than detection 

threshold is identified as bad data. The algorithm of identifying bad data  is presented 

below [10.1]: 

1. Determine estimate of x using WLS procedure. 

2. Calculate normalized residuals as in (10.9) 

3. Find measurement i which has the largest normalized residual (absolute 
value)  

4. If ri>c then largest i-th measurement is suspected as bad data. Here, c is a 

chosen identification threshold and usually set on 3.0 

5. Eliminate or correct the i-th measurement from measurement set and go 

to step 1. 

Correction of measurement with bad data can be done in following way: 

 bad

ii

iibad
ii i

r
R

zz
Ω

−≈ . (10.10) 

State estimation can be repeated after correcting the bad measurement. Sometimes 

iterative correction is required.  

Example 10.2 

The table below presents presented residuals for cases considered in example 10.1 

 Tab. 10.4. Measurement residuals   

Measurement Measurement No bad data One bad data 
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no: type ri ri
� 

ri ri
� 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

V1 

V2 

P2 

P4 

Q2 

Q4 

P12 

P13 

P32 

Q12 

Q13 

Q32 

-0.0013 

    0.0014 

   -0.0000 

    0.0017 

    0.0000 

    0.0009 

    0.0055 

   -0.0065 

   -0.0132 

    0.0002 

   -0.0009 

   -0.0003 

0.4452 

    0.4849 

    0.0380 

    0.2460 

    0.2696 

    0.1360 

    0.9028 

    1.8285 

    1.8771 

    0.0385 

    0.2623 

    0.0412 

-0.0027 

    0.0021 

    0.0013 

    0.1345 

   -0.0001 

   -0.0128 

   -0.1406 

    0.0556 

    0.0126 

    0.0034 

    0.0027 

   -0.0048 

    0.9473 

    0.7451 

   19.6213 

   19.8488 

    1.6377 

    1.8979 

   23.2698 

   15.6872 

    1.7946 

    0.5693 

    0.7620 

    0.6839 

 

It can be seen that the largest value for normalized residuals is related with P12 and 

simultaneously this value is greater than threshold equal 3. That means that 

measurement has been identified as a bad data. This measurement must be removed 

from measurement set or corrected according to (10.10). 

10.4.3. HYPOTHESIS TESTING IDENTIFICATION 

Identification of bad data by Hypothesis Testing Identification (HTI) method is 

based on computed estimates of measurement errors instead of measurement residuals 

as in normalized residuals. This approach may overcome problem when good and bad 

data have comparable residuals when multiple bad data appears [10.1], [10.2], [10.4]. 

Partitioning sensitivity matrix S and error covariance matrix R on suspected and 

true measurements we obtain: 

 







=

ttts

stss

SS

SS
S , (10.11)  

 
tstssss eSeSr += , (10.12) 

 
tttstst eSeSr += , (10.13) 

 







=

t

s

R0

0R
R , (10.14) 

where: rs, rt - the residual vectors of suspect and true measurement, 

es, et - the error vectors of suspect and true measurement. 
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Assuming that true measurements are free of errors ( [ ] 0e t =E ) the following 

equations can be derived: 

 , (10.15) 

 . (10.16) 

The 
sê  has following properties: 

Mean: 

If [ ] [ ] sst ee0e ˆˆ then , == EE  

else [ ] ss ee ˆˆ ≠E  

Covariance: 

If [ ]  then,0e t =E  

 ( ) ( ) ( )( )T
tCovCovCov st

1

ssstssss SSeSSee
−−+= 1

ˆ , (10.17)  

 ( ) ( ) TT
CovCov

−−+= sssttst

1

ssss SSRSSeê . (10.18) 

Using a following properly: 

 RSSRS ⋅=⋅⋅ T , (10.19)  

the following relation can be derived: 

 
ssssttstsssss RSSRSSRS ⋅=⋅⋅+⋅⋅ TT
, (10.20) 

and substituting equation (10.18) 

 

( ) ( ) ( )
( ) ( )
( ) ( ) ssssss

sssssssssssss

ssssssssssssss

RISe

SSRSSRSe

SSRSRSSee

−+=

−+=

−+=

−

−−

−−

1

1

1
ˆ

Cov

Cov

CovCov

TTT

TT

. (10.21)  

Decision rules 

Two alternative strategies can be distinguished: 

Fixed probability of false alarm, α 

 

( ) trueis H  Hreject Pr 00=α  

 

( ) ( )2iiis T0,C~e σ⋅⇒ iˆ  trueis H If 0
 then: 

ssss rSe ⋅= −1
ˆ

tstssss eSSee ⋅⋅+= −1
ˆ
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 ( )isie λα >⋅= ˆPr  

Substituting a siê  by normalized absolute value of the estimated terror: 

 

iii

si�

si
T

e
e

σ

ˆ
ˆ =  

we obtain: 

 













>⋅=








 −
2

1

ˆ
Pr ασ

α �
T

e

iii

si  

and threshold is: 

 







 −
=

2
1

ασλ �Tiiii
. 

Fixed probability of bad data identification, (1-β) 

 
( )
( ) trueis H  Haccept Pr1

 trueis H  Hreject Pr

11

11

=−

=

β

β
 

( ) ( )( ) Then .1ˆ  trueis  HIf 1
2

iiis T,C~e σ−⋅⇒ siei  

 
( ) ( )
( )isi

isiisi

e

ee

λ≤≈β

λ−≤−λ≤=β

ˆPr

ˆPrˆPr
. 
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The algorithm of bad data identification under fixed β [10.1] 

isii

i
i

iiii

i

iii

iiisi

i

i

ss

es

si�T

��

T

T�e
�

�

λ

σλ

σ

σ

α

αα

β
α

α

>

==

≤≤

−+
=

==








 −








 −






 −








 −








 −

−

ˆ t measuremen4.Select 

,,1,

seach for   threshold thee3.Calculat

0with 

1

: Calculate 2.

ˆ and 

calculate and ron  based sset Select  1.

algorithm  theof Steps

1

1

2
1

1i

max
2

1
2

1

2
1

2
1

1

1,1

N

1

K

s1s1s1s1 rTeST

 

Form short list of suspect measurements selected at step 4. Repeat steps 1-4 until 

all measurements in the previous iteration are all selected again at step 4 

PROBLEMS 

10.1. Consider the following linear model: 

 exbay +⋅+=  

 where, E[e]=0 and cov[e]=I. The measurements are given as: 

 

i 1 2 3 4 5 6 7 8 9 

xi 

yi 

-4.000 

-4.002 

-3.000 

-2.008 

-2.000 

0.031 

-1.000 

2.055 

0.000 

4.056 

1.000 

5.96 

2.000 

8.004 

3.000 

9.939 

4.000 

11.944 

   

 Find the WLS estimate for a and b. Use Chi2 test to detect any bad data. Use 

the largest normalised residue to identify bad data.  

 

10.1. Consider example 10.2 if measurements: P32 and Q32 are removed. Find 

critical measurements.  
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11. NETWORK PARAMETER ESTIMATION.  

TOPOLOGY ERROR IDENTIFICATION 

11.1. NETWORK PARAMETER ESTIMATION 

11.1.1. INTRODUCTION  

The key element for power system security monitoring and analysis is a complete 

and correct network model. In the model two parts can be distinguished:  

• the part including reported switching device statuses, branch power 

flows, the power supplied by generation and by used by loads,  

• the part storing parameters of network components, e.g. series 

admittance and shunt susceptance of branches modeled as two port π 
equivalent, transformer tap changer positions. These values are stored 

in dispatching center database. The database is modified if new network 

component is added or existing element is upgraded.  

The errors in network component parameters appear relatively rare. However, they 

can potentially degrade the results supplied by the state estimator. In addition these 

types of errors are much more difficult to detect than bad measurements and topology 

errors. The main reasons of network parameter errors are as follows:  

• using non-adequate models describing network components, e.g. using 

π equivalents for very long transmission line modeling,  
• inaccurate data supplied by the component manufacturers,  

• network connectivity changes and component upgrading without 

updating relevant information stored in dispatching control center 

database,  

• parameter changes resulting from environmental conditions 

(temperature, humidity etc.), 

• erroneous information on transformer tap changes.  

The most common parameter errors usually reveal as erroneous values of branch 

impedances/admittances and bad transformer tap changer positions. In the presence of 

branch parameter errors the power balance equations redistribute power flows in the 

adjacent branches and measurements with acceptable errors level can be recognized as 

bad data. 

Significant degradation of state estimation results is observed in presence of 

parameter errors despite of the availability of highly redundant and accurate 

measurements. 
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Example 11.1 

Parameter error in the considered 3-bus system (Fig. 11.1) relies on incorrect value 

of branch reactance in network model X12 = j0.2 p.u. instead the correct value 

X12 = j0.15 p.u.. The measurements are assumed to be correct.  

Perform the estimation and compare the results in case of parameter error presence 

and without error. Measurement results are shown in Tab. 11.1 

 

Tab. 11.1. Measurement data for example power system. 

Measurement Value, p.u. Variance  

P1 0.60 0.005 

P2 0.20 0.005 

P13 0.47 0.005 

P23 0.32 0.005 

V1 1.020 0.001 

V2 1.015 0.001 

V3 1.012 0.001 

The estimation results and measurement residuals are presented in Tab. 11.2 and 

11.3. 

1 2 

3 

Fig. 11.1. Three-bus power system to illustrate state estimation.  

� - voltage • active power flow measurement. 
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Tab. 11.2. State estimation results for correct case and in case of network parameter error. 

i 

Correct case Parameter error 

iV̂ ,  

p.u. 

θ̂ ,  
rad 

iV̂ ,  

p.u. 

θ̂ ,  
rad 

1 1.0199 0.0000 1.0196 0.0000 

2 1.0151 -0.0178 1.0157 -0.0201 

3 1.0120 -0.0459 1.0117 -0.0472 

J(x) 0.0060 0.1016 

Tab. 11.3. State estimation residuals for a correct case and in the case of a network-parameter error. 

Measurement 
Correct case Parameter error 

r r 

P1 0.0030 0.0096 

P2 0.0019 -0.0049 

P13 -0.0040 -0.0164 

P23 -0.0010 0.0110 

V1 0.0001 0.0004 

V2 -0.0001 -0.0007 

V3 0.0000 0.0003 

One can observe that the performance index J(x) residual absolute values are 

significantly larger in case of parameter error presence. Parameter errors can degrade 

the estimation quality and produce the effect similar to bad data occurrence. 

Fig. 11.2 shows the influence of the error of the branch reactance X12 on the state-

estimation performance index J(x). It can be seen that branch parameter errors can 

seriously deteriorate the state estimation quality. 
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Fig. 11.2. Influence of branch reactance parameter error on state estimation performance. 

11.1.2. DETECTION AND IDENTIFICATION OF PARAMETER ERRORS 

Parameter error in the considered branch reflects in set of correlated errors 

burdening measurements incident with this branch: power flow at the ends of the 

branch and power injection located at the branch terminal nodes. Denoting by s the set 

of measurements related to the “suspicious” branch, the measurement vector can be 

formulated as [11.1]:  

 ( ) ( ) ( ) ( )[ ] sssssss hhhh epxpxpxepxz +−+=+= 00 ,,,, , (11.1) 

where:  zs  – a measurement vector,  

x  – a state vector,  

hs ( ) – a non-linear measurement function,  

p  – a vector of real values of the network parameters,  

p0  – a vector of bad values of the network parameters,  

es  – a measurement-error vector,  

s  – a set of incident measurements.  

One can be stated that if the parameter error is of significant value then the incident 

measurements will be probably observed by those having largest residuals. Using 

Taylor expansion the measurement error can be approximated as:  

 ( ) ( ) ( ) ( )
p

s

s

s

ss

h
h

h
hh e

p
pxpp

p
pxpx

∂

∂
+=−

∂

∂
+≈

000
,,, , (11.2) 

0

0,05

0,1

0,15

-5 -4 -3 -2 -1 0 1 2 3 4 5

J(x)

dX12, %
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where ep = p – p0.  

Detection of parameter error is based on the analysis of large normalized residuals 

of measurement related to the erroneously modeled branches.  

Some of the methods of parameter error detection use the fact of presence of large 

residuals remain despite bad data rejection. Other methods consider analysis of state 

estimation performance index and statistical testing.  

11.1.3. ESTIMATION OF NETWORK PARAMETER 

Methods aimed at estimation of power network parameters basically use:  

• residual sensitivity analysis, 

• augmenting the state vector.  

The main difference is that the first group of method use the classical state vector 

including voltage magnitudes and angles whereas new variables related to the network 

parameters are added to the state vector in the second group of methods.  

More detailed explanation of the mentioned group of methods is given further.  

Parameter estimation with the use of residual sensitivity analysis 

This approach use state estimation results to asses network parameters. After 

successful execution of estimator the measurement residuals are calculated. 

The relationship between residuals and measurement errors is given by:  

 ( ) eSeRHHGIr ⋅=−= −− 11 T  (11.3) 

where:  r  – a measurement residual vector;  

e  – a measurement error vector;  

S= I – HG
-1
H

T 
R
-1
  – a sensitivity matrix;  

I  – the identity matrix;  

H  – a Jacobi matrix,  

R  – a covariance matrix;  

G = H
T 
R
-1
 H – a gain matrix.  

Note, that the set s of incident measurements comprise: erroneous branch, terminal 

buses, branches connected to the terminal buses, and the terminal buses of connected 

branches. The linearized relationship among residuals belonging to the set of incident 

measurement and parameter errors: 

 ( )
p

s

s

s

ss

hh
SS e

p
Srpp

p
Srr 









∂

∂
+=−









∂

∂
+=

0
, (11.4) 

where: Ss – submatrix of sensitivity matrix corresponding to the adjacent 

measurements belonging to the set s;  

S
r – a residual vector which can be obtained in case of correct network 

parameters. 
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Equation (11.4) determines the linear relationship between residuals rs and 

parameter errors ep to be found. In such case determination of parameter error 

estimates can be considered as local weighed least square estimation task. Assuming 

that ep are normally distributed with zero mean and diagonal covariance matrix ΣΣΣΣs, the 

optimal WLS estimates are given by:  

 ss

T

s
s

s
ss

T

s
sp

hhh
rΣ

p
S

p
SΣ

p
Se

1

1

1
ˆ

−

−

−








∂
∂













∂
∂









∂
∂

= , (11.5) 

where: pê - a vector of parameter error estimates.  

The updated parameter vector can be obtained by: 

 pepp ˆˆ
0 += , (11.6) 

After modification of the network parameters, state estimation is re-calculated and 

checked for result improvement. In some cases, the parameter upgrading can be 

performed iteratively until no further state estimation improvement is reached.  

Parameter estimation with use augmented state vector 

The conventional way to solve weighted least squared estimation is to solve the 

normal equation:  

 zWHxG ∆=∆ −1T , (11.7) 

Estimation of network parameters can be made by augmenting the state variable 

vector by parameters. The parameters of suspected branches are included in the state 

vector and the modified weighted least square objective function is given by:  

 ( ) ( )[ ]∑
=

− −=
m

i
iii hzw

1

21 ,, pxpxJ , (11.8) 

where:  zi – the i-th element of a measurement vector,  

hi(x, p) – a non-linear measurement function,  

p – a vector of suspected parameters,  

wi – weight of the i-th measurement or pseudomeasurement,  

m – a number of measurements. 

Usually the approximate values of the parameters p0 can be obtained from the data 

base storing network model and can be incorporated as pseudomeasuremets. The 

modified objective function is: 

 ( ) ( )[ ] ( )∑∑
=

−

=

− −+−=
k

j
jjpj

m

i
iii

ppwhzw
1

2

0

1

1

21 ,, pxpxJ , (11.9) 

where: wpj  –  a weight assigned to the pseudomeasurement,  
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k  –  a number of pseudomeasurements related to the considered erroneous 

parameters.  

To ensure the system observability, the number of additional state variables should 

be as low as possible. From that point of view the second formulation of objective 

function is preferred. The great impact on accuracy of the parameter estimation have 

the weighting coefficients wpj.  

Reduction of extra state variable number is possible for branches representing 

transmission lines. Usually the line impedance parameters per length unit are known 

with good accuracy and the single variable, normalized line length can describe the 

parameters. The parameter of the line connecting nodes i and j one can obtain:  

 ( ) ( ) lbly
l

bg
ly

ijsh
shij

ijij

ij
j,

j
=

+
=  (11.10) 

where:  l – a normalized line length.  

Parameter estimation with use of augmented state vector can be performed by 

solving classical normal equations. The modified, extended Jacobi matrix has the 

following structure:  

 



















=

I0

HH
H

p

ext
 (11.11) 

where:  H  – the old Jacobi matrix with size m×n,  
n  – a number of state variables;  

Hp –  the Jacobi matrix including partial derivatives of the measurements with 

respect to the additional state variables.  

Jacobi matrix elements corresponding to the power flow measurements:  
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Example 11.2 

For the three bus system from Example 11.1 find the estimate of relative length l12 

of branch connecting nodes 1-2 by state vector augmentation. It is assumed that the 

branch reactance per length unit is x12 = j0.1.  

State vector augmented by additional variable has a form:  

 [ ]TlVVV
1232132

θθ=x . 
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Hence, the addition of an extra column in the Jacobi matrix for WLS estimation is 

needed. The extra column terms are as follows:  

 ( )
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Starting from flat point and assuming that the initial relative length l12
(0)
=1.0 one 

can obtain:  

 [ ] [ ]TT
lVVV 0.10.10.10.10.00.0 
1232132

)0( == θθx . 

It is easy to observe that the initial point results in zero column term in the Jacobi 

matrix and estimated variables cannot be calculated from normal equation for WLS. 

To overcome that the results of first iteration of estimation without an extra variable 

l12 are applied as starting point for second iteration:  

[ ] [ ]TT
lVVV 0.11.0121.0151.020 0.047- 0.019- 
1232132

)1( == θθx . 

Continuing the calculations the state estimates are as shown in Tab. 11.4. Relative 

length of branch 1-2 is l12 = 1.459. Hence, the estimated reactance of branch 1-2 is: X12 
=l12⋅x12 = 1.459⋅j0.1 = j0.146 (the correct value is X12 = j0.150). One can observe 
improvement of estimation by small reduction J(x) value (see Example 11.1). Adding 

an extra variable the convergence was reached after 5 iterations (one extra iteration).  

Tab. 11.4. State estimation residuals for the correct case and in the case of a network-parameter error. 

i iV̂ ,  

p.u. 

θ̂ ,  
rad 

1 1.0199 0.0000 

2 1.0151 -0.018 

3 1.0120 -0.046 

l12 1.459 

J(x) 0.0050 
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Parameter estimation using series of past data 

Network parameters are assumed to be constant and it enables to estimate them off-

line with the use of great amount of measurements recorded in a data base. State 

vectors and measurement vectors are are as follows:  

 [ ]Tq pxxxx K21= , (11.14) 

 [ ]T
q
zzzz K

21
= . (11.15) 

where:  q – a number of used measurement sets,  

xi – the i-th state vector, 

zi – the i-th measurement vector,  

p – a vector of parameters.  

The Jacobi matrix related to the extended model is as follows:  
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Using the normal equations for finding the parameter estimates:  

 zWHxG ∆=∆ −1T ,  (11.17) 

leads to the gain matrix with the following structure:  
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where:  
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The right hand side of the normal equation:  

 [ ]T
pq

T
bbbbzWH K

21

1 =∆− ,  (11.19) 

where:  

 qi
ii

T

ii
,,2,11 L=∆= −

zWHb ,  
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− ∆=
q

i
ii

T

ipp
1

1
zWhb .  

The task leads to the processing the matrices with large size and special 

factorization techniques should be applied to perform the computations.  

11.2. TOPOLOGY ERROR PROCESSING  

11.2.1. INTRODUCTION  

Elements of power systems (transmission lines, transformers, generators, loads 

etc.) are connected to the network buses. The buses are divided into the sections which 

can be connected or split by switching of circuit breakers. During the power system 

operation statuses of circuit breakers may change and network topology is then 

modified. The credible information on power network connectivity is very important 

from viewpoint of real-time modeling purposes. Conventional state estimation 

performs only bad data detection and it is based on the assumption that the network 

topology is correct. Current power network topology model is supplied by topology 

processor with use of telemetered statuses of switching devices. Unreported or falsely 

reported changes in switch statuses may result in wrong connectivity definition and 

topology errors. Topological errors can negatively affect the credibility of results 

obtained from state estimator. Incorrect connectivity model may cause:  

• obtaining erroneous state variable values,  

• detection of false, multiple bad data,  

• determining of improper network model for security assessment, 

• reporting of non existing violations of acceptable limits.  

Topology errors are not so common as analog bad data. However, they are 

potentially more dangerous. Hence, checking the correctness of network connectivity 

model becomes very important task.  

The further part of the chapter is aimed at the giving some consideration on the 

topological errors and the characteristic of method for connectivity error detection.   
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11.2.2. CHARACTERISTICS OF TOPOLOGY ERRORS  

All the power network elements are connected to the bus sections through circuit 

breakers. Bus-sections at the same voltage level in certain substation can be linked 

together. Hence, substations are capable of operating with different configurations. 

Topology errors resulted from falsely reported statuses of switching equipment can be 

generally classified into the following groups:  

• substation configuration errors,  

• shunt element status errors,  

• branch status errors.  

The brief description of the errors with some examples is shown in Tab. 11.5a – 

11.5d. Considering the number of topology errors being at the same time, one can 

distinguish single and multiple errors. 

Tab. 11.5a. Substation topology errors. � - open circuit breaker, � - closed circuit breaker.  

Description Example 

Substation 

reconfiguration – 

network element 

(branch, load, 

generator) modeled as 

connected to improper 

bus.  

 
 

1 2 

3 4 

1 

2 

3 

4 

1 2 

3 4 

1 

4 

2 

3 
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Tab. 11.5b. Bus topology errors. � - open circuit breaker, � - closed circuit breaker.  

Description Example 

Bus split – single bus is 

modeled as two or 

more buses.  

Bus merge – two or 

more buses are 

modeled as single bus. 

Actual and modeled 

number of nodes are 

different 

 

 

Tab. 11.5c. Shunt element topology errors. � - open circuit breaker, � - closed circuit breaker.  

Description Example 

Shunt element 

inclusion – shunt 

element (generator, 

load, reactive shunt) 

out of operation 

included in the model.  

Shunt element 

exclusion – shunt 

element (generator, 

load, reactive shunt) in 

operation excluded 

from the model. 

 

 

 

 

G G 

1 2 

3 4 

1 

2 

3 

4 

1 2 

3 4 

1 

2 

3 

4 
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Tab. 11.5d. Branch topology errors. � - open circuit breaker, � - closed circuit breaker.  

Description Example 

Branch exclusion – 

operating branch 

excluded from the 

model 

Branch inclusion – 

branch out of operation 

included to the model 

 

11.2.4. INFLUENCE OF TOPOLOGY ERROR ON STATE ESTIMATION 

As mentioned earlier topology errors can be considered in some cases as parameter 

error with 100% error of branch admittance value. The topology error influence on 

state estimation is illustrated by the example 11.3. 

Example 11.3 

For the 5-bus system the active power measurements are available as shown in Fig. 

11.2 and DC formulation of state estimation is considered. Variance of all 

measurements is assumed σ=10-3 and susceptances of all the lines are equal to b = 
100.  

Tab. 11.6 shows the measurement values and corresponding estimation results with 

normalized measurements. It can be stated that estimation process was performed with 

good accuracy: all the residuals have relatively small absolute values.  

In the next estimation run topology processor reported wrong topology: the branch 

linking nodes 2 and 5 being actually in operation was removed from the model. As a 

result measurement residuals grown significantly. The injection measurements P2 and 

P5 at the line terminal nodes having the largest residual absolute values were flagged 

as bad (Tab. 11.7). State estimator removed theses measurements (the system 

remained observable). All the residuals have small values what can be observed in 

Tab. 11.8. Topology error remains to be undetected and two correct measurements 

were neglected in estimation.  

 

1 2 

1 2 

1 2 
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Tab. 11.6. State estimation results for correct measurements and topology.  

Type and location of measurement 

P1 P2 P3 P4 P5 P12 P15 P23 P34 P45 

Measurement results, p.u. 

0.650 -0.500 0.650 -0.350 -0.450 0.286 0.363 -0.291 0.359 0.091 

Power flow estimates, p.u. 

0.650 -0.500 0.650 -0.350 -0.450 0.286 0.364 -0.291 0.359 0.009 

Normalized residuals 

0.013 -0.002 -0.002 -0.004 -0.007 -0.008 -0.017 -0.0009 -0.002 -0.002 

 

1 2 

3 4 5 

a) 

1 2 

3 4 5 

b) 

Fig. 11.3. Example power system: correct topology (a), erroneous topology (b). 
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Tab. 11.7. State estimation results for correct measurements and wrong topology:  

branch 2-5 not included in the model.  

Type and location of measurement 

P1 P2 P3 P4 P5 P12 P15 P23 P34 P45 

Measurement results, p.u. 

0.650 -0.500 0.650 -0.350 -0.450 0.286 0.363 -0.291 0.359 0.091 

Power flow estimates, p.u. 

0.6497 -0.528 0.643 -0.343 -0.422 0.258 0.392 -0.270 0.373 0.030 

Normalized residuals 

0.013 1.318 0.328 -0.334 -1.325 1.019 -1.046 -0.772 -0.516 -0.773 

 

Tab. 11.8. State estimation results for correct measurements and wrong topology:  

branch 2-5 not included in the model, rejection of P2 and P5.  

Type and location of measurement 

P1 P2 P3 P4 P5 P12 P15 P23 P34 P45 

Measurement results, p.u. 

0.650 - 0.650 -0.350 - 0.286 0.363 -0.291 0.359 0.091 

Power flow estimates, p.u. 

0.650 - 0.650 -0.350 - 0.286 0.363 -0.291 0.359 0.009 

Normalized residuals 

0.018 - -0.0006 -0.0019 - -0.014 -0.015 0.0003 -0.0002 0.0024 

11.2.5. METHODS  

FOR TOPOLOGY ERROR DETECTION AND IDENTIFICATION 

Detection of topology errors is not trivial problem and researchers have proposed 

great variety of topology error detection methods. The general classification of these 

methods is presented in Tab. 11.9.  

The real-size transmission power network contains thousands of circuit breakers 

and the detailed modeling of individual circuit breakers is practically impossible. In 

such case methods using detailed representation apply the two-step procedure:  

• “suspicious” network parts are detected by using the residual analysis, 

• performing of detailed modeling of areas selected in the first step.  

This procedure is more complicated and time-consuming than bus-branch 

representation based methods. However, the measurements neglected by bus-branch 

model can be taken into consideration.  

Methods based on pre-estimation approach exploit the relationships among 

measured quantities and network topology. Using artificial intelligence techniques 

190



 

 

(neural networks and expert systems) is also widely proposed. Validation of topology 

model before state estimation has many advantages in comparison to post-estimation 

approach: it usually much less sophisticated and time consuming. In addition in the 

presence of topology error state estimator may fail in convergence and detection of 

these errors may be impossible.  

In the further part some more detailed considerations on the outstanding methods 

are presented.  

11.2.6. PRE-ESTIMATION  

TOPOLOGY ERROR DETECTION AND IDENTIFICATION 

This approach take advantage of checking raw measurement data before state 

estimation is running. Network topology validation is performed with use of data 

plausibility checking. For this purpose testing of fulfillment of relationships describing 

power network resulting from Kirchhoff and Ohms laws is applied, e.g.: 

• sum of active and reactive power at node should be equal to zero or 

small value resulting from measurement noise,  

• active power flows at terminals of branch should match if losses are 

also considered,  

• active power flows in open ended branch should be near to zero and 

reactive power flows results from distributed shunt branch reactance. 

Large active power flows in such case may result from topology errors.  

Tab. 11.9. Classification of topology error detection and identification methods.  

Group Approach Description 

Used network topology 

model representation 

Bus-branch 

representation 

Using conventional bus-branch model 

(breaker statuses are neglected) 

Detailed substation 

representation 

“Suspicious” part of network modeled 

with individual breaker statuses 

Source of data  

for topology error 

detection 

Pre-estimation 

Topology model validated with use of raw 

analog measurements and ON/OFF 

statuses of circuit breakers 

Post-estimation 

Topology errors detected by state 

estimation residual analysis or by 

considering of circuit breakers statuses as 

state variables 

 

Measurement checking is possible if high local measurement redundancy is 

available (e.g. all branch power flow and injections adjacent with certain node).  

Except for simple measurement consistency testing some other pre-estimation 

topology verification methods have been proposed: 

191



 

 

• graph search technique [11.2]: current and voltage consistency is 

checked by graph search: if voltage drops in loops or sum of powers in 

node exceeds tolerance level, then bad marks are assigned to the 

quantities which failed the test. Hence, the errors in topology can be 

detected. Additional measurements that are not used originally in 

calculation can be used for validation.  

• application of artificial intelligence technique such as knowledge based 

systems, artificial neural networks, hybrid systems combining various 

techniques [11.5], [11.7], [11.8].  

11.2.7. POST-ESTIMATION  

TOPOLOGY ERROR DETECTION AND IDENTIFICATION 

This approach use the weighted least square method and detection of topology 

errors is based on the residual vector analysis 0, 0. However, the observed effect of 

wrong topology is reported in a false detection of bad data burdening node injections 

and branch flows.  

The topology errors lead to the incorrect measurement function h(x) and it reflects 

in the Jacobi matrix. This can be described by the following equation [11.3]:  

 EHH +=
e

, (11.20) 

where:  H – an actual Jacobi matrix,  

He – an incorrect Jacobi matrix due to a topology error;  

E – a Jacobi matrix error.  

The true linearized equation for state estimation is:  

 eHxz += , (11.21) 

and inserting (11.20) into (11.21) gives:  

 eExxHz ++=
e

, (11.22) 

Due to topology error measurement residual will have the following properties:  

 ( )( )eExKIxHzr +−=−= ee
ˆ

, (11.23) 

 ( ) ( )ExKIr
e

E −= , (11.24) 

 ( ) ( )RKIr
e

−=cov , (11.25) 

where: ( ) 111 −−−= RHHRHHK
T

ee

T

eee
. 

The measurement bias can be described as follows: 

 MfEx = , (11.26) 
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where:  M – a measurement to branch incidence matrix,  

f – a vector of branch flow errors.  

The measurement residual are given by:  

 ( )MfKIr
e

−= , (11.27) 

Now, it is possible to express the expected value of the normalized residuals in 

terms of branch flow error:  

 ( ) ( ) SfMfKIΩrE =−=
−

e

� 2

1

, (11.28) 

where:  ΩΩΩΩ = diag{cov(r)},  

( )MKIΩS
e

−=
−
2

1

- sensitivity matrix.  

Assuming that bad measurement data are eliminated, normalized residual test can 

be then applied for detection of topology errors.   

Let consider the linear relationship between the measurement residuals and branch 

error flows:  

 ( ) TfMfKIr =−=
e

, (11.29) 

If the single topology error exist in the j-th branch, there will be a change in the 

corresponding branch flow fj = α and fk = 0 for k≠j, where α is the scalar 
corresponding to the topology error. Hence, the measurement residual vector r will be 

collinear with the vector Tj, being the j-th column of matrix T.  

The geometric interpretation of the measurement residual can be used for detection 

of single branch topological error. Geometrically based method contains the following 

steps [11.3]:  

• solving weighted least squares estimation and calculation of residuals , 

• calculation of sensitivity matrix T for measurement residuals with 

respect to branch flow errors f,  

• testing the co-linearity between the measurement residual vector and 

the columns of the sensitivity matrix T using the dot product: 

 
rT

rT

j

T

j

j =θcos , j = 1, 2, …, b, (11.30) 

where: b – number of branches in the power network, 

• if cos θj≈ 1 and for other branches cos θk < 1 for k≠j, a single topology 
error may occur in the j-th branch. 

It should be noted that detection and identification of topology errors based on the 

measurement residuals analysis will require high enough measurement redundancy. In 

193



 

 

some cases of errors, the capability of detection and identification can be significantly 

limited by the network configuration. 

Example 11.4 

For 5-bus system shown in Fig. 11.4 DC state estimation is performed. However, 

the branch d connecting the nodes 2 and 5 is assumed to be open but actually it is in 

operation.  

 
For simplicity all measurement weights are assumed to be 1, and branch reactances 

are 0.01 p.u.. Measurement data are gathered in Tab. 11.10. 

Tab. 11.10. Measurement data for the exemplary power system. 

P1 P2 P3 P4 P5 P12 P15 P23 P34 P45 

0.65 -0.50 0.65 -0.35 -0.45 0.28 0.36 -0.29 0.36 0.01 

The Jacobi matrix with correct topology: 
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Due to exclusion error (actually closed branch d is modeled as open) the Jacobi 

matrix is modified:  

1 2 

3 4 5 

a 

b c 
d 

e f 

Fig. 11.4. Example power network and its measurement system.  
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The measurement to branch incidence matrix is defined as follows:  
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Using equations. (11.27) - (11.30) the geometric test is performed and the results 

are shown in Tab. 11.11 

Tab. 11.11. Measurement data for example power system. 

Branch j cos θj 

a 0.0007 

b 0.0007 

c 0.0007 

d 1.0000 

e 0.0007 

If cos θd =1.0000 and other values significantly smaller than 1.0, single topology 

error affecting branch d is detected with use the test. 
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11.2.8. SUBSTATION CONFIGURATION ERRORS   

Power system substations can operate in many different configurations. The most 

common used circuit breaker schemes are: single bus, double bus-double breaker, 

main and transfer bus, breaker and a half, ring bus. The number of electrical nodes 

depends on the substation connectivity scheme and circuit breaker statuses.  

Many methods of topology error detection concern on modeling of individual 

circuit breakers statuses in substations. After validation procedure substation 

connectivity scheme is converted into bus-branch model. If the status of every breaker 

in certain substation needs to be checked, a sufficient measurement redundancy within 

substation is needed. Otherwise the statuses cannot be correctly estimate because 

different configurations can correspond to the available measurement set.  

The closed circuit breakers is represented by zero-impedance, and open by zero 

admittance. Inserting very small impedance or admittance values of breakers into 

estimation equations usually leads to the ill-conditioning of estimation computations 

and may cause convergence difficulties. The more suitable representation concerns on 

power flow through breaker.  

Considering the state estimation equation with augmented measurement set:  

 ( ) eMfxz ++= h
a

, (11.34) 

where:  za  – an augmented measurement vector,  

h() – anonlinear function relating measurements to the states assuming all 

breakers are open,  

x  – astate vector containing bus voltage magnitudes and angles,  

M  – a measurement to circuit breaker incidence matrix,  

f  – a vector of power flows through the circuit breakers,  

e – a vector of measurement errors.  

State variables and breaker flows form the augmented state vector:  

 







=
f

x
xa , (11.35) 

and new nonlinear measurement function ha is formulated. The state estimation 

equation:  

 ( ) exz += aaa h , (11.36) 

Measurements and constraints including in (11.36) comprise the following types:  

• “regular” analog measurements:  

 ( ) exz += ah , (11.37) 

• operational constraints imposed by status of the circuit breaker as 

presented in Fig. 11.5, 
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These constraints can be expressed in matrix form as :  

 0
00

=+ exA
a

. (11.38) 

• structural constraints imposed by network connectivity structure, e.g. 

zero injection constraints at some nodes:  

 ( ) 0=
a

c x . (11.39) 

The estimation objective function and constraints are as follows:  

 

( )
( )

( ) 0ˆ

0ˆ

ˆ.t.s

,min

00

0

=

=+

=+

xc

rxA

zrx

rr

h

J

,  (11.40) 

where:  J – an objective function;  

r, r0 – residuals for conventional measurements and operational constraints,  

x̂  - an augmented vector of state estimates containing voltage angles, 

magnitudes and power flows through circuit breakers. 

 

Example 11.5 

For the substation presented in Fig. 11.6 create detailed substation model of DC 

state estimation for augmented state variable vector.  

k m k m 

Vk=Vm 

θi=θj 

Pkm=0 

Qkm=0 

a) b) 

Fig. 11.5. Operational constraints for circuit breakers in the generalized state estimation:  

(a) closed circuit breaker, (b) open circuit breaker.  
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As the state variables the substation internal node angles and two external node 

angles (θ6, θ7) are considered. In addition power flows through switching branches are 
also included into the state vector.  

 TPPPPPx ][
34252315145432

θθθθ=  

Measurements in terms of state variables are as follows:  

 P3 = –P23+P34+e, 

 P5 = –P15–P25+e. 

The constraints related to the circuit breaker statuses:  

 θ3 – θ4=0,  

 θ2 – θ3=0,  

 θ2 – θ5=0,  

 P14=0, 

 P15=0. 

The constraints related to the zero-injection pseudo-measurements:  

 P1 = 0:    P14 + P15=0, 

 P2= 0:    P23 + P25=0, 

 P4= 0:    –P14 – P34 – XT1
-1
(θ6 –θ4)=0, 

One can observed that variable θ1 does not appear in state vector because it is 

considered as reference.  

G 
 
 

1 

2 

3 

4 

5 

 
 

7 6 

 
 

7 

G 

 
 

6 

1 2 

a) b) 

Fig. 11.6. Detailed substation representation (a) and its bus-branch model (b). 
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Running local weighted least square calculations for detailed bus section level for 

substation with suspicious measurement or switching device statuses is possible. 

It enables detection of bad data and doubt statuses of switching branches if the local 

observability is ensured.  

Example 11.6  

In the substation presented in Fig. 11.6 the state of switching branch connecting 

nodes 3 and 4 is assumed to be unknown. Measurement values: P3= 2.50 p.u., 

P64= -1.10 p.u., P5= –1.45 p.u. Measurement variances are set to 0.01. Transformer T1 

reactance is 0.1 p.u..  

Three separated areas can be distinguished in substation: node 1, nodes 2, 3, 5 and 

nodes 4, 6. The measurement, topological and operational constraints can be written in 

matrix form as: 
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The results of weighted least squares estimation are: 
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It can be observed that power flow P34 differs considerably from zero and doubt 

circuit breaker status is assumed to be closed.  

PROBLEMS  

11.1. For three-bus power system from Problem 7.2 (chapter 7) find the relative 

length estimation of branch 2-3 by state vector augmentation (see Example 

7.2). Assume that reactance per unit length is x = j0.15. Compare the obtained 

estimated branch reactance with actual value and assess the estimation 

performance index. 

11.2. Five-bus system as presented in Fig. 11.7 the branch e shown as doted line is 

modeled as closed but in fact it is open. All measurement shown in Tab. 11.12 

have weights assumed to be 1, and branch reactances are 0.01 p.u.. Perform 

the DC state estimation and make colinearity test with (11.30) for detecting 

the topology errors. Is topology error in branch e detectable? Why? 

 

 

Tab. 11.12. Measurement data for example power system. 

P1 P2 P3 P4 P5 P12 P15 P23 P25 P45 

0.65 -0.50 0.65 -0.35 -0.45 0.16 0.48 -0.65 0.31 -0.35 
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12. STATE ESTIMATION  

USING AMPERE MEASUREMENTS 

12.1. INTRODUCTION 

Nowadays, state estimation is also applied to lower voltage networks where 

measurement set usually consist of a large proportion of voltage magnitude and 

ampere measurements. Power measurements usually are used for power transformers. 

In this situation there is need to incorporate of ampere measurements into the state 

estimation. Using ampere measurements instead of pair of power measurements 

causes several problems, such as possibility of non-unique solution and lack a 

possibility of decoupling [12.1]. 

12.2. MODELING OF AMPERE MEASUREMENTS 

For a branch connecting nodes k and m (Fig. 12.1), the following current equation 

can be derived: 
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Fig. 12.1. Two port Π-model of transmission line. 

Current can be calculated also from the following equations: 

 

k

kmkm

km
V

QP
I

22 +
= . (12.2) 

However for distribution network shunt elements of branch are negligible and for 

polar coordinate system the following equation can be derived [12.1]: 
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From (12.3) it is ease to obtain the Jacobi-matrix elements for state variables of the 

bus k: 
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Figures below present 
kmI  and its derivates as a function of  

kV  and 
kδ  for 0=mδ , 

1=mV , Rkm =0.02, Xkm=0.06 and shunt admittance equal 0.  

  

Fig. 12.2. Current magnitude. 
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Fig. 12.3. Derivate of current magnitude with respect to phase angle. 

 

 

 

Fig. 12.4. Derivate of current magnitude with respect to voltage magnitude. 
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It can be seen that for strong non-linearity at 1=kV  and 0=kδ  derivates abruptly 

change which is shown in Fig. 12.3 and Fig. 12.4. That means that derivates of 
kmI  are 

undefined at this point. The solution of this problem is using 
2

kmI  instead of 
kmI . Then 

derivates can be written as: 
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Figures below present plot of 
2

kmI  and its derivates as a function of  kV  and kδ .  

 

Fig. 12.5. Square current magnitude. 
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Fig. 12.6. Derivate of square current magnitude with respect to phase angle. 

 

 

 

Fig. 12.7. Derivate of square current magnitude with respect to voltage magnitude. 
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It can be seen that derivates for the flat start are null which can cause ill-

conditioning of the gain matrix. Therefore, the following solutions to overcome this 

problem can be suggested [12.1]: 

− initiate state variables with a random small perturbation, 

− add artificial shunt elements which are removed after first iteration. 

If bsh is considered, the Ikm has following derivates: 
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where Ikm is calculated from (12.1) or (12.2). 

 

Derivates of Ikm
2
 can be written in the following way: 
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12.3. OBSERVABILITY ANALYSIS FOR POWER SYSTEM WITH 

AMPERE MEASUREMENTS 

Observability is defined as the ability to uniquely estimate the state of system using 

given measurements. In classical state estimation where measurements come in real 

and reactive pairs observability analysis can be performed using decoupled models. 

But, when ampere measurements are considered, the decoupled model of power 

system cannot be employed and for observability analysis fully coupled model must 

be used. However, as it was written chapter 9. observability analysis for fully coupled 

model doesn’t guarantee uniqueness of solution. This can be illustrated by considering 

the following case of two bus system: 

Example 12.1. 

 

Vk
Vm

Ikm

 

Fig. 12.8. One-line diagram of a 2-bus power system 
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It can be seen that two opposite values of kmδ  fulfill equation above (

kmkm δδ ±=arccos ). Therefore according to equations below one can notice that two 

solutions for active and reactive power are possible:  

 ( )[ ]kmkmkmkmkmmkkmkm rIVVgVVbP
222

2

1
sin −−+= δ , (12.21) 

 ( )[ ] kmmkkmkmkmmkkmkm VVgxIVVbQ δsin
2

1 222 +−−= . (12.22) 

Problem does not exist if power system is observable without ampere 

measurements or if they are added in order to improve accuracy of state estimation 

instead of extending the observable network. Extending observability by adding 

ampere measurement is possible if power flow direction is  know a apriori which 

usually is true for radial networks.   

12.3.1. PROCEDURE BASED ON THE RESIDUAL COVARIANCE MATRIX 

The covariance matrix Ω can be obtained from [12.3]: 

  

 T
HGHRRSΩ

1 ⋅⋅−=⋅= − . (12.23) 

where: Ω – a residual covariance matrix, 

S – a residual sensitive matrix, 

R – a covariance matrix of measurement error vector. 

If column of Ω is equal null then corresponding measurement is critical. If a 

measurement belongs to a residual spread component then, k
th
 column is null except 

entries corresponding to the same residual spread component. Therefore, only for the 

current magnitude measurements residual spread component need to be determined. 

kΩ  can be calculated as follows:  

1. Solve 
T

kk hyG =⋅ , 

where kh : k
th
 row of H . 

2. Compute kΩ  as: kkk yHRΩ ⋅−= , 

where kR is the k
th
 column of R . 

The algorithm of the method [12.3] 

1. Compute the columns of Ω corresponding to the current magnitude 
measurements. 

2. If column k of Ω contains a nonzero entry corresponding to a power flow or 
an injection measurements, skip that column.  
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3. If column k of Ω contains a zero entry corresponding to a power flow or an 
injection measurements, flag the current measurements together with all the 

other measurements with nonzero entries in that column, as a v-i residual 
spread component that has potential to yield multiple solutions.  

4. If the column is completely zero, flag the current magnitude measurements as 
critical 

If no measurement is flagged then the system is uniquely observable. During steps 

2-4 it is necessary to decide if a given entry is zero. This decision must be made based 

on numerical threshold which can be different for different system. Therefore Ω 

should normalized in order to make threshold independent of the system. Decision of 

zero can be made as follows: 

 ε≤maxΩΩ jk  

where: 40.1 e.g. −= eε  

Example 12.2. 

Consider following 4-bus power system  

 

 

Fig. 12.9. One-line diagram of a 4-bus power system 

Assuming unity reactances and null resistances and non-flat start: 

Tab. 12.1. Initial values for state vector 

Bus V δ(º) 

1 

2 

3 

4 

0.95 

1 

1.05 

1.1 

0 

-1 

-2 

-3 

 

The following Jacobi matrix is obtained: 
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If R is assumed to be the identity matrix then:  
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It can be seen that measurements: P3, Q3, V1, V2, I12, I13, forms a v-i residual spread 

component, while P2 and Q2 are critical. That means that system is not uniquely 

observable and more than one solution are possible. Solution depends on initiate point. 

12.3.2. PROCEDURE BASED ON THE JACOBI MATRIX 

Observability analyses are also possible without computing residual covariance 

matrix. Presence of v-i residual spread components can be obtained from the Jacobi 

matrix [12.2].  

Partitioning a linearized error-free measurement equation leads to: 

 

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
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H
, (12.24) 
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1z1122 zSzHHz ⋅=⋅⋅= −1
, (12.25) 

 
1−⋅= 12z HHS  (12.26) 

or using  Peters-Wilkinson decomposition 
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= LL , (12.27) 

 MSL z =⋅ , (12.28) 

where:  H1=L·U – n×n square matrix, 

H2, M – (m-n)×n rectangular matrices, 

L – n×n lower triangular matrix, 

U – n×n upper triangular matrix. 

Matrix Sz is called the measurement sensitivity matrix where each row correspond 

to redundant measurement. Null column indicates that corresponding measurement is 

a critical and nonzero element in each row indicates that those measurements belong 

to the same residual spread as the redundant measurement. 

Example 12.3. 
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P2 and Q2 are critical measurements where remaining ones belong to v-i redundant 

set.  

12.3.3. PROBLEM OF BAD DATA  

As it was explained in chapter 10, measurements may have various properties and 

influence on state estimation, according to their values and location. When ampere 

measurements are considered the following types of measurement can be 

distinguished [12.1], [12.4]: 

• Noncritical: when deleted, the system remains uniquely observable. 

• Critical: when removed, the system becomes unobservable. 

• Uniqueness-Critical: when eliminated, the system becomes not uniquely 

observable, i.e., several solutions are possible. 

Bad data detection and identification are carried out according to the procedure 

presented in chapter 10. They include: 

• Standard bad data detection and identification. 

• Checking whether or not the identified bad data correspond to 

noncritical measurements. 

It must be noted that when only conventional measurements are used there is no 

risk of eliminating critical measurement. However if ampere measurements are used 

there is need to check if identified bad data correspond to noncritical measurements. 

Procedure of checking of noncriticality is presented below: 

• If the measurement belongs to residual spread componenent containing 

only power and voltage measurements, then declare it as noncritical. 

Else, continue. 

• If the measurement refers to power flow or injection and the residual 

spread component does not contain any other power measurement then 

declare it as uniqueness-critical. Else, continue, 

• Check if any of the remaining ampere measurements in the same 

residual spread component will become critical when this measurement 

is eliminated. If, yes, then declare the measurement as uniqueness-

critical, else declare it as noncritical. 

PROBLEMS 

12.1. Consider if adding measurement Qkm in the example 12.1. will make a Power 

system observable. 

12.2. Consider example 12.2. Suggest the location and type of a set minimum 

number of measurements to be added to the measurement list in order to make 

the power system observable. 
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12.3. Perform observability analysis of the power system shown in Fig. P.12.1. 

 

1

3

2 4

P/Q injection measurement

Voltage measurement

P/Q flow measurement

5

6 Ampere measurement
 

Fig. P.12.1. The 6 bus power system 
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13. DISTRIBUTION POWER SYSTEM STATE 

ESTIMATION – SPECIFIC PROBLEMS  

13.1. INTRODUCTION  

In the past, load flow was used for planning and operation. Recently, with 

installing in distribution system SCADA systems real-time control becomes possible. 

New methods are proposed for obtaining the consistent and accurate real-time data 

needed for monitoring and operation of distribution systems.  

Distribution automation is the real-time monitoring and control of distribution 

circuits to facilitate feeder analysis function such as: voltage and reactive power 

control, network reconfiguration, demand side management etc. To perform these 

tasks distribution system state estimation is recognized as efficient tool which enables 

providing the real-time state estimates.  

Using the results of state estimation for distribution systems can contribute to:  

• improve reliability by faster failure detection and supply restoration, 

detection of overloads,  

• improve network operation efficiency,  

• develop energy customer response.  

State estimation of distribution power network differs considerably from state 

estimation routines applied to transmission network and should be re-defined. This 

chapter is aimed at presenting some special problem regarded to this subject.  

13.2. DISTRIBUTION POWER NETWORK CHARACTERISTIC  

The methods of conventional state estimation originally developed for transmission 

systems cannot be simply adopted for distribution networks. The essential differences 

between both types of power systems result in fact that transmission system state 

estimation assumptions are not longer valid. Tab. 13.1 provides comparison between 

transmission and distribution networks. Essential differences among these systems 

result in developing some special methods for distribution system state estimation.  
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Tab.13.1. Transmission and distribution system comparison. 

Characteristic Transmission systems Distribution systems 

Symmetry The degree of phase unbalance 

is small and only positive 

sequence network can be 

analyzed 

Single phase representation 

possible 

The degree of phase unbalance 

is usually significant and three 

phase representation is required 

Network topology Meshed  Radial or weakly meshed; 

substation supply independent 

radial feeders 

Line parameters Long lines with low R/X ratio Short or medium long lines with 

relatively high and varying R/X 

ratio 

Measurement 

distribution and 

redundancy 

Very good, much of the 

network has measurement 

redundancy and network is 

observable as a whole 

Poor, there is much more loads 

than available measurements   

Network highly unobservable, 

Loads usually need to be 

estimated 

Network size From several hundred up to 

several thousand nodes 

From several thousand to several 

dozen thousand nodes 

13.3. MODELS  

OF DISTRIBUTION POWER SYSTEM COMPONENTS 

13.3.1. DISTRIBUTION SYSTEM STRUCTURE 

General structure of distribution system is shown in Fig. 13.1. It has usually radial 

structure with possible lateral connections. The loads are connected to the nodes by 

transformers and are supplied from main feeder via overhead or cable lines. Some of 

the branches are equipped with switching sections. To improve power factor 

capabilities capacitor banks can be inserted into power network. Distributed 

generation can be also embedded in network.  

Recently distribution system have been equipped with Distribution Automation 

Systems (DAS) enabling monitoring and control of network elements installed in 

substation and feeders: switching equipment, capacitor banks, transformer tap position 

etc. Modern DAS are capable of providing real-time measurements of voltages, 

currents, active and reactive power flows. Theses data can be processed in order to 
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support operator decisions. In such environment state estimation for distribution 

system can be implemented.  

 

13.3.2. DISTRIBUTION LINE MODELS 

Fig. 13.2 presents a three-phase line section m connected between nodes i and j. 

The relations between node voltages and branch currents is as follows:  
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, (13.1) 

or in concise matrix form:  

 
ijabcijabcjabciabc ,,,,

IZVV += . (13.2) 

where: Zabc – an impedance matrix of line section,  

Vabc,i=[Va,i  Vb,i  Vc,i]
T
 – a vector of phase voltages at the node i,  

Iabc,ij = [Ia,ij  Ib,ij  Ic,ij]
T
 – a vector of phase currents in the branch m connecting 

the nodes i and j.  

The impedance matrix comprising self- and mutual terms is given by:  
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,,,

,,,

,,,

,
Z . (13.3) 

The elements of matrix can be derived from Carson’s equations, by assumption 

that well grounded distribution system is well grounded and ground voltages are zero. 

Then Kron reduction matrix method can be applied to obtain 3×3 impedance matrix of 
line section. Rearranging equation (13.1) the phase currents are given as:  

- Overhead or cable line 

- Transformer 

- Switch 

- Load 

- Small generation 

- Capacitor bank 

Main feeder 

- Overhead or cable line 

- Transformer 

- Switch 

Fig. 13.1. Power distribution system structure. 
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or in matrix form:  

 ( )
jabciabcijabcjabcijabc ,,,,,

VVYVI −+= ,  

where: 
1
,,

−= ijabcijabc ZY  – a line section admittance matrix.  

 

13.3.3. STATIC LOAD MODELS  

Loads can be represented in the following connections: 

• four wire wye system: phase to phase or phase to neutral connection,  

• three wire delta system: phase to phase connection.  

The loads can operate as symmetric or asymmetric in single-phase, two-phase and 

three-phase mode and can be modeled as:  

• constant apparent power (constant PQ), 

• constant current,  

• constant impedance, 

• combination of the above mentioned models.  

Fig. 13.3a presents the wye connected load.  

1. Load model with constant apparent power: 
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Zaa 
node i 

Vi,a 
Ia 

Zbb Ib 

Zcc Ic 

Zab 

Zbc 

Zac 

node j 

Vi,b 

Vi,c 

Vj,a 

Vj,b 

Vj,c 

Fig. 13.2. Three phase line section.  
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2. Load model with constant impedance.  

The impedance is first obtain:  
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and then the currents as a function of constant impedance are derived:  

Ia 

Ib 

Ic 

Iab 

Ibc 

Ica 

Zca Zab 

Zbc 

Ib 

Ic 

Va 

Vb Vc 

Zc 

Za 

Zb 

Ia a) 

b) 

Fig. 13.3. Three phase load configurations: wye (a), delta (b). 
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3. Load model with constant current.  

The current magnitudes are obtained from equation (13.5).  

Fig. 13.3b shows the delta connected load model.  

1. Load model with constant apparent power.  
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In this model the line to line voltages are adjusted to maintain constant power.  

2. Load model with constant impedance.  

The impedance is first obtain:  
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and then the currents as a function of constant impedance are derived:  
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3. Load model with constant current.  

The current magnitudes are obtained from equation (13.8).  

 

Calculation of load parameters for different load models is shown in Tab. 13.2. 

Tab. 13.2. Load model parameter calculations. k ∈{a, b, c} for wye, k ∈{ab, bc, ca} for delta connection. 

Load model Impedance Zk Current Ik Power Sk 

Constant impedance Zk 
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The methods for state estimation of distribution networks usually use the grounded 

wye load model irrespective of number of phases. In such case the load power:  

 
*

kkk
IVS = , k ∈{a, b, c} (13.11) 

13.3.4. LOAD PSEUDOMEASUREMENT ESTIMATION 

As mentioned, network observability analysis determines whether the given 

numbers and location of measurement are adequate to estimate the state vector.  

The number and localization of these measurement is insufficient to obtain network 

observability. The way of increase of measurement number is estimation of loads. 

Obtaining of credible estimates of loads is not simple task. The information on loads 

concerns on basic customer information: group of customer, its location in power 

network, and historical data regarding to energy consumption, weather conditions. 

Customers are usually classified into groups with common demand profile. Usually 

the residential, commercial, industrial classes are distinguished.  

Load demand depends on great variety of factors and estimates based on load 

curves have very limited forecasting capabilities. For customer classes with similar 

load profiles, standard load curves illustrating power demand as a function of time 

(Fig. 13.4) . These standard curves are based on historical data obtained by monitoring 

of customers within the considered time period. For state estimation purposes it is 

necessary do develop algorithms estimating loads with respect to statistical data 

analyses of customer loads.  

 
Fig. 13.4. Example averaged daily load curve for residential customers. 
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Great number of methods for load estimation have been presented n technical 

literature. Brief characteristics of load estimation methods are given in Section 14.  

13.4. DISTRIBUTION POWER SYSTEM 

STATE ESTIMATION METHODS 

Initially, distribution power system state estimation methods originated from 

weighted least square estimation formulated for transmission systems. Recently, the 

great variety of state estimation methods have been developed and they can be 

categorized into the following groups:  

• weighted least squares based methods: 

– three phase node voltages as state variables: [13.1], [13.6], [13.8], 

[13.9],  

– branch currents flowing in each phase as state variable: [13.2], 

[13.3], [13.7], [13.11], 

• load flow calculation based methods – using the backward-forward 

sweep load flow method for radial distribution networks. Measurement 

data are used in calculations as possible [13.10].  

Some more detailed information on will be given in the further part. 

13.4.1. NODE VOLTAGES-BASED STATE ESTIMATION 

The weighted least square estimation described in Chapter 7 is adapted for three 

phase distribution network representation. Objective function formulation and solution 

scheme of state variable estimates given by equations (7.36), (7.37) is still valid in 

three phase case.  

State variable vector 

Node voltage angles and magnitudes are selected as state variables:  

 [ ]T
nn
VVVθθθx KK

2132
= ,  (13.12) 

where:  θθθθi = [θa,i θ b,i θ c,i] – a vector of angles of voltages at the node i for the phases a, 

b and c respectively;  

Vi = [Va,i V b,i V c,i] – a vector of magnitudes of voltages at the node i for the 

phases a, b and c respectively,  

n – a number of nodes. 

Note that θθθθ1 = [0  exp(j2π/3)  exp(–j2π/3)] is assumed to be reference angles and 
this term is neglected in state vector. 
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Derivation of measurement functions 

The measurement functions h(x) are considered for branch current magnitudes, 

branch power flows and power injections and node voltage magnitudes.  

Assuming the line section model as shown in Fig. 13.2 the branch current in phase 

k is given by:  
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where:  Ykm,ij – an element of the line section admittance matrix Yabc,ij;  
x
ijk

r
ijk II ,, , – a real and an imaginary part of the complex branch current Ik,ij,  

k ∈{a, b, c}. 
The measurement function related to the branch current magnitude:  
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Branch power flow measurement at node i,  ijkijkijk QPS ,,

*

, j−= , is expressed as:  
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where: k ∈{a, b, c}. 

Power injection measurement at node j,  jkjkjk
QPS

,,

*

,
j−= , is given by:  
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where: �i – a set of nodes connected with the node i; k ∈{a, b, c}. 
Measurement function for voltage magnitude at node i for phase k is given by:  

 ( )
ikV Vh
,

=x . (13.17) 

where: k ∈{a, b, c}. 
One can observe that measurement functions, except the functions for voltage 

magnitudes, are non-linear functions of state variables. Three phase representation 

results in more complicated form of these function in comparison to single phase 

representation described in chapter 7. The number of state estimates and the Jacobi 

and gain matrix sizes are much larger. However, due to radial network configuration 

they are sparse and some modifications concerned on maintaining the Jacobi matrix 

with constant terms are possible.  

Derivation of Jacobi-measurement-matrix terms 

Measurement functions are derived for hybrid network equations: voltages are 

represented in polar form and admittances in rectangular form.  
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Expanding the measurement function for power flows one can obtain:  
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where:  Ykm,ij = Gkm,ij +jBkm,ij  - an element of line section admittance matrix,  

k, m ∈{a, b, c}. 
Significant simplification of Jacobi matrix terms is possible if the approximations 

concerned on constant voltage magnitude and small angle differences are used and it 

can be expresses as:  

 ( ) ( ) ,0.0sin,0.1cos,0.1
,,,,,

≈−≈−≈
jmikjmikik

V θθθθ  (13.20) 

The non-zero terms of the approximated Jacobi matrix are: 

− branch power flows: 
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− power node injections:  
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− branch current magnitudes:  

 liB
V

II
ijkm

lm

x

ijk

lm

r

ijk =−≈
∂

∂
−≈

∂

∂
,

,

,

,

,

,

θ
, k ∈{a, b, c}, m ∈{a, b, c}. (13.29) 

 ,,
,

,

,

,

,
ljB

V

II
ijkm

lm

x

ijk

lm

r

ijk =≈
∂

∂
−≈

∂

∂

θ
 k ∈{a, b, c}, m ∈{a, b, c}. (13.30) 

 liG
I

V

I
ijkm

lm

x

ijk

lm

r

ijk =≈
∂

∂
≈

∂

∂
,

,

,

,

,

,

θ
, k ∈{a, b, c}, m ∈{a, b, c}. (13.31) 

 ,,
,

,

,

,

,
ljG

I

V

I
ijkm

lm

x

ijk

lm

r

ijk =−≈
∂

∂
≈

∂

∂

θ
 k ∈{a, b, c}, m ∈{a, b, c}. (13.32) 

State estimation algorithm  

Computational algorithm is very similar to the weighted least squares estimation 

for transmission system presented in Chapter 7:  

1. Initialization of the iteration counter k=0. 
2. Initialization of the state vector with use of the flat start or with use measured 

values if available.  

3. Forming the Jacobi and gain matrices. 
4. Calculation of HT

R
-1
(z-h(x)) and decomposition of the gain matrix for finding 

∆x. 
5. Check for convergence, max(|∆x |)<ε or k>kmax? 

6. If yes stop, otherwise updating the solution x(k+1)= x(k)+∆x and the iteration 
counter k=k+1. Go to step 3. 

When the Jacobi and gain matrices are formed some problem occurs with current 

measurement. The phase of measured current is required to determine real and 

imaginary part of complex branch current (see equation (13.14)). However, only 

magnitude is available. It is proposed to eliminate current measurements (without 

losing the observability) and perform first few iterations. Then the estimated current 

phase values, current measured magnitude are included onto the Jacobi matrix, and 

state estimation is re-calculated.  

Example 13.1  

For radial distribution system shown in Fig. 13.6 find the estimates of 3 phase node 

voltages.  

225



 

 

Line section impedance and admittance matrices in p.u:  

















== −

j6.1727 + 2.4388j3.2579 + 0.4132j3.2579 + 0.4132

j3.2579 + 0.4132j6.1727 + 2.4388j3.2579 + 0.4132

j3.2579 + 0.4132j3.2579 + 0.4132j6.1727 + 2.4388

10 3

32,21, abcabc ZZ , 

 

 

Initialize the state vector with flat start or measured values, k=0 

Updating node 

voltages V
(k)
 

Calculation of (H(x
(k)
))

T 
R
-1
 (z−h(x(k))) 

Decomposition of gain matrix for finding ∆x(k) 

max|∆x(k)| < ε or  
k>kmax 

x
(k+1)

= x
(k)
+∆x(k) 

k=k+1 

N 

Y 

STOP 

START 

Calculation of equivalent currents from V
(k)
 and measurements 

Forming the Jacobi and gain matrices  

G(x
(k)
)= (H(x

(k)
))

T
 H(x

(k)
) 

Fig. 13.5. Flowchart for state estimation calculations .  
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















==

j1.7887 - 1.1352j0.5248 + 0.4725-j0.5248 + 0.4725-

j0.5248 + 0.4725-j1.7887 - 1.1352j0.5248 + 0.4725-

j0.5248 + 0.4725-j0.5248 + 0.4725-j1.7887 - 1.1352

10232,21, abcabc YY . 

Load pseudomeasurements obtained from load estimation step are in Tab. 13.3. 

Tab. 13.3. Load pseudomeasurements.  

i Pa,i Qa,i Pb,i Qb,i Pc,i Qc,i 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.0640 0.0128 0.0040 0.0018 0.0010 0.0028 

3 0.0180 0.0048 0.0180 0.0048 0.0180 0.0048 

 

Voltage at main feeder as reference:  ( ) ( )[ ]TV 3/2jexp3/2jexp10.11 π−π=  

Power flow in branch 1-2: Pa,1 2= Pb,1 2= Pc,1 2 =0.080  Qa,1 2= Qb,1 2= Qc,1 2=0.017 

Measurements weights (elements of R matrix) are set to 1.  

Convergence criterion is assumed as max(|∆x |) < 10-3. 
The structure of the simplified Jacobi matrix built with use equations (13.21) - 

(13.28) is presented in Fig. 13.7.  

 

1 
2 3 

Fig. 13.6. Example simple radial distribution system. • voltage measurement. 
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 θa,2 θb,2 θc,2 θa,3 θb,3 θc,3 Va,1 Vb,1 Vc,1 Va,2 Vb,2 Vc,2 Va,3 Vb,3 Vc,3 

Pa,1 ×      ×         

Pb,1  ×      ×        

Pc,1   ×      ×       

Pa,2 ×   ×   ×   ×   ×   

Pb,2  ×   ×   ×   ×   ×  

Pc,2   ×   ×   ×   ×   × 
Pa,3 ×   ×      ×   ×   

Pb,3  ×   ×      ×   ×  

Pc,3   ×   ×      ×   × 
Qa,1 ×      ×         

Qb,1  ×      ×        

Qc,1   ×      ×       

Qa,2 ×   ×   ×   ×   ×   

Qb,2  ×   ×   ×   ×   ×  

Qc,2   ×   ×   ×   ×   × 
Qa,3 ×   ×      ×   ×   

Qb,3  ×   ×      ×   ×  

Qc,3   ×   ×      ×   × 
Va,1       ×         

Vb,1        ×        

Vc,1         ×       

Fig. 13.7. Structure of the simplified Jacobi matrix H. × - non-zero term. 

The values of measurement functions in vector of measurement mismatches [z-

h(x)] are calculated with use of equation (7.37) for flat initial point.  

After calculation the state variable vector the following results are obtained.  

Tab. 13.4. State vector estimates.  

Node i iaV ,
ˆ ,  

p.u. 

ia,θ̂ ,  

deg 

,ˆ
,ibV  

p.u. 

ib,θ̂ , 

deg 

icV ,
ˆ ,  

p.u. 

ic,θ̂ ,  

deg 

1 1.0000 0.000 1.0000 120.000 1.0000 -120.000 

2 0.9999 0.027 1.0001 119.998 0.9998 -119.998 

3 0.9999 0.030 1.0001 120.001 0.9998 -119.995 

 

Tab. 13.5. Branch current estimates.  

Branch, i j ijaI ,
ˆ , 

p.u. 

ija,φ̂ ,  

deg 

ijbI ,
ˆ , 

p.u. 

ijb,φ̂ ,  

deg 

ijcI ,
ˆ , 

p.u. 

ijc,φ̂ ,  

deg 

1-2 0.0839 -12.0865 0.0230 103.3013 0.0290 -135.1820 

2-3 0.0186 -14.9013 0.0186 105.0698 0.0186 -134.9263 
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The convergence were achieved after 3 iterations.  

13.4.2. BRANCH CURRENTS-BASED STATE ESTIMATION  

Alternative formulation of state estimation problem for three phase distribution 

network is using branch current as state variables. Knowing these currents other 

quantities as complex node voltages, power branch flow and power injections can be 

calculated. The node voltages can be found by forward sweep procedure. Starting 

from substation voltage and moving toward leaf nodes of the radial network using 

equation (13.1). Current and power injection can be found with use of Kirchhoff 

Current Law.  

The state variable vector is former as:  

 [ ]Tx

n

xxr

n

rr
IIIIIIx KK

2121
= ,  (13.33) 

where:  I
r
i = [I

r
a,i I

r
b,i I

r
c,i] – real parts of the branch current flowing into the bus i for 

the phases a, b and c respectively,  

I
x
i = [I

x
a,i I

x
b,i I

x
c,i] – imaginary parts of the branch current flowing into the bus i 

for the phases a, b and c respectively,  

n – a number of branches. 

Measurement function 

Regarding to the power measurements it is assumed that the actual power flows 

measurement and load pseudo-measurements are available. These measurements are 

converted into currents with use of the following relationship:  

 

*
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,,,

j
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


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
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=+=
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ijkijkx
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ijkijk
V

QP
III ,   (13.34) 

where:  Pk,ij, Qk,ij – an active and a reactive branch power flow measurements at the 

node i for the phase k,  
)(

,

t

ikV - a voltage at the node i and the phase k in t-th iteration of solution 

process, k ∈{a, b, c}. 
The load pseudo-measurements can be obtained from:  
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
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QP
III ,   (13.35) 

where:  Pk,i, Qk,i – active and reactive load pseudo-measurements at the node i for the 

phase k, 
)(

,

t

ikV  – a voltage at the node i and the phase k in the t-th iteration of solution 

process,  
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k ∈{a, b, c}, 
Note that the actual node voltages are not available and they are obtained from 

calculations.  

Measurement functions for equivalent currents are linear:  

 ( ) ( ) x

ijk

r

ijkxr
IIhh
,,

jj +=+ xx . (13.36) 

where: k ∈{a, b, c}. 

Node (load) currents are linear function of state variables and they can be 

calculated from Kirchhoff Current Law. The concise form for describing that uses the 

node-branch incidence matrix A defined as:  

 








 
1, if branch j is directed away from node i 

aij =  –1, if branch j is directed towards from node i 

 0, if branch j is not incident to node i 

The relation between node currents and branch currents (state variables) is:  

 ( ) ( ) x

xi

r

ri hh IAxIAx ',' == , (13.37) 

where:  [ ]Tr
n

rrr
IIII K21= – a vector of real part of branch currents, 

[ ]Tx

n

xxx
IIII K

21
= – a vector of imagine part of branch currents, 

A’ – the three phase incidence matrix with the following terms:  

 








 
I3×3, if branch j is directed away from node i 

a’ij =  –I3×3, if branch j is directed towards from node i 

 03×3, if branch j is not incident to node i 

 

Current magnitude measurements are directly incorporated into the state 

estimation. However, it is non-linear function of state variables:  

 ( ) ( ) ( )2,

2

,,

x

ijk

r

ijkijkC IIIh +==x , (13.38) 

Voltage measurements are neglected in measurement vector, except the main 

feeder voltage to be the reference, because they do not have significant influence on 

state estimation results quality.  
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Jacobi matrix derivation 

Linear form of measurement functions simplifies considerably the Jacobi matrix 

derivation. The structure of the Jacobi matrix is as follows:  
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


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=
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H
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H
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H , (13.39) 

The terms of HP are defined as:  

 








 
I3×3, if i-th active power flow measurement is adjacent to branch j 

hp,ij =   

 03×3, if i-th active power flow measurement is not adjacent to branch j 

Note, that HP = HQ holds by assumption that the power measurements are in pairs. 

Matrix H
r
L corresponds to load pseudomeasurements and node equivalent currents. 

It is defined as three phase incidence matrix A’. Also, H
r
L = H

x
L holds.  

Current magnitude measurement introduce nonlinearity and coupling between real 

and imaginary parts of current phasor. The non zero terms of H
r
I are as follows:  
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and for matrix H
x
I : 
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,

2

,

2

,
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,

sinφ=
+

=
∂

∂ x
, (13.41) 

I
r
k,ij 

jI
x
k,ij 

Ik,ij 

Fig. 13.8. Current phasor for phase k in flowing through branch connecting nodes i and j. 
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where: 









=

r

ijk

x

ijk

ijk
I

I

,

,

, tanarcφ . 

Objective function  

The objective function for state estimation can be decomposed into three terms as it 

can be seen in the following fomula:  

( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )[ ]
( )[ ] ( ) ( )[ ]m

C
mmTm

C
m

x
x

xxTx
x

xr
r

rrTr
r

r

hh

hhhhJ

IzRIz

IzRIzIzRIzx

−−+

+−−+−−=

−

−−

1

11

, (13.42) 

where: z
r
, z

x 
–  measurement vectors related to the real and imaginary parts of 

equivalent current phasors obtained from actual power flow 

measurements and load pseudo- measurements,  

z
m
  –  a vector of current magnitude measurements,  

h(I
r
), h(I

x
), h(I

m
) – measurement functions involving real, imaginary parts and 

magnitudes of current phasors,  

R
r
, R

x
, R

m
 – measurement error covariance matrices.  

First term of objective function relates to the power flow measurements and the 

second to measured current magnitude. The notation for phases is neglected for better 

clarity.  

State estimation algorithm 

Computation of branch current estimates is performed in the following steps:  

1. Initialization of the iteration counter k=0. 
2. Initialization of the voltages with use of the flat start or with use measured 

values if available.  

3. Calculation of equivalent currents with use of the voltages V(k), power flows 
measurements and load pseudomeasurements.  

4. Forming the Jacobi and gain matrix. 
5. Calculation of HT

R
-1
(z-h(x)) and decomposition of the gain matrix for finding 

∆x. 
6. Check for convergence, max(|∆x |)<ε or k>kmax? 

7. If yes stop, otherwise updating the solution x(k+1)= x(k)+∆x and the iteration 
counter k=k+1. For given branch currents update the voltages by the forward 

sweep procedure. Go to step 3.  

Note, that when the Jacobi and gain matrices are formed some problem with 

current measurement occurs, because its phase is not available. It is proposed to 

eliminate current measurements (without losing the observability) and perform first 

few iterations. Then the estimated current phase and measured magnitude are included 

into the Jacobi matrix and the state estimation is re-calculated. 

232



 

 

Modifications of the described method are concerned on maintaining the Jacobi 

and gain matrix with constant terms and phase decoupling.  

Example 13.2 

For the distribution network shown in Fig. 13.6 in Example 13.1 find the state 

estimate with use of branch current based state estimation formulation.  

Active power flow measurements: Pa,1 2 = 0.082   Pb1 2 = 0.022   Pc1 2 = 0.028  

Reactive power flow measurements: Qa,1 2 = 0.017   Qb1 2 = 0.006   Qc1 2 = 0.007  

The Jacobi matrix has the following structure:  

 I
r
a,12 I

r
b,12 I

r
c,12 I

r
a,23 I

r
b,23 I

r
c,23 I

x
a,12 I

x
b,12 I

x
c,12 I

x
a,23

 
I
x
b,23 I

x
c,23 

Pa,12 1            
Pa,12  1           
Pb,12   1          
Pa,1 –1            
Pb,1  –1           
Pc,1   –1          
Pa,2 1   –1         
Pb,2  1   –1        
Pc,2   1   –1       
Pa,3    1         
Pb,3     1        
Pc,3      1       
Qa,12       1      
Qb,12        1     
Qc,12         1    
Qa,1       –1      
Qb,1        –1     
Qc,1         –1    
Qa,2       1   –1   
Qb,2        1   –1  
Qc,2         1   –1 
Qa,3          1   
Qb,3           1  
Qc,3            1 

 

Note that the Jacobi matrix contains only constant term and its recalculation during 

iterations is not needed.  

During each iteration, once the voltages are updated the load pseudomeasurements 

and power flow are also modified to obtain new equivalent current values (equation 

(13.5)).  

Final branch current estimates converted into polar form are shown in Tab. 13.6.  
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Tab. 13.6. State estimation results.  

Branch, i j ijaI ,
ˆ , 

p.u. 

ija,φ̂ ,  

deg 

ijbI ,
ˆ ,  

p.u. 

ijb,φ̂ ,  

deg 

ijcI ,
ˆ ,  

p.u. 

ijc,φ̂ ,  

deg 

1-2 0.0839 -12.0865 0.0230 103.3013 0.0290 -135.1820 

2-3 0.0186 -14.9013 0.0186 105.0698 0.0186 -134.9263 

13.4.3. ESTIMATION 

BY BACKWARD-FORWARD SWEEP LOAD FLOW CALCULATIONS 

Load flow based state estimation methods use backward-forward sweep in three-

phase networks with radial configuration. Conventional weighted lest squares methods 

suffer form ill-conditioning of the gain and Jacobi matrices. The backward-forward 

scheme is usually much more robust to low R/X values and fast in convergence.  

Scheme of simple radial distribution network is shown in Fig. 13.9. For better 

legibility single phase representation is used.  

 
Fig. 13.9. Radial distribution network scheme.   

Initially the node voltage magnitudes are set to the measured values if available, 

otherwise the flat starting point is applied.  

To calculate node voltages and branch current the following equation based on 

Kirchhoff laws can be written:  

 ,1,,, −+= LkabckabcLkabc III  (13.43) 

 Lkabckabckabckabc ,,,1, IZVV +=+ , (13.44) 

where:  Iabc,m – a vector of phase currents at the node m,  

∑
=

=
k

m

mabcLkabc

1

,, II – a vector of phase currents in the branch k,  

Zabc,k – an impedance matrix for the section corresponding to the branch k, 

k ∈ {1, 2, …, n}. 

n+1 k+1 k k–1 2 1 
Zk Zk-1 Z1 

ILk ILk-1 I1 

Sk+1 Sk Sk-1 S2 S1 
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The node current is calculated from:  
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where: k = 1, 2, …, n. 

Hence, the nodal voltages can be obtained:  
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 (13.46) 

Analytical solution of the equation (13.46) is difficult and the iterative method are 

applied to solve it. To maintain observablity it is assumed that load 

pseudomeasurements for all nodes are available.  

Backward sweep 

First, the initial voltage at node 1 is set and node current is calculated. Current in 

branch connecting nodes 1 and 2 is equal to the node current. Next, voltage node 2 is 

calculated with equation (13.46). Current in branch connecting nodes 2 and 3 is 

calculated with equation (13.43) as sum of node current in node 2 and branch current 

of former branch. Once the branch current is calculated , the voltage at node 3 can be 

found. The propagation moves towards the main feeder until node n is reached. Then 

all branch currents are calculated.  

Forward sweep 

Having branch current calculated during forward sweep voltages at each node 

starting from main feeder can be calculated. The voltage magnitude of main source is 

set to measured value. Phase angles are assumed as the reference: 

 [ ]T
nabc

3/23/20
1,

ππθ −=+ . (13.47) 

The node voltages are calculated starting from feeder with use of:  

 Lkabckabckabckabc ,,1,,
IZVV −= + , (13.48) 

Once the node 1 is reached all the node voltages are available.  
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Convergence condition  

The steps in backward and forward sweep are performed during each iteration. The 

convergence condition is that, the voltage magnitudes are compared with previous 

iteration:  

 ( ) ε<− − )1(

,

)(

,
max

i

kabc

i

kabc VV , k=1, 2, …, n + 1, (13.49) 

where: 
)(

,

i

kabcV  - a voltage magnitude vector at the node k for i-th iteration.  

If the voltage mismatches exceeds the assumed threshold the computation are 

continued, otherwise stop. Having node voltages calculated all branch currents, real 

and reactive power flows, losses can be calculated.  

 

 

Load pseudomeasurement determination. Flat starting point, k=0 

Forward sweep to calculate node voltages and loads with use of branch 

currents calculated in previous step. k=k+1  

max|V
(k+1)

 - V
(k)
| < ε or 

            k>kmax ? 

N 

Y 

STOP 

START 

Backward sweep to calculate branch currents and flows  

Detection of bad data. Removed bad data replaced by 

pseudomeasurements 

Fig. 13.10. Flowchart of backward-forward distribution state estimation. 

236



 

 

Measurement handling and bad data detection  

The calculated values are compared with measurements: voltages, branch currents 

and power flows. If the difference exceeds the assumed threshold the measurement is 

suspected as bad data and replaced by calculated value.  

Example 13.3 

For the radial system shown in Fig. 13.6 find the node voltages and branch currents 

estimates with use of the backward-forward sweep methods. 

 
 

Branch impedance/admittance parameters:  

















== −

j6.1727 + 2.4388j3.2579 + 0.4132j3.2579 + 0.4132

j3.2579 + 0.4132j6.1727 + 2.4388j3.2579 + 0.4132

j3.2579 + 0.4132j3.2579 + 0.4132j6.1727 + 2.4388

10 3

32,21, abcabc ZZ , 
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
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



==

j1.7887 - 1.1352j0.5248 + 0.4725-j0.5248 + 0.4725-

j0.5248 + 0.4725-j1.7887 - 1.1352j0.5248 + 0.4725-

j0.5248 + 0.4725-j0.5248 + 0.4725-j1.7887 - 1.1352

10232,21, abcabc YY . 

 

Load pseudomeasurements obtained from load estimation step are in Tab. 13.3. 

Tab. 13.7. Load pseudomeasurements for network in Fig. 13.6.  

i 
Pa,I, 

p.u. 

Qa,i, 

p.u. 

Pb,i, 

p.u. 

Qb,i, 

p.u. 

Pc,i, 

p.u. 

Qc,i, 

p.u. 

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.0640 0.0128 0.0040 0.0018 0.0010 0.0028 

1 0.0180 0.0048 0.0180 0.0048 0.0180 0.0048 

 

Voltage at main feeder as reference:  ( ) ( )[ ]TV 3/2jexp3/2jexp10.13 ππ −=  

Convergence criterion is assumed as max(|∆x |) < 10-4. 
 

3 
2 1 

Fig. 13.11. Example simple radial distribution system. • voltage measurement. 

1 2 
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1. Backward sweep  

The voltage at node 1 is set to the flat start value:  
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Voltage in node 2: 
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Load current in node 2 
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Branch current  
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Voltage in node 3: 
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2. Forward sweep  

Note, that the f in superscript denotes forward direction of sweep.  

Node 3 is considered as reference and V
(1)

abc,3 and needs to be replaced by reference 

voltage. The remaining node voltages are updated with use of branch currents 

calculated in forward sweep:  
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The convergence checking:  
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The convergence is reaches after one iteration. Otherwise the calculations needs to 

be repeated for updated voltage values until meeting the performance.  

Backward-forward sweep algorithm is very fast and efficient for state estimation 

and load flow calculations in radial feeders.  

PROBLEMS 

13.1. Calculate state estimation for radial distribution system with lateral link as 

shown in Fig. P.13.1 with the use of three phase WLS node voltage 

formulation. 

 
Branch are assumed to be three phase line sections with impedance/admittance 

parameters (in p.u.):  

1 
2 

3 

Fig. P.13.1. Radial distribution system with laterals. • - voltage magnitude measurement.  
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42,32,21, abcabcabc YYY

. 

Voltage measurement at main feeder (in p.u.):  

( ) ( )[ ]TV 3/2jexp3/2jexp10.11 ππ −= .  

Measurements weights (elements of R matrix) are set to 1.  

Convergence criterion is assumed as max(|∆x |) < 10-3. 
Load psedomeasurements are shown in Tab. P.13.1. 

Tab. P.13.1. Load pseudomeasurements.  

i 
Pa,i, 

p.u. 

Qa,i, 

p.u. 

Pb,i, 

p.u. 

Qb,i, 

p.u. 

Pc,i, 

p.u. 

Qc,i, 

p.u. 

1 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.060 0.015 0.004 0.002 0.001 0.002 

4 0.020 0.004 0.020 0.004 0.020 0.004 

 

13.2. Calculate state estimation for the distribution system described in problem 

13.1, as shown in Fig. P.13.2 with WLS branch current as state variables.  

Voltage at main feeder as reference (in p.u.):  

( ) ( )[ ]TV 3/2jexp3/2jexp10.11 ππ −=  

Power flow in branch 1-2: Pa,1 2 = Pb,1 2 = Pc,1 2 = 0.080,  

Qa,1 2 = Qb,1 2 = Qc,1 2 = 0.017 

Measurements weights (elements of R matrix) are set to 1.  

Convergence criterion is assumed as max(|∆x |) < 10-3. 
Load pseudomeasurements are shown in Tab. P.13.2.  
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Tab. P.13.2. Load pseudomeasurements (in p.u.).  

i 
Pa,i, 

p.u 

Qa,i, 

p.u 

Pb,i, 

p.u 

Qb,i, 

p.u 

Pc,i, 

p.u 

Qc,i, 

p.u 

1 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.064 0.0128 0.004 0.0018 0.001 0.0028 

4 0.018 0.0048 0.018 0.0048 0.018 0.0048 
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14. ESTIMATION OF LOADS IN DISTRIBUTION SYSTEM 

The procedure of load estimation in distribution power systems provides static real 

and reactive load estimates for each node in the system given synchronized 

measurements [14.1] – [14.10 ].  

These procedures require possession of such data as:  

• customer information (type, location, etc.), 

• historical data  (billing data, monthly power consumption in kWh, etc.), 

• load forecasts  (at the 5-minute, 15-minute and hourly basis),  

• load profiles, 

•  real-time measurements:  

– load data,   

– bus voltages, 

• switch status, 

• control device status/settings.  

In load estimation for power distribution systems the following issues are 

considered:  

− the load-driven nature of power distribution system: there is no need to 
maintain system voltages if no loads are connected,  

− the interdependence between system states and loads,  
− three-phase modelling,  
− operating and loading constraints,  
− on-line measurements.  
Methods for load estimation can be classified as follows: 

− simple load estimation methods [14.4 ],  
− Distribution State Estimation (DSE) based methods [14.3], [14.9], [14.10],  
− statistical load modelling techniques [14.2], [14.6],  
− fuzzy set based methods[14.1], [14.5], [14.7],  
− a Bayesian linear model method [14.8]. 

14.1. SIMPLE LOAD ESTIMATION METHODS 

Simple load estimation methods are based on historic data or operator’s experience 

[14.4]. They allocate load to individual line sections, using: 

− monthly peak load readings,  
− transformer peak load analysis,  
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− existing diversified load curves. 
Such methods are more suitable for peak load estimation. They give results which 

are affected by diversity of load groups and coincidence of peak loads.  

14.2. DISTRIBUTION STATE ESTIMATION BASED METHODS 

There are two approaches used in DSE based methods [14.3], [14.9], [14.10]:  

− distribution load estimation is a by-product of DSE, 
− distribution load estimation is a beginning step in a two-step method,  which 

combines load allocation and DSE techniques. 

The two-step method with use of distribution state estimation assumes that:  

− the network is balanced, and single phase analysis is used,  
− in the first step, loads are allocated according to billing data and typical load 

curves,  

− in the second step, apart from on-line measurements,  the rough load estimates 
from the first step  are used as load pseudo-measurements,  

− in the second step, WLS (Weighted Least Squares) state estimation is 
performed,  

− real and reactive loads are computed based on state estimates. 

14.2.1. EXAMPLE OF LOAD ESTIMATION WITH THE USE OF WLS 

ESTIMATION METHODS  

Weighted least square is also used for load estimation [14.3], [14.9], [14.10]. State 

variable vector comprises conventional system states and parameters related to the 

loads. For the loads the following relationship is taken into account:  

 , (14.1) 

where:  - a vector of load estimates,  

 - an initial load vector,  

00 ~~~
LLL
SΛSS +=

[ ]T
nLLLnLLLL

QQQPPP
,2,1,,2,1,

~~~~~~~
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Λ  - load parameter matrix,  

n – a number of nodes. 

In practical conditions, load parameters and other quantities (branch current, 

voltages, loads) may vary in specific range and load estimation task can be considered 

as constrained optimization problem. Load estimation can be expressed as:  

 ( ) ( )[ ] ( )[ ]λV,zRλV,zλV, hhJ
T −−= −1

min ,  (14.2) 

subject to:  

, 

 for each bus k, 

 for each bus k, 

 for each bus k, 

 for each feader i,, 

where:  z  – a measurement vector,  

h(V, λλλλ) – a measurement function,  
V  – a node voltage vector;  

[ ] TQ

n

QP

n

P λλλλ= LK 11λ ,  

R  – a covariance matrix.  

The problem can be solved with use of sequential unconstrained penalty function 

technique.  

14.3. STATISTICAL LOAD MODELLING TECHNIQUE 

Statistical load modelling technique expresses the variation of active power 

demand in radial networks [14.2], [14.6]. Such methods allow for a measure of 

uncertainty in load estimations and are used for probabilistic distribution state 

estimation in radial networks. They assume that:  

( ) 0=λV,f
maxmin

kkk
λλλ ≤≤

( ) maxmin

kkk
VVV ≤≤ λV,

( ) maxmin

kkk
III ≤≤ λV,

( ) ( ) max222

kkk
SQP ≤+ λV,λV,
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− the network is balanced, single phase analysis is used, and no operating and 

loading constraints are considered,  

− class-specific daily load curves that model the behaviour of loads as a function 

of season, day-of-week, hour, and temperature, are used.  

The considered methods have performance characteristics, which significantly 

depend upon  the time of the day, the size of the network, the number of the customer 

groups and the locations of each group of loads.  

14.3.2. EXAMPLE OF STATISTICAL LOAD ESTIMATION  

A simple method of the load estimation concerns on using substation power flows 

to different load points by using weighting coefficients resulting from transformer 

capacity [14.2]:  

 , (14.3) 

where: i ∈Im – a number of nodes,  

Im  – a set of nodes served by power flowing through the node m,  

Pi  – a real power demand at the node i,  

Pm  – a real power flow measurement at the node m,  

TCi – a transformer capacity at the node i.  

However, transformer capacity is not recognized as adequate for estimation and 

an average daily customer is introduced:  

 . (14.4) 

where: ADCi – the average daily customer at the node i usually defined as monthly 

energy consumption divided by number of days in a billing period.  

To take into consideration real-time load changes the load model factor LMF stated 

to group of customers is used:  

 , (14.5) 

where: Ic  – a set of load classes,  
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t  – a time of analysis,  

ADCi,j  – a demand consumption at the node i for a load belonging to class j,  

LMFj,t  – a load model factor for the group j at the time t.  

The factor LMF is derived from normalized daily load curves obtained from 

historical-data statistical analysis made for all the distinguished customer classes. 

Accuracy of the statistical approach depends on time of the day, number of customers 

belonging to the certain class, availability of historical data etc. A reactive power of 

a load can be estimated by an approximate power factor.  

14.4. FUZZY SET BASED METHODS 

The characteristic feature of the methods is modelling system uncertainty and also 

inexactness and random nature of customer demands [14.1], [14.5], [14.7]. 

One can distinguish the following approaches: 

− application of a fuzzy regression model,  

− utilization of operator experience and expert knowledge,  

− application of neural network and fuzzy set techniques. 

14.4.1. APPLICATION OF A FUZZY REGRESSION MODEL 

The following characteristic features of the approach based on application of a 

fuzzy regression model can be enumerated: 

− the applied model expresses the correlation between  a substation peak active 

load  and supplied customer active loads in radial networks,  

− single phase modelling is used in radial distribution systems,  

− system voltages, operating and loading constraints  are not considered.  

14.4.2. UTILIZATION OF OPERATOR EXPERIENCE  

AND EXPERT KNOWLEDGE 

The approach, which assumes utilization of operator experience and expert 

knowledge, can be characterized as follows: 

1. Linguistic description for the size of loads is utilized.  

2. The load current at a bus is estimated as a fuzzy variable described by the 
membership function.  

3. Single phase modelling is used in radial distribution systems.   

4. System voltages, operating and loading constraints  are not considered.  
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14.4.3. APPLICATION OF NEURAL NETWORK  

AND FUZZY SET TECHNIQUES 

The approach, based on application of neural network and fuzzy set techniques is 

proposed for active demand estimation in radial networks. Neural network and fuzzy 

set techniques are applied to generate standard load curves for classes of customers 

based on their monthly energy consumption and a large set of data of load curves 

obtained from measurement data. Loading constraints are incorporated in the method. 

As it is in the case of the previously-presented approaches also in the case of the 

considered approach, system voltages and operating constraints are not considered. 

Actual real power losses are neglected in the estimator. 

14.5. OTHER METHODS FOR LOAD ESTIMATION 

Other methods for load estimation are: 

− Bayesian estimator used to estimate normalized load curves [14.8],  

− a weighted least absolute value estimation method introduced to decrease the 

effect of gross errors in measurements [14.3]. 

14.6. REMARKS ON METHODS FOR LOAD ESTIMATION  

Generally, the methods can be categorized into two groups by problem 

formulations:  

− load estimation is formulated as  a post-processing procedure of state 

estimation, 

− power flows or customer demands are defined as the estimated variables of the 

load estimation problem. 

In the second case, load estimation is a procedure which is independent from DSE.  

Characterising the first group of the methods for load estimation, one can state: 

1. The DSE based methods belong to this group. 

2. Loads decide about system states, therefore methodology which treats load 
estimation as a by-product of DSE, may not provide satisfactory results. 

Characteristics of the second group of the methods for load estimation are as 

follows:  

• In this group, there are: 

– statistical load modelling methods,  

– the Bayesian linear model method,  

– fuzzy set based methods,  

– the WLAV estimation method.  
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• The loads (power flow/customer demand) are estimated directly.  

• These methods separate loads from system states, which simplifies the 

interdependence between system states and loads. 

 

General remarks on methods for load estimation 

None of the methods formally considers operating and loading constraints, such as 

power flow equations and thermal limits of conductors/cables/switches. 

1. Most of the methods are designed for radial networks or exploit the radial 
structure.  

2. None of the methods rigorously studies the effects of the radial structure on 
the problem of load estimation and takes advantage of them. 

PROBLEMS 

14.1. What is a purpose of estimation of loads in distribution system? 

14.2. What data are inputs for procedures of estimation of loads in distribution 

system? 

14.3. What issues are considered in load estimation for power distribution systems? 

14.4. How can we classify methods for load estimation for power distribution 

systems? 

14.5. Characterize simple load estimation methods. 

14.6. What are main features of distribution state estimation based methods? 

14.7. Shortly describe statistical load modelling technique. 

14.8. Give different solution of load estimation for power distribution systems with 

the use of the idea of fuzzy sets. 
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