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1. INTRODUCTION.
GENERAL PRINCIPLES OF MODELLING.

In the most general sense a model is anything used in any way to represent
anything else [1.1]-[1.5]. There are also other definitions of the term “model”, e.g.:

1. A model is a simplified representation used to explain the workings of a
real world system or event.

2. A model is an object which we study, not for its intrinsic interest, but
because it is a formalized or simplified representation of a class of
phenomena which can be studied easily.

The reasons of building models are as follows:

1. A model helps us to understand problem.

2. A model makes easier finding possible ways of solving problem.

3. A model helps us to assess possible directions of activities.

The “goodness” of a model depends not on how well it might serve our purposes
but on the degree to which it tells the truth.

It should be underlined that if a model is based upon observed data, especially
physical data about the real world, then the model must be equally real.

To measure the validity (i.e. the reality) of a model, several criteria are established.

1.1. TYPES OF MODELS

One can distinguish the following types of models:
— concrete and abstract,
— physical and mathematical,
— descriptive and prescriptive,
— analogue and symbolic,

1.1.1. CONCRETE MODEL

A concrete model is a replica of reality.

1.1.2. ABSTRACT MODEL

An abstract model (in another words a conceptual model) is a model that uses ideas
to represent other ideas.
The abstract model is:
— asynthetic presentation of the most essential elements of reality,



— atheoretical construct that represents something, with a set of variables and a set
of logical and quantitative relationships between them,

— constructed to enable reasoning within an idealized logical framework about
certain processes.

1.1.3. PHYSICAL MODEL

A physical model is a physical object that mimics the system.

1.1.4. MATHEMATICAL MODEL

A description of a system where the relationships are expressed in mathematical
form is called as a mathematical model.
Classifying mathematical models, one can distinguish the following models:
— static and dynamic,
— deterministic and probabilistic,
— linear and nonlinear.

Static models
A static model presents reality at a specific time instant.

Dynamic models
A dynamic model describes the behaviour of reality in terms of how one qualitative
state can turn into another.

Deterministic models

The deterministic model is a mathematical model in which outcomes are precisely
determined through known relationships among states and events, without any room
for random variation. In such models, a given input will always produce the same
output.

Probabilistic models

A statistical (probabilistic) model is a set of mathematical equations which describe
the behaviour of an object of study in terms of random variables and their associated
probability distributions.



Linear models

If all the operators in a mathematical model exhibit linearity, such a model is called
the linear model.
Notes:

The question of linearity and nonlinearity is dependent on context. Linear models
may have nonlinear expressions in them.

Nonlinear models
In nonlinear models, some of the operators exhibit nonlinearity.

1.1.5. DESCRIPTIVE MODEL
A descriptive model is a physical, conceptual or mathematical model that describes
situations as they are or as they actually appear.
1.1.6. PRESCRIPTIVE MODEL
A prescriptive model is a model that suggests what ought to be done (how things
should work) according to some assumptions or standards.

1.1.7. ANALOGUE MODEL

An analogue model explains a phenomenon by reference to some other occurrence.

1.1.8. SYMBOLIC MODEL

Symbolic model contains mathematical symbols used to describe the status of
variables at a given time and to define the manner in which they change and interact.
Symbolic models are constructed using either a natural or formal language.

1.2. CLASSIFICATION OF MODELS OF POWER SYSTEMS -
DOMAIN POINT OF VIEW

The following models of power systems can be distinguished:
— phase and symmetrical component models,
— one- and three-phase models.



1.2.1. PHASE MODELS

A phase model is a representation of a power system in the natural phase
coordinates.

1.2.2. SYMMETRICAL COMPONENT MODELS

A symmetrical component model describes a three-phase power system with use of
3 symmetrical sets of balanced phasors. These sets are the sets of’
— positive sequence components — ABC components,
— negative sequence components — CBA components,
—  Zero sequence components.

1.2.3. SINGLE PHASE MODELS

A single phase model is the one-phase representation of a three-phase power
system.

1.2.4. THREE-PHASE MODELS

A three-phase model is the three-phase representation developed with strong
reference to the physical structure of the equipment in actual three-phase power
system. It should be underlined, that three-phase model is built for a power system
exhibiting a considerable degree of geometric unbalance or load unbalance.

1.3. MODELLING

Modelling is the process of generating a model. Two models of the same
phenomenon may be essentially different. It should be also stressed that users of a
model need to understand the model's original purpose and the assumptions of its
validity.

Modelling processes can be classified as follows:

— mathematical modelling,
— physical modelling

1.3.1. MATHEMATICAL MODELLING

The mathematical modelling is a process of developing a mathematical model.
Mathematical modelling is the use of mathematics to:
— describe real-world phenomena,
— investigate important questions about the observed world,

10



— explain real-world phenomena,

— testideas,

— make predictions about the real world.
The aim of mathematical modelling is not to produce the most comprehensive,
descriptive model but to produce the simplest possible model that incorporates the
major features of the phenomenon of interest.
A process of mathematical modelling is presented in the Fig. 1.1.

Formulation
Real-world 3
data Model
Test Analysis
Y

. Interpretation .
Predictions/ : Mathematical
explanations conclusions

Fig. 1.1. Process of mathematical modelling.

1.3.2. PHYSICAL MODELLING

A typical procedure of physical modelling is cutting a system into subsystems and
accounting for the behaviour at the interfaces.
It can be noted that physical modelling is also used for mathematical models
built/structured in the same way as physical models. The considered modelling is very
convenient for building reusable model libraries.

PROBLEMS

What do you mean by model?

What are the reasons for building models?

1.3.  Bring out the differences between:
a) concrete vs. abstract models,
b) physical vs. mathematical models,
c¢) static vs. dynamic models,
d) deterministic vs. probabilistic models,
e) linear vs. nonlinear models,

11



1.4.

1.5.

[1.1]

[1.2]
[1.3]

[1.4]
[1.5]

12

f) descriptive vs. prescriptive models,
g) analogue vs. symbolic models,
h) phase vs. symmetrical component models,
i) one- vs. three-phase models.
What do you mean by modelling? Describe one application of modelling in

electrical power engineering.
Differentiate between mathematical and physical modelling.

REFERENCES

E.A. Bender, An Introduction to Mathematical Modelling. John Wiley &
Sons, New York 1978.

B. S. Bennett, Simulation Fundamentals. Prentice-Hall, 1995.

AM. Law, W.D. Kelton, Simulation Modelling & Analysis. McGraw-Hill,
New York 1982.

J. Ledin, Simulation Engineering. CMP Books, 2001.

M. Pidd, Systems Modelling: Theory and Practice. John Wiley & Sons, 2004.



2. MODELS FOR STEADY STATE ANALYSES.
SCOPE OF UTILIZATION

2.1. INTRODUCTION

Power system modelling bases on several assumptions: bus loads and branch
power flows are three phase and balanced, all series and shunt devices are symmetrical
in the three phase. These assumptions allow for a simplification of the three phase
power system into single phase model. Nevertheless, these simplifications are fully
substantiated because such modelling is accurate enough for steady state analyses of
power system [2.1]-[2.5]. Furthermore all network data are expressed in the per-unit
system. In order to convert into the per-unit system it is necessary to assume one base
apparent power S, for a whole power system and the base voltage V;, for an individual
level of transformation. The remaining base values as the base current /,, the base
impedance Z, or the base admittance can be obtained in the following way [2.5]:

1’1:Sb

_ . 2.1)
S, z, " B,

2.2. BASIC COMPONENTS FOR STEADY STATE ANALYSIS

2.2.1. TRANSMISSION LINES

Transmission lines are described by the equivalent [I-circuit which is defined by
two complex parameters: the series impedance Z, , and the shunt admittance Y ,,

km 2

where:

ka = ka = ka + ]ka 2

ka = ka_l = ; > (22)
ka + ]ka

Yo =Gy + jBy,.

Series elements represent resistance and reactance of line. Shunt elements are
related with discharge and capacity between lines and ground. All parameters for
a transmission line are positive. Sometimes, transmission line is modelled with the use
of only the series branch. Expression of line parameters in terms of per-unit can be
made in the following way.

13



ka(pu) :ka /Zb

-1
ka(pu) = ka ’ Zb '
Xsh(pu) = Xsh ’ Zb

Fig. 2.1. Two port I1-model of transmission line

2.2.2. TRANSFORMERS

Two winding transformers

kl’@‘ln

Fig. 2.2. Two winding transformer

14

(2.3)



a) b)

ka ka
Kk S m k m
Zsh
c) d)
ka ka
k % 2 2 Fm
Xsh

Fig. 2.3. Equivalent circuit for a transformer
a) the model without shunt elements b) the I' -model c) the T-model d) the I[T-model.

2

W p ARy 7 g, (2:4)
km 100 SN km SN SN m

GshZAPF‘? B —ASN (2.5)

v, T 100y,

where: v,  —arated value of the short circuit voltage in percentage terms,

APc, — total winding active losses,

APr, — total magnetic active losses,

I, —anidle current in percent of the rated current of the transformer.

Equivalent parameters of transformers are related to a single phase. They can be

related to the primary or secondary voltage and the nominal power of a transformer. In
practical computations, these parameters are converted into the per-unit system. For
the per-unit system above parameters can be calculated in the following way:

15



W L v KOS v S,

) 7100 S, Z, 100 S, ¥, 100 S,

AP Vy" 1 APy Vy' oS, AP, S,
km(l’u) SN SN Zb SN SN VN2 SN SN ’

2
Xty =\ Zinto) ~ Rento

2
2
v.,> AP
Fe " N Fe

1
Gsh u) Y
R AN

2
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Fig. 2.4. The three winding transformer.

Fig. 2.5. The equivalent circuit for a three winding transformer.
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Off-nominal tap transformers and phase shifters
Transformers with off-nominal taps and phase shifters can be modelled as an ideal

transformer with complex tap ¢, =1, e’ % connected with two port circuit (II-

model ,T-model or I'-model) or series impedance when iron loss and magnetizing
reactance is neglected. For practical usage II-model seems to be the best choice. The
following advantages can be enumerated:

— can be used to model also transmission line (#,=1). It must be remembered that
shunt susceptance, when it is considered, for transmission lines is positive and
negative for transformers,

— proper arrangement of shunt reactors allows to build another model of
transformers,

— proper arrangement of three of them and shunt reactors allows to model three
winding transformer.

Fig. 2.6. The equivalent I1-circuit for an off-nominal tap transformer or a phase shifter

Series element represents power losses in the winding (real part) and flux leakage
(imaginary part). Shunt branches represent iron loss (real part) and magnetizing
reactance (imaginary part).

The nodal equations for the equivalent Il-circuit can be derived, using the
following relationship with the current flows /, and 7,

X sh

+ p—
ln _ ka 2 ka K,, . (21 1)
lm + th Km

- X km X km 2

Substituting for [, and V., according to the formulae:

ln :zkm 'Ik

L, 2.12)
Kﬂ :Kk /zkm
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we obtain the following relationship among Iy, I,,, Vi and V,,:

y +Lh t,. -y [t
|:Iki|: Zkm 2 km L fom | =km |:Vki| (213)

Y

sh

2

—m —m

B ykm ~km ka +

The new relationships for parameters can be derived:

lkm = _lk > (214)
l,=-1,, (2.15)
Y
lap _ Zkm
Y =7 (2.16)
Zkm
Y
tap _ Zkm
Y, = (2.17)
Zkm
a Y
y, = Wt =1) 2 [t (2.18)
' tkm
v =By, )y, (2.19)
Z_sh,m 2 Zkm 2 km

%

Fig. 2.7. The equivalent circuit of an off-nominal tap transformer or a phase shifter

2.2.3. SHUNT CAPACITORS AND REACTORS

Shunt capacitors or reactors control voltage and reactive power. They are modelled
as shunt susceptance at the corresponding bus. Determination of type of shunt element
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depends on sign of the susceptance. It will be positive for shunt capacitor and negative
for reactor.

2.2.4. LOADS AND GENERATORS

Loads and generators are modeled as equivalent complex power injections.
Therefore they are not represented in the network model.

2.3. BUILDING THE NETWORK MODEL

The above-described components can be used to build the model of power system.
There are many alternative ways of describing power system to comply with
Kirchhoft’s laws. The most popular are mesh and nodal method. However the latter
one has appeared to be more suitable for digital computer work.

The nodal method has the following advantages:

— very simple the numbering of nodes,

— easy data preparation,

— usually less variables and equations than with the mesh method,

— no difficulties for network crossover branches,

— parallel branches do not increase the number of variables or equations,

— node voltages are available directly from solution, and branch currents
are easily calculated,

— off-nominal transformer taps can be easily presented.

Set of equations for power system according to the nodal method has the following
form:

l] le ZIZ ZIN Zl
po| o Yo av 1 O (2.20)
lN XNI XNZ . XNN VN
where: [, — the current injection phasor at the bus £,

Vi —the voltage phasor at the bus £,
Y, —the (k,m) element of the admittance matrix Y,
N  —number of buses.

2.3.1. ADMITTANCE MATRIX

The admittance matrix Y has the following properties:
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— in general, it is complex, and can be written as G + /B,

— it is structurally symmetrical and numerical if there is no phase shifters
in a power system,

— itis sparse,
— it is non-singular if each island of a power system has at least one shunt
connection to the ground.
The admittance matrix is formulated in the following way:

N M
V=20, 20, @21)

m=1 Jj=1
ka :_ykmmp k5m:1:25“'N k;tm, (222)
Yo ==y km=12..N k=m, (2.23)

where: M-number of shunt elements at the bus £.

Example 2.1

In Fig.2.8, the considered 4-bus power system is presented. Network data and the
steady state bus voltages are listed below. The susceptance of the shunt capacitor at
bus 3 is given as 0.5 p.u.

1 2 4
t:1

©) )

3-@

Fig. 2.8. One-line diagram of a 4-bus power system
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The parameters of branches are given in Tab.2.1

Tab. 2.1. Data of considered power system

R X B
Bus k Bus m Tap
p-u. p.u p-u.
0.02 0.06 0.20 -
0.02 0.06 0.25 -

0.05 0.10 0.00 -
0.00 0.08 0.00 0.98

N N = =
AW W

The admittance matrix for the considered system is:

10.00— j29.77 —5.00+ j15.00 —5.00+ j15.00 O

~5.00+j15.00 9.00— ;3591 —4.00+ /8.00 j12.75

~5.00+ j15.00 —4.00+ j8.00 9.00— j22.37 0
0 j12.75 0 — j12.50

2.3.2. VOLTAGE PHASOR

Voltage phasor can be considered in the polar and rectangular coordinate system.
In the polar coordinate system, the bus voltage at the A-th bus is considered in the form
V, =V,e’” where V}, 8 — magnitude and phase angle of the voltage respectively.

In the rectangular coordinate system, V', = e, + jf, Where e, f; —areal part and an

imaginary part of the voltage, respectively.

S

Fig. 2.9. The voltage phasor

21



2.3.3. POWER EQUATIONS

For the purposes of the steady states modelling, the following relationships for
active and reactive power injections, active and reactive power flows and bus voltages
can be derived (Fig. 2.7):

P, - j0, =Vi'Y,,.V, (2.24)
Py = jOm = 0o + v, ") v vawiT, (2.25)
By —=JjOu = [— (zh" +zmk’”") zmk’”"]- [z,,f Vi -z,,,*]r, (2.26)

where: P, O, - an active injection and a reactive one at the k-th bus respectively;

Py, Own— an active power flow and a reactive power one between the &-th bus
and the m-th one, respectively;

Yen?  — an admittance of the series branch connecting the k-th bus and the
m-th one,

Yai ¥ — an admittance of the shunt branch at the k-th bus,

Yeum T —an admittance of the shunt branch at the k-th bus,

Y,owr — the k-th row of an admittance matrix,

me k= hkl’XkZ’“"XkN s (227)
V=V V] (2.28)

It must be noted that it is assumed convention that currents or power entering a bus
is positive.

PROBLEMS

2.1. Build the admittance matrix for the power system from example 2.1 if a phase
shifting transformer is used instead of the transformer between the buses 2 and
4. Assume that the phase shift is equal to 30 degrees.

2.2.  Calculate all bus and branch powers in the power system from example 2.1 for
the state vector shown in the Tab. P.2.1, if shunt parameters of branches (i) are
considered, (ii) are not considered.
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[2.1]
[2.2]
[2.3]
[2.4]

[2.5]

Tab. P.2.1. Elements of the state vector of an exemplary power system

V, 6?
bus no.
p-u degrees
1 1.00 0
2 0.99 -1.72
3 0.97 -3.14
4 1.00 -2.86
REFERENCES

J. A. Momoh, Electric Power System Application of Optimization Second
Edition. CRC Press, 2008.

A. Meier, Electric Power Systems: A Conceptual Introduction. John Wiley &
Sons, INC., Hoboken, New Jersey 2006.

A. Abur, A. G. Exposito, Power System State Estimation: Theory and
Implementation. Marcel Dekker, Inc, New York — Basel, 2004.

A. Monticelly, State Estimation in Electric Power Systems: A Generalized
Approach, Massachusetts, Kluwer Academic Publisher, 1999.

Z. Kremens, M. Sobierajski, Analiza systemow elektroenergetycznych. WNT,
Warszawa, 1996.

23



3. MODELS FOR TRANSIENT ANALYSES.
SCOPE OF UTILIZATION

3.1. INTRODUCTION

Electromagnetic transient analysis (transients) plays very important role in power
system operation studies. It provides valuable information on dynamic behavior of
system resulting from various forms of transient phenomena. Transient phenomena in
power systems are caused by change of power network configuration and parameters
such as switching operations, faults, lighting strokes. When transients occur, the
currents and voltages in some parts of the network may many times exceed their
nominal values and may cause malfunction of power network equipment.

The changes of currents, voltages, power and energy during the transients are not
instantaneous because the transient processes are attained by the interchange of energy
stored in the magnetic field of inductances and the electrical field of capacitances. All
transients vanish and, after that new steady-state operation point is established, i.e.
transient describes the circuit behavior between two steady-states. It should be noted
that in case of power system steady state operation system generation and loads
change continuously and the power system never reaches steady-state mode — it
operates in fact in quasi steady-state mode.

Mathematical description of electromagnetic transient has in general a form of set
of first order differential equations based on Kirchhoff’s laws describing circuit
response containing resistances, inductions and capacities in presence of specified
stimulus. Handling general formulation and analysis of the power networks is very
complex due to interactions of electrical, mechanical and thermal phenomena.

Calculation by hand of electromagnetic transients for large scale power systems is
practically very challenging or quite impossible. Since late third decade of the last
century, power systems were modeled with use of their physical models called
transient network analyzers. From the mid of 1960’s the transient simulation with
digital computers has become possible and pure analog transient network analyzers
have been successively replaced by hybrid (analog-digital) or purely digital systems.
First version of EMTP software was proposed by Dommel in early 1960°s [3.4].
Today’s transient simulation software packages are intensively developed, equipped
with user friendly, visual “drag and drop” environment, are capable of graphically
represent the results, export-import data in different formats etc. Key technical
features concern on component library facilities with detailed element modeling,
supporting of load flow and short-circuit studies, electric motors, protection devices,
power electronics and FACTS simulations, flexible and adaptive simulation modes,
time- and frequency (harmonic components) domain analyses etc. Moreover, various
special modules and add-ons are offered as an extension of basic version. To the most
popular simulation software one can be numbered: ATP-EMTP, PSCAD-EMTDC,
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DIgSILENT PowerFactory, Matlab Power System Blockset, PowerWorld Simulator,
PSS/E.

Further part of the chapter concerns on characteristic of transient phenomena,
discrete models of basic circuit elements, formulation and solution of network
equations. A concise description power system equipment is also given in order to
explain the way the network devices are modeled.

3.2. TRANSIENT PHENOMENA IN POWER SYSTEMS

Electric power system consists of large number of various elements operating for
energy generation, transmission, distribution and consumption. In such complex and
wide-are distributed system the great variety of transients can occur and they may
affect not only single elements or small areas, but also entire system. From physical
character point of view the following transient groups can be recognized:

e wave — involving electromagnetic wave propagation,

e clectromagnetic — involving interaction between electric and magnetic
field stored in power system,

e clectromechanic — involving interaction between electrical energy
stored in power system and energy generator rotor motion and
oscillations,

e thermodynamic — involving control phenomena in thermal power
plants.

To the most important electromagnetic transient phenomena one can recognize:

e switching phenomena caused by energization of lines, cables and
transformers, capacitor and reactor switching, circuit breaker operation,
sudden load changes, electrical motor startup, power -electronic
equipment operation etc.,

e faults, e.g. symmetrical and unsymmetrical faults, fault removing,

e transient stability, sub-synchronous resonance,

e lighting overvoltages, e.g. direct and indirect lighting strokes.

Electromagnetic transients in power network involve wide time duration from
microseconds to minute (Fig. 3.1) and wide frequency range from DC to 50 MHz or
even more. Modeling of power network components valid for such wide frequency
range is impossible in practice. Therefore, the applied component models should
correspond to the specific frequency range of certain transient phenomena.
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Fig. 3.1. Duration time (in. sec.) of some transient phenomena.
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Tab. 3.1 contains brief overview of electromagnetic origins and their frequency
ranges. Tab. 3.2 presents the frequency ranges of electrical transients which are
classified into four groups with frequency ranges for which specific models of
components can be stated.

Although time/frequency characteristic consideration for accurate power network
representation is very important it is essential to recognize component non-linearities,
to identify reliable model structure and parameters, to consider their
mutual/distributed nature and frequency dependence.

3.3. DISCRETE MODELS OF ELECTRICAL NETWORKS

Transient calculations cannot be performed without applying digital computers
except to the very simple circuits and with use of classical methods, e.g. Laplace
transformations. Electrical variables in power networks are continuous, however,
digital simulation is discrete in nature. One of the main problems in digital transient
simulation is developing of appropriate models and methods applied for solution of
differential and algebraic equations at discrete time instances.

3.3.1. DISCRETE MODELS OF BASIC ELECTRICAL COMPONENTS

Basic electrical component: resistors, capacitors and inductors need to be
represented in discrete form for computer calculation of transient studies. These
models are applied to formulate discrete model of electrical network suitable for
solving by digital computer with the assumed integration rule and time step.
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Tab. 3.1. Origin of electromagnetic transients and their frequency ranges [3.3].

Origin Frequency
o
Load rejection 0,1 Hz—3 kHz
Fault clearing 50 Hz — 3 kHz
Fault initiation 50 Hz — 20 kHz
Line energization 50 Hz — 20 kHz

Line reclosing

(DC) 50 Hz — 20 kHz

Recovery voltage:

Terminal faults 50 Hz - 20 kHz

Short line faults 50 Hz — 100 kHz
Multiple re-strikes of circuit breakers 10 kHz — 1 MHz
Lightning surges, 10 kHz — 1 MHz

Faults in substations

Disconnector switching

and faults in gas insulated switchgear 100 kHz - 50 MHz

Tab. 3.2. Origin of electromagnetic transients and their frequency ranges [3.3].

Time-domain

Gro L
up characteristic

Frequency range Representation for

Low frequency

1 0,1 Hz -3 kHz A
oscillations

Temporary overvoltages

II 50 Hz — 20 kHz Slow front surges Switching overvoltages

I 10 kHz — 3 MHz Fast front surges Lightning overvoltages

v 100 kHz — 50 MHz Very fast front surges Restrike overvoltages

Resistor is considered as static element and its representation is shown in Fig. 3.2.

K i R m

o—— }—o

TVk(t) Tvm(t)

O O

Fig. 3.2. Resistor repesentation.
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Relation between current and voltages in time instance ¢ can be described by
equation

i ()=~ (5, (0) v, (1) G3.1)

Capacitor and their Norton based representation is presented in Fig. 3.3.:

a) b)

Ikm(t'Ts)

C

k  igm(t) I I m

O
Tuk(t) Tum(t) Tuk(t) GR2CTT, )

O O O]
Fig. 3.3. Capacitor (a) and their equivalent circuit (b).

o

Differential equation describing relation between current and voltage is given by:
iy, (t)=C b 0-v.) (Z)d_ %) (3.2)
t

Assuming that iy, (t=T5), vy (¢=T5), v,(t=T;) are known (from previous time step), the
equation can be integrated for one step T

n0)=v,0)=wle=1)-v, -1+ L Ji (dr. (33)
T,
Applying trapezoidal integration rule one can obtain:
[ (@)t =~ —T (i () + 4, (1= ). (34)
T

If the values from preceding time steps are in /;,,(¢—T5), then:

i, (1) = (v O =, () +1,,¢~T)=Gl,@t)-v, )+ 1, ~T), (3.5

s

where:

(= T) =0, (=) =220, =T) -, -T)), (.6

K

is called current history term.
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For inductance described by differential equation:

v, =vk(t)—vm(t)=Lle. 3.7)
de

Using similar rules as for capacitance, the current in branch with inductance is
given by:

()= 00, )+ 1= T) =G0 v, )+ 1,(-T), (G

and history term:

Ikm(r—m:—ikm(r—m—;z (v, (=T)—v,(t~T)). (3.9)

Norton equivalent circuit for inductance is presented in Fig. 3.4.

a) b)

k ikm(t) L

8

%

V() Vinlt)

—
—

Fig. 3.4. Inductance (a) and their equivalent circuit (b).

T
!

Note that applying different integration rules is possible as shown in Tab. 3.3.

Tab. 3.3. Integration formulae for selected discrete integration methods.

Integration Capacity model Induction model
method G History term G History term
Backward < | Ev(t -7 ) I i(t=T5)
Euler T T * L
2C 2C T T
. = 2= e=T))=ilt-T > it-T)+—=wt-T
Trapezoidal T S ( s ) ( 5 ) Y ( s) Y ( s)
n 2C 2T 4
Geur2® | 2 | =2ou=T) - ve-om) | T | Sil-T)-5ile-27)
order 2T, T : 3L ' '
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3.4. NON LINEAR AND TIME VARYING ELEMENTS MODELING

Electrical power networks contain various types of nonlinear elements. The most
common are nonlinear inductances representing saturation and hysteresis effects in
transformer and reactor cores, nonlinear resistances of surge arresters, time varying
resistances of electrical arc. The network contains usually relatively small number of
nonlinear elements. Hence methods used for linear networks are adopted to find the
solution.

Several modifications have been presented to handle with nonlinear and time
varying elements. There are based on a current source representation, piecewise-liner
approximation or the compensation method.

With use of compensation method nonlinear elements are represented by current
injections. Compensation theory states that the branch with non-linear element can be
excluded from the network and simulated as a current source connecting nodes k£ and
m if the non-linear element is considered as load (Fig. 3.5a).

a) b)

ki km

. knee point
Linear part of

network

~y

m

Fig. 3.5. Representing of nonlinear elements:
compensation method (a), piecewise linear approximation (b).

First, the solution of the network without nonlinear element is found according to
equation:

Vien = Vimoy — Ry s (3.10)

and next, the characteristic of nonlinear element:

o di,
vkm :f(lkmijﬁta'“Ja (311)

where: vy, — voltage across nodes k and m without nonlinear element,
R, — Thevenin equivalent resistance.

Iterative algorithm, e.g. Newton’s method is used to find the solution in this step.
The compensation method can be used to solve networks with several nonlinear
elements, if one nonlinear element is connected to the node.

Piecewise approximation is often used for representation of saturation effect of
magnetic cores (Fig. 3.5b). The solution method is linear, but the conductance of
element should be changed once the voltage exceeds the knee point.
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Formulation and solution of node equations
After replacing network components by Norton equivalents, for network with n
nodes the system of n equations can be formed:

Gv()=i(-1,, (3.12)

where: G — a nodal conductance matrix (size nxn),
v(?) — a vector of node voltages (size 1xn),
i(¢) — a vector of nodal current source injections (size 1xn),
I — a vector of current history terms (size 1xn).
Some of nodes have known voltages because voltage sources connected to node are
grounded (zero potential). The equation (3.12) is rearranged and partitioned into sets
with unknown node voltages (4) and known node voltages (B):

ol e

The unknown voltages are calculated from:
G v (O)=1,(0) -1, ~G v, () =1,-G v, (1), (3.14)
and currents flowing through voltage sources can be calculated using:
GV () +Guv () +1,, =1,0). (3.15)

The set of the linear equations can be solved in efficient way by triangular
factorization of the augmented matrix G,4. The computation algorithm is as follows:

1. Building matrices G,4 and Ggp. Triangularization of G, using e.g. Gauss
elimination technique.

2. In each time step the vector on right-hand side of (3.15) is updated from
known history terms and known current and voltage sources.

3. The system of linear equations is solved for v(t), using transformation
during the triangularized matrix G,y In this iteration process the
symmetry of the matrix is exploited, i.e. the same triangularized matrix
used for downward operations is also used in the back substitution.

4. Updating the history terms I, and proceeding next time step.

The described algorithm steps are presented in Fig. 3.6 for better clarity.

In case of three phase representation the single element of G matrix is replaced by
3x3 submatrix. Current and voltage vector elements are replaced by vector of three
elements corresponding to the certain phases.

Example 3.1

To illustrate the network solution algorithm transient response for step voltage for
simple RLC circuit shown in Fig. 3.7a will be calculated for 2 time points using
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trapezoidal integration rule. Transient calculations run with time step 7, = 0,1 ms and
zero initial conditions, i.e. capacitor voltage and induction current at /=0 are equal to
zero. The circuit parameters: £=100 V, R=4 Q3, L=1 mH, C=100 pF.

The Norton equivalent of the circuit is shown in Fig. 3.7b. Voltage source is
converted to the Norton equivalent (current source with resistance in parallel).

Gaa Gas uy 1,
o J—
Gga Ggp Up Iz
1 G’ 14 9
G’ 45 ® | u — I,
0
v
up
3 2
A
[ ) Uup
G’ 14
@ u, J— I — |Gus
0
v

Fig. 3.6. Steps of transient solution algorithm:
1 — triangular factorization, 2 — forward reduction, 3 — backward substitution
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According to Norton equivalent scheme (Fig. 3.7b ) the nodal equations can be
formulated as:

{GR + GL - GL :||:V1:| _ |:G11 G12:||:V1:| — |:i]0:| _ |:Ih]2} (3 16)
-G, G, +G. ||V, G, G, 0 L2 ’

G =—,G.=—.

where: G, = l,
R 2L T,

a)

R (1O L @c

Fig. 3.7. Simple RLC circuit (a) and their equivalent (b).
The result of nodal conductance matrix building:
0.3 -0.05
G= .
-0.05 2.05
Calculations for t = T

o i 1
The extended conductance matrix (matrix is extended by vector { 10} — { m} ):
h20

I
03 —0.05]25
-0.05 20510
Applying Gauss elimination technique to triangularize the matrix:

a) division of first row by G,

b) multiplying of first row by —G,; and adding it to the second row, gives the
following result:

1 -0.016|83.333
0 2.041 |4.166
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¢) node voltages vi(T;) and v5(T) calculated by backward substitution:
4.166
v(T)= Soar = 204V,

v,(7.)=0.016v,(T.)+83.333=0.016-2.041+83.333 =83.673V,

K

d) current flowing in the circuit:
i(T)=G,(v(T.)-v,(T.))= 0.05(83.637 — 2.041) = 4.082 A
The same result is obtained with use of:
i(T)=G.(v,(T))=2.0(2.041)= 4.082 A .
Calculations for t = 2Ts
The updated values of current history terms:
1o(T) = (1) + G, (%(T,)-v,(T,)) = 8.163 A,
Ly (T.) = =i (T,) + Ge (T, )) = -8.163A .

o ) )

i
and updated current vector { 10(
O Ih20 (T; )

Applying Gauss elimination to the extended matrix:

0.3 —0.05]16.836
—0.05 2.05|8.163 |

i.e. division of first row by G;;, multiplying of first row by —G,; and adding it to the
second row gives the node voltages:

v,(27)=9.371V and v,(2T, )= 57.684V
The circuit current value:

i(1)=G, (1) -v,(T))+ 1,,(T.)=0.05(57.684 —9.371)+ 8.163 =10.579 A

s N s

The analytical solution for current obtained from inverse Laplace transform gives:

()= 50;/3 .

s1n(1000J€ t)exp(— 2000 ¢) (3.17)




The comparison between discrete and exact values of circuit current is given in the
table below.

i(H), A
discrete exact
t, ms
value value
0.1 4.082 8.105
0.2 10.579 12.876

3.5. MODELS OF POWER SYSTEM COMPONENTS

3.5.1. INTRODUCTION

An accurate simulation of transient phenomenon requires a representation of
network components valid for a very wide frequency range (from DC to several
MHz). An acceptable representation of each component throughout this frequency
range is usually impossible in practice This chapter discusses modeling of the most
important network components - overhead lines, insulated cables, transformers,
arresters, network equivalents, rotating machines, circuit breakers. Their frequency-
dependent behavior is considered.

3.5.2. OVERHEAD TRANSMISSION LINES AND CABLES

In general two main model types of overhead lines for time-domain simulations are
used: lumped parameters and distributed parameters models. The selection of the
model depends on line length and range of frequency to be simulated.

Lumped parameter models are stated for one, usually fundamental frequency and
they are suitable for steady-state simulations or for frequencies similar to fundamental
frequency. However, much more adequate models for transient analysis are with
distributed nature and frequency dependence of parameters.

The common rule for selecting the transmission line model is relation between
wave travel time 7; over line and simulation time step 7. If 7; < T then lumped
parameter, usually m-section model assumed. Otherwise the frequency depended
model should be selected. If the data describing line geometry are not available the
Bergeron model can be used.

The general guideline for modeling of power lines in different frequency ranges is
presented in Tab. 3.4.
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Lumped parameter models

The most common lumped parameter model of transmission lines is nominal
(coupled) model, as shown in Fig. 3.8. It should be underlined that it is valid only for
fundamental frequency.

An approximation for the distributed nature of a transmission line parameters is
also possible by representing of line as an interconnection of many lumped parameter
identical sections. Each section can be in form of w, T or ' equivalent and contains
series resistance, series inductance and shunt capacitance (shunt conductance is
usually neglected). The parameters of each section are obtained by dividing total R, L,
C line parameters by number of sections. The impedance parameters are usually

available for typical conductor types and their geometrical configuration.

Tab. 3.4. Guideline for overhead line modeling [3.3].

Topic 0.1 Hz3kHz | S0Hz20kHz | 10kHz3MHz | OO0
z
. Lumped Distributed Distributed Distributed
Representation of | parameters parameter lti- parameters
transposed lines multi-phase 7t multi-phase parameter mu single phase
. phase model
circuit model model
Capacitive
asymmetry is
important,
inductive is Negligible for
Line asymmetry Important ;Tg:;fg[r’ :Irilglileelggiz,e Negligible
statistical others
studies, for
which it is
negligible
Frequency
dependent Important Important Important Important
parameters
Important if
phase conductor
voltages can
Corona effect exceeded the Negligible Very important | Negligible
corona
inception
voltage
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Fig. 3.8. Nominal © coupled model of transmission line.

Linear, lumped parameter networks containing resistors, capacitors, inductors, and
voltage and current sources can be represented by the following system of first-order
ordinary differential equations and a set of output equations written in the form of
state space formulation:

X = Ax + Bu, x(0)=x0,

(3.18)
y =Cx+Du,
where: x - a state vector;
all aIZ e aln
A=|: ;
nl n2 nn
11 b12 blm
B= ;
_bnl bn2 bnm
cll CIZ cln
C= Sl
L nl cn2 cnn
dll d12 dlm
D=| : -
_dnl dn2 dnm

Xy — a vector of initial values;
u - an excitation vector;
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Yy — an output vector.

In these equations the state vector x contains some of the capacitor voltages and
inductor currents. Matrices A, B, C, and D are the constant real matrices with proper
dimensions, and their entries depend on the values of the lumped parameters of the
network.

The solution in state space equation is given by:

x=e" [e*Budr +e* x(0). (3.19)

z
o —

Square matrix A is called system matrix and e*' is transient matrix defined as:

e =1+At+%(At)2 +...l|(At)” +... (3.20)
. n:

For digital analysis the discrete form of state variable equations is suitable. As a
result state variable values in discrete time instances are obtained.

Assuming that ¢ = kT, k = 0, 1, 2, the discrete approximation of equation 3.19 by
trapezoidal rule gives:

x((k+1)TS)=( —%Aj [1 +%A)x(k7;)+1;3u(kﬂ), (3.21)

Fig. 3.9 shows the line model represented by connection of identical sections with
n state variables. Assuming the capacitor voltages and inductor currents state matrix A
has form:
-R/L  -1/L
1/C -1/C
1/L -R/L  -1/L

1/C -1/C

1/C -1/C
/L  -R/L  -1/L

1/C

Note that only non zero terms are presented.
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Column vector B with n terms relating input (voltage at the beginning node) with
state variables has the form:

B=[1/L00...0].

R . R N Sy ey
o H

Fig. 3.9. Lumped parameter section transmission line model.

Line models with distributed parameters
Fig. 3.10 shows small length section of transmission line with single conductor
parallel to ground.

Rdx Ldx

. 1
m—o
Gdx G Cdx Vo
* O
dx

> »
Bl Ll

Vi

oO——— O

Fig. 3.10. Section of power transmission line with distributed parameters.

Equations describing line currents and voltages in the time domain are as follows:

3 Gv(x,t) _ R'i(x,t)+L' ai(x,t) ’
ox ot

_ 8l(x,t) _ G'V(x’t)-k C' av(x,t) ’
Ox ot

where: v(x, f) — the line voltage;
i(x, t) — the line current;
R’,L’, G’, C’ —line parameters per unit length.
The single phase lossless transmission line (resistances R and shunt G
conductances are neglected) can be described with use of partial differential equation:
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B ov(x,z) L,@i(x,t)

= 3.22
ox o’ 3-22)
B 8i(x,t) _ 8v(x,t) ’ (3.23)
ox ot
The general solution of the equations gives:
i(x,)= fi(x—at)+ f,(x + @), (3.24)
v(x,t)=Z, filx—at)- Z. f,(x + at), (3.25)

where: f,(x—at), f,(x—at) - arbitrary functions representing wave traveling at
velocity @ in a forward and backward direction respectively;

Z.= ‘/ % - a surge (characteristic) impedance;

1 :
@ = a phase velocity.
Ll Cl

Multiplying equation (3.24) by Z¢ and inserting into equation (3.25) yields:

v(x,t)+ Z,i(x,t)= 227, f,(x — at), (3.26)
v(x,t) = Z.i(x,t) = 2Z.f,(x + at). (3.27)
Line propagation velocity is equal to:
rzizd\/L’C’ , (3.28)
@

where: d — a length of the transmission line.
Hence

v(t—7)+ 2, (t—7)=v,()+ Z. (i, (). (3.29)

Rearranging equation 3.29 one can obtain:

i ()= ZLV"’ (t)+1,(t-7). (3.30)

C

History term is given by:

Im(t—r)z—Zivk(t—r)—ikm(z—r). (3.31)

C
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Current at the node £ is:

i, ()= Zivk (()+1.(c-7), (3.32)

C

and the current history term is as follows:

I(t-7)= —Zivm(z —7)—i (t-7). (3.33)

C

Fig. 3.11 presents the two-port model. There is no direct impedance connection
among nodes k and m. The characteristic impedances and equivalent current sources
are connected to the terminals. Current supplied by current source at node & at time
instance ¢ depends on the current and voltage at (¢ — 7) at the node m and similarly
current supplied by source at node m at time ¢ depends on the current and voltage at
(t — 7) at the node k. It should be underlined that wave propagation time 7 differs from
the multiple of integration time step. History terms of currents of the actual traveling
time are interpolated to give the correct traveling time. The presented basic
transmission line model is called Bergeron model.

Iin(1) Ini(0)

k m

O » . P O
Vi) J G=1/Z, L(t-1) 4}) + Lo(t-7) G=1/Z, lvm(z)

o . . * . O

Fig. 3.11. The Bergeron model of a power transmission line.

To decouple multiphase line matrix equations the modal theory is applied. The
diagonal matrices are then obtained and each mode can be analyzed independently as a
single phase line.

Frequency depended models
Multiconductor transmission line is characterized in frequency domain by the
following equations:

_ N _ 7)1 (o), (3.34)
dx

_IL®) NV (o), (3.35)
dx

where: Z(®), Y(®) — the series impedance and the shunt admittance matrices.
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The impedance matrix is complex and symmetric:
Z(0)=R(0)+ joL(o), (3.36)

and their component are frequency dependent.
The shunt admittance is equal to:

Y(0)=G +joC(w). (3.37)

Note, that Z(®) and Y(w) are nxn matrices where n is the number of quantities
describing conductors. Line shunt conductance G is usually neglected for overhead
line models.

The relationships among voltages and current at line terminals are as follows:

{Vk (a,)} cosh(y(@)l)  Zsinh(y(@)) LVm(a)) }

I, (@) N ZLCSinh(yf(a))l) cosh(y(w)) I (o) (3.38)

where: Z. =4/Z'(@)/Y'(@) — a characteristic impedance;
7 = Z'(w)Y'() — a propagation constant;
[/ — a total line length;
Z’(w) — a line impedance specified per unit length;
Y’(w) — a line admittance specified per unit length.

If the detailed power line configuration is available EMTP program are usually
capable of computing the line parameters with use of line input data:

(x,y) coordinates of each conductor and shield wire,
bundle size and spacing,

sag of phase conductors and protecting wires,

phase rotation at transposition structures,

physical dimensions of each conductor,

resistance or resitivity of conductors and shield wires,
ground resistivity of the ground return path.

Other data used for line modeling in frequency domain:

e lumped-parameter equivalent or nominal m-circuits at the specified
frequency,

constant distributed-parameter model at the specified frequency,
frequency-dependent distributed parameter model, fitted for a given
frequency range,

capacitance or the susceptance matrix,

series impedance matrix,
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e resistance, inductance, and capacitance per-unit length for zero and
positive sequences, at a given frequency or for the specified frequency
range,

e surge impedance, attenuation, propagation velocity, and wavelength for
zero and positive sequences, at a given frequency or for a specified
frequency range.

Overhead line parameters are derived from the forms of Carson or Schellcunoff
equations.

It is generally impossible to obtain a closed-form time-domain solution for a
general input signal waveform. Therefore, a numerical frequency to time domain
transformation is used. It should be underlined that line model in frequency domain is
used only for model parameter and transformation determination. Modeling algorithm
is the same as in case of losses line with included resistance.

Most of the EMTP programs are also capable of calculating the cable line
parameters. Similarly to overhead lines, the basic equations describing cable line are
described by equations (3.37) and (3.38). Z and Y parameters are calculated with used
of cable geometry and material properties such as:

(x, y) coordinates of each conductor;

radius of each conductor,

burial depth of cable system,

resistivity and permeability of all conductors and surrounding medium,
permittivity of cable insulation.

The way of transient computation is then similar as in case of overhead lines.

3.5.3. TRANSFORMERS

The modeling of transformer should take into consideration various physical
phenomena appearing during transients. Transformer behavior is nonlinear, frequency
dependent and many variations on core and coil construction are possible. There are
many physical attributes and phenomena whose behavior may need to be correctly
represented: core and coil configuration, self- and mutual inductances between coils,
leakage fluxes, skin effect and proximity effect in coils, magnetic core saturation,
hysteresis, and eddy current losses in core, capacitive effects. EMTP-type programs
provide dedicated support to derive detailed transformer model.

Transformers have relatively simple structure. However, their adequate
representation in wide frequency range is very difficult. Hence, the guideline for
transformer modeling for different frequency ranges was proposed as in Tab. 3.5. It
should be noted that for higher frequencies winding capacities are considered and
frequency parameter dependence.
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Tab. 3.5. Guideline for power transformer modeling [3.3].

10 kHz-3 100 kHz-50

Parameter/effect 0.1 Hz-3kHz 50 Hz-20 kHz Mz Mz

Short circuit . Very ..
impedance Very important important Important Negligible

. . Very - ..
Saturation Very important important, Negligible Negligible
Iron losses Important Important " Negligible Negligible
Eddy currents Very important Important Negligible Negligible

.. . .. Very .
Capacitive coupling Negligible Important important Very important

Y Only for transformer energization phenomena, otherwise important.
? Only for resonance phenomena.

Many transformer models have been proposed for low frequency studies and the
selection of most proper representation depends on many factors. The following
approaches are commonly used in EMTP software to transformer representation for
low-frequency and slow-front transients:

e matrix representation based models,
e topology based models.

Matrix representation based models

Matrix representation based models use the single- and three-phase n-winding
transformers in the form of an impedance or admittance matrix. The derivation of
parameters is possible from manufacturer data. For transformer representation by
complex impedance matrix one can write:

V=ZI=(R+ joL), (3.39)
and for simulation in the time domain:
V=Ri+L$. (3.40)
de

Using of admittance matrix description, especially in case of very small
magnetizing currents is also possible:

I=YU, (3.41)
Hence, the currents in time domain are:
% =L'(Ri+v). (3.42)
t




The basic equivalent circuit of the single phase transformer model shown is shown
in Fig. 3.12. For simplicity the resistances are neglected. It is assumed that it consists
of two coupled coils. The voltages at the terminal are given by:

Vil _ Ly L, i l:k ’ (3.43)
vm Lmk me dt lm
where Ly, L, — self-inductances of winding k and m respectively;

Ly, L — mutual inductances between windings.

a)
i) i(?)

k m
C > Lkm < O
AA
vi(t) I Lonm Ivm( Y
o— —0

ki) i

]7ck+]7cm é é me+rmk
O

Fig. 3.12. Transformer (a) and its discrete equivalent (b).

b)

A
—
bs

The winding currents are expressed as:

i I _ Ly Do | (3.44)
de|i, r, r.lv,| '
L
where: I, = ——"——
L,.L LkmLmk
l—* — ka .
" ka me Lkm Lmk
-L
b=t T —LL.
Kk mm o= mic
-L
Tw=T7 11
Kk mm o= mic
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Digital implementation of transformer model with use of trapezoidal integration
formula can be expressed as:

i,(6)= 1, (1= T,)+ ( L () += km(vk(t)—vm(t)), (3.45)

where: [kH(t_Tv):ik(t_Tv) (rkk+ )V ( ) km(vk(t_]-.;)_vm(t_rv))'

Topology (duality) based models

Topology (duality) based models are derived from a magnetic circuit model with
use of the duality principle. The obtained models include the effects of saturation in
each individual leg of the core, interphase magnetic coupling, and leakage effects. In
the equivalent magnetic circuit, windings are represented by magnetomotoric sources,
leakage paths appear as linear reluctances, and magnetic cores appear as saturable
reluctances. The equations based on Kirchhoff laws for the magnetic circuits, similarly
as for electrical networks are also formulated.

Geometric based models use the formulation in which core topology is considered
by use of magnetic equations and their coupling with electrical part.

Summarizing of the approaches to transformer modeling is presented in Tab. 3.6.

Tab. 3.6. Summarizing of power transformer models.

Model Characteristic

Consideration of phase-to-phase coupling and terminal
characteristics,

Only linear models can be represented,

Saturation can be linked externally at the terminals in the form of
non-linear elements,

Reasonable accuracy for frequencies below 1 kHz.

Matrix representation

Duality-based models include the effects of saturation in each
individual leg of the core, interphase magnetic coupling, and
leakage effects.

Topology (duality) The mathematical formulation of geometric models is based on
based representation the magnetic equations and their coupling to the electrical
equations, which is made taking into account the core topology.
Models differ from each other in the way in which the magnetic
equations are derived.

3.5.4. ROTATING MACHINES

Operation of the rotating machines depends on the interaction of electrical and
mechanical part. The simple generator model consisting of electromotive force behind
the reactance is adequate only for very short transient. For longer disturbances speed
variations have the great influence on machine behavior. The mathematical model of
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rotating machine for transient analysis depends on the specified frequency range. Tab.
3.7 shows guideline for modeling of rotating machines.

The detailed representation is required for low frequency transients. The modeling
of coils, saturation, mechanical torque should be considered. Also voltage regulator
and speed governor representation should be added into the model.

Scheme of electrical part of synchronous generator and an equivalent circuit are
shown in Fig. 3.12.

Tab. 3.7. Guideline for rotating machine modeling [3.3].

representation of
electrical and

electrical part:
an ideal AC

Parameter/effect 0.1 Hz-3kHz 50 Hz-20 kHz 10 kHz-3 MHz | 100 kHz-50 MHz
A simplified
Detailed representation of

A linear per
phase circuit
which matches

A capacitance

Representation mechapical parts | source behind the frequency to ground per
including the frequency phase
. response of the
saturation effect | dependent .
. . machine
modeling transient
impedance
z;(;l:fie Very important | Negligible Negligible Negligible
Speed control | Important Negligible Negligible Negligible
Capacitance Negligible Important Important Very important
Frequency o
dependent Important Important Negligible Negligible
parameters
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Fig. 3.13. Electrical part of synchronous generator (a) and their electrical equivalent (b).



The electrical part of the synchronous machine is described by the equation:

_l//A —‘ _LAA LAB LAC i L LAD L ] _iA —‘

l//B LBA LBB LBC i LBf LBD LBQ lB
Ve | |Ee Lo Leily Lo Lol (3.46)
Vil Ly Ly LelLly Lp Ly
| .
Yo L, Ly Ly | LDf Ly, LDQ Ip
_I//QJ _LQA LQB LQC ; LQ/ LQD LQQ__iQJ

or in matrix form:

|:\I’ABC:| - |: I;S LSW }{%ABC} , (347)
WV no Lo Ly || 1o
where: Lg — a matrix of armature self and mutual inductances;

L, — a matrix of field self and mutual inductances;

Lgy — a matrix of mutual inductances of field and armature.

The self and mutual inductances vary with time and are expressed by the following
equations:

2
L, =Li+AL;cos2y, L,, =1L, +ALSCOS(2]/—§7ZJ,

2
Loc =L +AL cos[2y + Eﬁj ,

~
Il

1
= Lg, =—Mg —ALScos2[}/+gzz],

~

1
sc = Loy =M —ALSCOS2(7/—572'),

~
Il

5
s =L, =—Mg —ALScos2[7/+g7r],

L,=L,=M,cosy, L,,=L,,=M,cosy, L,,=L, =M,siny,
2 2
Ly =Ly =M cos r=3% » Lyp = Lpy =M, cos -l

. 2
Lyy=Ly=M, sm(}/—gﬂj,
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2 2
L,=L,.=M, COS(]/-FEEJ, L,=L,=M, COS[]/-Fgﬂ'j,

2
LCQ :LQC :MQSiIl(]/‘FEﬂ'j,
Ly=Ly =0, Ly=Ly,=0.

Solving of these equations is possible in phase quantities. However, they are
usually solved after transforming stator quantities into rotor-axis quantities, using the
Park’s transformation. The transformation matrix is :

L ]
V2 V2 V2
2 2 2
W= \/: cosy cos(y - —ﬂ'j cos(}/ + —ﬂj . (3.48)
3 3 3
sin sin( - gﬂ) sin[ + gﬂ']
I 4 4 3 4 37

Application of the transformation yields:

v | [k T ]
v, L, kM, kM, i,
Vel b Mo g (3.49)
v, kM , L, L, i
Yp kMD LfD LD iD
Vol | kM, Ly i |

or in matrix form:
{\I’Odq j| _ |: LOdq kaDQ:||:i0dq :| (3 50)
YV po My Loy [

where: k = \/E ,
2

Ly=L,-2Mg,
L, =LS+MS+%ALS,

3
L,=Lg+ M= AL
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The flux-current-voltage equations in d-g frame can be written in the following

form:
‘.i‘Odq _ _{ VOdq j| _ |:rABC :||:.i0dq } n |:Q j|{ ‘I’odq j| , (3'5 1)
¥ 0 Vo Foo | 1o 0¥
0O 0 O
where: Q=WW'=@/0 0 -1
01 0

The electromechanical part of generator is described by the following differential
equation:

2
L5, d 5—PM—P(,—DE, (3.52)

o, di* dt

where: @s — a synchronous angular speed;
0 —arotor angle;
T,, — a mechanical time constant;
S, — a generator nominal power;
P, — a turbine mechanical power;
P, — a generator electrical power;
D — arotor damping coefficient.

Vy —p Vo
v w Va Flux-current-
B — voltage equations
Ve —p Vq
y [ )
. 4
. Ly A
1y 1 i 1
4 4 - 7, r | ] o
B <4— ; Integration
b
Flux-current- <€
equations <

Fig. 3.14. Incorporation of synchronous generator model in EMTP.
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3.5.5. LOADS

Loads connected to the power system are non-linear and their characteristics
depend on system voltage and frequency. Different load dynamic profiles occur: non-
dynamic (e.g. resistive loads), slow dynamic (e.g. manually controlled loads), fast
dynamic (induction motors, adjustable speed drives) and non-continuous (protection
switching).

Power system loads can be modeled by static and dynamic models. Static models
are represented by constant active and reactive power, constant current or constant
impedance models or combination of these types. Modeling of load dynamic
characteristic load enables sensitivity to voltage and frequency changes. In some cases
it is not possible or not feasible to model the dynamic behavior of individual loads and
they are grouped into components with similar characteristics. Although there exist
many types of loads, the most influential on dynamic behavior are induction motors.

3.5.6. CIRCUIT BREAKERS

Circuit breakers carry and break currents under normal and abnormal (short
circuits) conditions. Normally breaker operates at closed position and when the
tripping signal is obtained it opens contact and current flow is broken. The separation
of the contacts causes the generation of an electric arc. The arc is usually quickly
cooled by surrounding gas. The arc phenomenon is very complex and difficult to
modeling and there is no generally accepted model. Guideline for circuit breaker
modeling in different transient frequency ranges is presented in Tab. 3.8.

In simulation programs circuit breakers are modeled by the following
representations:

e Ideal switch that is opened at first zero current crossing, after the
obtaining tripping signal. Arc influence on the network is not
considered,

e The arc is modeled as a time-varying resistance. Resistance variation is
determined with use of the breaker characteristic.

e Dynamically varying resistance.

Models of arc were proposed by Cassie and Mayr. The Cassie model is described
by the following equation:

1 1{v 1(
Ldg v )2y (3.53)
gdt v\ t\v,g
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and the Mayr model is expressed by:

ldg 1

where: g — an arc conductance,
v —an arc voltage;

— an arc current;

T —an arc time constant;

i

Py — a steady state power loss;

Vi

e ;(?‘

R
r\hg

Vo — a constant part of the arc voltage.
Usually the following models for closing operation are used:

_1},

(3.54)

e Ideal switch representation of circuit breaker. Its impedance changes
rapidly from very large to very small value,
e Assuming the existence of closing time when the arc can strike before
the circuit breaker contacts are finally closed.

Tab. 3.8. Guideline for modeling circuit breaker [3.3].

Operation Mode 0.1 Hz-3kHz 50 Hz-20kHz 10 kHz-3 MHz | 100 kHz-50 MHz
Mechanical |. . - -
pole spread important very important negligible negligible
] Prestrikes
Closing | (decrease of
sparkover negligible important important very important
voltage vs.
time
Eﬁiﬁugﬁt important only important only
(arc p for interruption | for interruption | negligible negligible
equations) capability studies | capability studies
Current important only important only
chopping . for interruption | for interruption .
(arc negligible of small of small inductive negligible
instability) inductive currents | currents
Opening Restrike
characteristic important only
(increase of . for interruption . .
sparkover negligible of small inductive | V€Y important very important
voltage vs. currents
time)
High important only
frequency - for interruption . .
current i negligible of small inductive | V€Y important very important
nterruption currents
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Circuit breakers switching actions may have a significant influence on power
network. In some cases modeling of breakers as ideal switch is exact enough. Exact
modeling of arc-network interactions requires arc models whose parameters can be
obtained only in experimental way.

Application of switching device model can cause numerical oscillation (chatters).
In such case voltage and current values oscillating around true values. The common
reasons of chatters are a step change in current through an inductor or a step change
in voltage across a capacitor. An inductor voltage is equal to:

V= Lﬂ : (3.55)
dt

Applying the trapezoidal integration rule one can obtain:

i0)=ilt-1)+ (0 + (e~ 1,). (3.56)

and solving for voltage across inductor:

o) = vt =1+ 22 o) (e~ ) (3.57)

s

Assuming the unity step current change for i(#> 0)=1.0, the voltages across inductor
are:
v(i=  2LIT,
W+ T)= —2L/T,
v(t+2T)= 2L/T;
WH3T)=  —2L/T,

The expected values of voltage v(£>0) is zero and it can be stated that numerical
oscillations damage the simulation results. To prevent the numerical oscillations some
artificial damping resistors are included in the model. However, the accuracy of
simulation can suffer from such modification. Another way is to change the
trapezoidal integration rule in case of discontinuity by Euler backward rule or
interpolation steps [3.16].

3.5.7. NETWORK EQUIVALENTS FOR TRANSIENT ANALYSES

At present the main efforts concern on to find equivalent in time domain by use of
discrete time network equivalent or to replace the external network using of lumped
RLC circuit or transfer functions with frequency response approximating the
characteristic of the original system.



Tab. 3.9. Frequency domain equivalent methods characteristics for EMTP analyses.

Frequency domain

Direct methods

Foster Equivalent created by Foster method of circuit synthesis. The impedance-
equivalent frequency characteristic of the external system is described by:
2. 4 .
Z ( f ) = J—Zi 2‘—f2 , wWhere: f; — i-th resonant frequency, 4; — residual
- 27 i=1 fz -
correspondent to the i-th pole
Good accuracy for limited frequency range.
Lumped External system replaced by lumped RLC circuit whose frequency
parameter response approximates the response of external system. Model circuit
circuit consists of parallel branches corresponding to certain frequencies. The
general admittance (resistances are omitted):
K (s+K L. Ks .
Y(s) = A( 0) + ZZ -—— . where: K, — constant, Ky, K; — residues of
S i1 ST+ w;
system admittance, @ — series resonance frequencies.
The method suitable for systems with available resonant frequencies.

Correction Use of equivalent circuit with parallel RLC branches. Correction filter are

filter used for the frequency ranges with large discrepancy between original and
approximated impedance-frequency. The method is simpler and more
accurate than optimization methods.

Frequency Equivalent circuit based on parallel RLC branches for particular

response impedance-frequency characteristic. Each branch corresponds to the

approximation | minimum at certain resonance frequency.

Pole removal | Least square fitting to synthesize RLC equivalent circuit according to the
driving-point function with respect to the frequency domain around
resonance.

Optimization methods

Low-order Network equivalent use the frequency response of the admittance

rational functions over frequency range. The optimization method is used to

function minimize objective function involving amplitude and phase functions.

Gradient Minimization of the difference between the actual and equivalent system

optimization response according to the formula:

J = h(g(x, A ), g(x, A, ), ,g(x, A, )) ,
where: g — objective function, 4;, 4,...4,, — independent variables at the m
sample points, /- error criterion function.

First group, discrete time Norton equivalents are obtained with use of response of
external system to a sinusoidal signal used for identification of discrete time model
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with use of least square method. The great variety of methods is applied for frequency
domain modeling The general review of these methods (according to [3.7]) is
presented in Tab. 3.9.

The direct methods use circuit theory concepts, mainly the circuit synthesis
techniques to obtain the adequate frequency response. Optimization methods take the
advantage of the network admittance parameter identification.

It should be noted that the equivalents have always the limited accuracy and the
verification step is required before application.

Example 3.2
Discrete time Norton equivalent of the external network can be obtained with the
use of an excitation signal (the multisinus signal) [3.1]:

M
. )

x(t)=> 4 sinafit +8,), £ == (3.58)

k=1
where: A4y, fi, ¢ — an amplitude, a frequency and a phase of the k-th component

respectively.
The phase of k-th component can be derived from:

%=ﬂ—ﬂ%%2ﬂ, m=2,..,M, (3.59)

Frequency spectrum of such signal is flat for the specified frequency range which
can be adjusted in simple way.

The equivalent can be described by parameter vector 0. The relation between
discrete voltages and current of equivalent circuit can be expressed by linear
regression equation:

Z=X-0 (3.60)
where: Z =[i(N),i(N -1)....i(p+1)[ ;
0 = [al,az,...ap,go,gl,gz,...gp]r — a parameter vector;

p — an assumed model order;
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v(N-1) W(N=2) -+ v(N-p+1)

Los) ) )

To obtain the circuit discrete equivalent the transient simulation with use of
multisinus voltage excitation and discrete current are then registered. Assuming the
model the order the X and Z matrices are formulated. The parameter estimates can be
found with use of the least squares method:

0=(x"X)'X"Z (3.61)

Once the response of equivalent is found the mean square error between equivalent
and simulation results is calculated. If the equivalent of the considered order satisfies
the adequacy conditions, then it can be incorporated into EMTP solution routine.
Otherwise, the model order is updated and the equivalent searching procedure is
repeated.

3.6. SOLUTION OF TRANSIENTS

Mathematical description of electromagnetic transient has a form of set of first
order differential equations with known initial conditions:

dx
] (3.62)

where: X  — a state variable vector,
f(x) — a vector function of state variables,
and algebraic equations:

g(x,7)=0. (3.63)
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The objective is to find x as a function of ¢, with the initial values of x and ¢ equal
to xo and 7). Numerical integration is used to find the solution x(#+7;) with use of
previous time solutions. 7 is a time interval between two adjacent time points and is
called time step. Time step may be maintained constant over the integration interval or
may be changed.

Once the discrete equivalent circuits are formulated they are solved at discrete time
points with the use of nodal circuit analysis methods. Conductance matrix is usually
sparse and some decomposition techniques employed to improve computation speed
and accuracy.

Numerical integration methods produce unavoidable errors caused by:

e round-off resulting from finite machine word length, used computer
type and programming language,

e truncation resulting from the mathematical approximation of the
integral. This type of error depends only on the applied integration
algorithm i.e. the way the approximation is made.

During passing the integration algorithm it is expected to suppress numerical
truncation error with simulation time, i.e. to preserve a numerical stability. Stability
depends on the integrated equation, time step and the applied integration method.

Another important topic is stiffness relating to time constants appearing in power
system. Solution of linear differential equation set is linear combination of exponential
functions. Each function describes individual system mode defined by system
eigenvalues. Stiffness of the system depends on distribution of the eigenvalues: small
values are related to slow dynamic changes and large values to fast dynamics. The
large differences in system modes may result in some numerical and accuracy
problems. Hence, the employed formula should be tailored to equation set stiffness.

Due to great variety of possible power system operation conditions the selected
integration scheme should ensure the sufficient accuracy and numerical stability.
There are many methods to perform numerical integration, which use Taylor
expansion or polynomial approximation. Generally, they can be divided into explicit
and implicit. The value of integration of function in an explicit method is obtained
without the value f(x,+1, t,+1) (e.g. forward Euler method). Otherwise the integration
methods are called implicit (e.g. backward Euler). Some of the basic integration rules
are shown in Tab. 3.10.
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Tab. 3.10. Basic integration formulae for selected discrete integration methods.
T, =t,+ — t, — integration time step.

Integration method Integration formula Order
Forward Euler X, =X, +T1f (Xn ,tn) 1
Backward Euler X, =X,+T.f (X,,+1 ,tn+,) 1
Trapezoidal 1

T
X/H—l = Xn + ?V [f(xn ’ tn )+ f(xn+l s t/H—l )]

Gears 2™ order 4 1 2T
Xn+] = gxn - gxlkl + Tsf(XnH > t/H—l)

The first order methods are able to self-start. Higher order methods use the past
values of the integrated function, it is not possible to solve n+1 term for n = 0. In such
case first terms in simulation are calculated with selected first order method. Higher
order methods provide “smooth” approximation of integrated function and linear
approximation is applied in first order methods. Therefore the accuracy for the same
time step is usually better when higher order methods are used.

The trapezoidal integration rule is mostly used in transient analyses. It is easy to
programming, numerically stable and has reasonable accuracy. However, if the great
accuracy is required, the small integration time step should be applied and
computational efforts grow considerably.

PROBLEMS

3.1.  Find the discrete Norton equivalents for circuits shown in Fig. 3.15 applying
trapezoidal integration rule.

2) R L b) 2
oo .
R C R -LC L

Fig. 3.15. Circuits for Problem 3.1.

3.2.  Form the discrete Norton equivalent for circuit presented in Fig. 3.16 applying
trapezoidal rule and write the node equations. Solve them for three time points
(0, T, 2T,). Circuit parameters: £ — step voltage 40 V (applied at #=0),
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Ri=2Q, R,=5Q, Rz=5Q, Li=1mH, L,=1mH, C; =1puF, T,=1ms.
Zero 1nitial conditions.

Ry Ly Ry

Fig. 3.16. Circuit for Problem 3.2.
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4. POWER SYSTEM MODEL REDUCTION.
NETWORK TRANSFORMATION

4.1. GENERAL CONSIDERATIONS

Power-system model reductions are made because of [4.1]-[4.3]:

— practical computational limitations (the required size of computer
memory, and computing time),

— there is no necessity to model parts of the system far away from a
disturbance with great accuracy,

— parts of the system, which do not belong to the considered utility, are
considered as external subsystems,

— maintaining the relevant databases, in which data from the whole system
are collected, would be very difficult and expensive.

The methods for producing the equivalents of an external subsystem can be divided
as follows [4.2]:

— methods which do not require any knowledge of the external subsystem,
— methods requiring certain knowledge of the configuration and the
parameters of the external subsystem itself.

The latter of the mentioned methods are model-reduction ones.

One can distinguish the following groups of model-reduction methods:

— methods of physical reduction,
— methods of topological reduction,
— methods of modal reduction.

Methods of physical reduction ensure choosing appropriate models for the system
elements (generators, loads etc.). They select models depending on how influential an
individual element is in determining the system response to a particular disturbance.
Elements, which are electrically close to the disturbance, are modelled with higher
accuracy.

Methods of topological reduction rely on eliminating and/or aggregating selected
nodes in order to reduce the size of the equivalent network and the number of
generating units modelled. If they are used together with physical reduction, they give
an equivalent model that comprises equivalents of standard system elements such as
generating units, lines, nodes etc.

The methods of topological reduction are also called methods of network
transformation.

The third group of the model-reduction methods includes methods of modal
reduction. These methods use linearised models of the external subsystem to
eliminate, or neglect, the unexcited system modes

62



4.2. NETWORK TRANSFORMATION

4.2.1. NODE ELIMINATION

While the process of elimination of network nodes is performed the following rule
is in force: when nodes are eliminated from the network model, the currents and nodal
voltages at the retained nodes are unchanged.

In this subsection, node elimination by matrix partitioning is considered.

Before any nodes are eliminated from the network (Fig. 4.1) we have:

I, B Yre Yre | Vi @1
I, | Y Yer \ '

where: E — denotes the set of eliminated nodes,
R — denotes the set of retained nodes,

I — a vector of current injection,
V - a vector of nodal voltages,
Y — a submatrix of the nodal admittance matrix.

(R {E}
. original _
. . |E
. network .
——] ————

Fig. 4.1. The representation of the considered network before elimination of nodes.

Transforming the equations (4.1), we have

I; | |Yr Ki | Vg
B e 42)
V. Ky Yee || I,

where: Yr = Yrer —YRE?I_Z}EYER, (4.3)
Ki =Y Yib, (4.4)
Ky =-Yer Y 5. (4.5)

Taking into account the equations (4.1) and (4.2), one can ascertain, that
I1,=YrV,+Al,. (4.6)
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where:
Al,=K/I,. (4.7)

The vector I £ as well as the vector \% p are not directly present in the equation

(4.6). It should be noted that the vector Al r depends upon the vectors 1 g and \Y% E-

The equation (4.6) can be considered as the equation describing the reduced
network (Fig. 4.2), in which the above-mentioned eliminated nodes (from the set E)
are not present. In the new network, the current injections differ from the ones at the
same nodes of the original network. The difference is shown by equation (4.7).

{R} {E}
— > —e——

. >e original PR
L « | nervork . Ie
+ —a———

R
R}
. > . reduced
L + | network
+

Fig. 4.2. The reduction of the network by elimination of nodes.

The matrix Y in the equation (4.6) is called a transfer admittance matrix and the

matrix K/ in the equation (4.7) is called a distribution matrix.

Apart from the presented way of modelling the original network one can consider
another one, assuming that a current injection at each eliminated node is equal to zero.
In this situation, a load at each eliminated node is represented by the admittance
— %

Sk
5 -
Ei

YEZ' =

(4.8)

where: i  — an index of the node,

S gi —acomplex power at the node 7, belonging to the set of nodes E,

Ve — amagnitude of the voltage at the node i.



The admittance Y £; is taken into account when the self admittance at the node i is
determined. In the considered case, the self admittance at the node i differs from the

one in the earlier case by Y.
In the considered case, we have the following two sets of equations derived from
(4.1)

1,=YrVi+YreV . (4.9)
0=1,=YerV+Yee V. (4.10)
From the equation (4.10) we have
V,=-YuYmV,, (4.11)
and taking into consideration the equation (4.9), we get
L= YoV + Yo [ Yih Yir Vg )= i
—(Vior = Y or Vi Vir Vo= Y 2 V . '

In the considered case, the vector Al r » Which occurs in the equation (4.6), is equal

to the vector with zero elements.

The second from the considered methods of node elimination by matrix
partitioning, has a certain drawback. In the transformed model, the equivalent shunt
branches have large conductance values, and in efect the branches of the equivalent
network may have a poor X/R ratio causing convergence problems for some load-flow
computer programs.
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Example 4.1.

Let us consider the power system from Fig. 4.3. Parameters of the branches of that
system are in Tab. 4.1. Voltages at the nodes, power and current injections in the
power system from Fig. 4.3 are in Tab. 4.2. The nodal admittance matrix for the
considered system is in Tab. 4.5. Let us assume that: (i) the set {1,2, 3}is the set of
retained nodes, (ii) the set {4, 5, 6, 7, 8, 9}is the set of eliminated nodes. In this
situation, the vectors of currents I, I, the vectors of voltages V., V, and the

matrices Yrr, Yz, Yzz, Ygg are as it is shown in Tab. 4.3 — Tab. 4.9. Utilizing
the equations (4.3), (4.4), we calculate the matrices: Yr, K. These matrices are
presented in Tab. 4.10 and Tab. 4.11. YzV and Al,, i.e. components of the sum in
the formula (4.6) and also I, calculated from this formula are shown in Tab. 4.12.

The currents I g are calculated under assumption, that at the nodes 1, 2 and 3 are the

same voltages as before elimination of the nodes: 4, 5, 6, 7, 8 and 9. Finally, we can
ascertain that after elimination of the nodes: 4, 5, 6, 7, 8 and 9 the currents and nodal
voltages at the retained nodes, i,e, at the nodes: 1, 2 and 3 are unchanged.

ool = Jof®

G3

Fig. 4.3. The considered power system.
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Tab. 4.1.

The parameters of the branches of the power system from Fig. 4.3.

i J R;; Xy By

1 4 0.0000 0.0576 0.0000
4 5 0.0170 0.0920 0.1580
5 6 0.0390 0.1700 0.3580
3 6 0.0000 0.0586 0.0000
6 7 0.0119 0.1008 0.2090
7 8 0.0085 0.0720 0.1490
8 2 0.0000 0.0625 0.0000
8 9 0.0320 0.1610 0.3060
9 4 0.0100 0.0850 0.1760

Tab. 4.2. Voltages at the nodes, power and current injections in the power system from Fig. 4.3.

i Vi Sy Py Oyi Py Ori I; Sy
1 1.00 0 71.95 24.07 0.00 0.00 0.76 -18.50
2 1.00 9.67 | 163.00 14.46 0.00 0.00 1.67 4.60
3 1.00 4.77 85.00 -3.65 0.00 0.00 0.85 7.23
4 0.99 -2.41 0.00 0.00 0.00 0.00 0.00 0.00
5 0.98 -4.02 0.00 0.00 90.00 30.00 0.97 -22.45
6 1.00 1.93 0.00 0.00 0.00 0.00 0.00 0.00
7 0.99 0.62 0.00 0.00 | 100.00 35.00 1.08 -18.67
8 1.00 3.80 0.00 0.00 0.00 0.00 0.00 0.00
9 0.96 -4.35 0.00 0.00 | 125.00 50.00 1.41 -26.15
Tab. 4.3. The elements of the vectors I R> \Y R
35[%, —— K '
21 EEI R e Rl ey
1 0.76 -18.50 1.00 0.00
2 2 1.64 4.60 1.00 9.67
0.85 7.23 1.00 4.77
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Tab. 4.4. The elements of the vectors iE ,VE,

555 Le Ve
2 E) 2 2 | Magnitude | Phase angle | Magnitude | Phase angle
© p-u degrees p.u. degrees
1 4 0.00 0.00 0.99 -2.41
2 5 0.97 -22.45 0.98 -4.02
3 6 0.00 0.00 1.00 1.93
4 7 1.07 -18.67 0.99 0.62
5 8 0.00 0.00 1.00 3.80
6 9 1.41 -26.15 0.96 -4.35

Tab. 4.5. The nodal admittance matrix for the power system from Fig. 4.3.

I 2 3 4 5 6 7 8 9
i17.36 |0 0 i17.36 |0 0 0 0 0
0 5 16.00]0 0 0 0 0 116.00 |0
0 0 717.06 |0 0 717.06 |0 0 0
. 331 |-1.94+ 137+
J17:3610 0 3931 [j10.51 |° 0 0 i 11.60
. . . Loa+ (322 |1+ | . .

$10.51 |j15.84 |j5.59

128+ |2.44-  |[-1.16+
7559 [j32.15 [j9.78

-1.16+ |2.77- -1.62+

0 0 0 0 0 7978 |i2330 |j13.70 |°

_ 162+ |28 [-1.19+
0 j16.00 10 0 0 0 i13.70 |j35.45 |j5.98
. 0 0 137+ 0 0 0 -1.19+ [2.55-

i11.6 i5.98 |[j17.34




Tab. 4.6. The matrix Yzz.

1 2 3
1 [j17.36 |0 0
2 |o 16.00]0
3 o 0 i17.06

Tab. 4.7. The matrix Y, .

1 2 3 4 5 6
1736 |0 0 0 0 0
0 0 0 0 i16.00 [0
0 0 i17.06 |0 0 0
Tab. 4.8. The matrix Y .
| 2 3
1 [i1736 [o 0
2 o 0 0
3 o 0 i17.06
4 o 0 0
5 o i16.00 [0
6 |o 0 0
Tab. 4.9. The matrix Y, .
1 2 3 4 5 6
331- |-1.94+ 137+
3931 [j10.51 |° 0 0 i11.60
194+ [322- |-128+
i10.51 [j15.84 |i5.50 |° 0 0
128+ |244- |-1.16+
0 i559 |i32.15 |jo.78 |° 0
6t |2.77- |-1.62+
0 0 i978 72330 [j13.70 |°
.62+ |28 |-1.19+
0 0 0 1370 |j35.45 |j5.98
137+ 119+ |2.55-
ite |° 0 0 i598 |j17.34
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Tab. 4.10. The matrix Yg.

1 2 3
1 054434 |-024+j2.43  |-0.30+2.42
2 [-0.24+j2.430.39j 4.95 0.15+j 2.95
3 [-030+2.42(-0.15+2.95  [0.45-4.90

Tab. 4.11. The matrix K, .
1 2 3 4 5 6
1 [0.75-j0.03 ]10.55-j0.02 ]0.14+j0.02 |0.15+0.02 |0.15+j 0.01 [0.55-j 0.03
2 10.14+j0.01 [0.15+50.01 |[0.17+0.0090.48-j0.01 |0.69-j0.02 [0.33+ 0.01
3 10.14+0.02 [0.354j 0.006]0.71-j 0.03 [ 0.41-j 0.006 | 0.18+j 0.01 [0.16+j 0.02

Tab. 4.12. The elements of the vector I r calculated from the formula (4.6), and the elements of the

vectors YRV R»and Al R » Which are components of the sum in the formula (4.6).

- "g iR YRVR AiR

T 5| 2

S g K2 Magnitude Phase Magnitude Phase Magnitude Phase

Z35| s u angle u angle u angle
2 p-u. degrees p-u- degrees p-u. degrees

1 1 0.76 -18.50 0.72 146.69 1.46 -25.68

2 2 1.64 4.60 10.80 43.49 1.13 -21.56

3 3 0.85 7.23 [0.46 101.15 1.00 -20.37

4.2.2. NODE AGGREGATION USING THE DIMO’S METHOD

The aim of the method is replacing a group of nodes {4} by an equivalent node a

(Fig. 4.4) [4.1]-[4.3].
In the first step of the transformation, some fictitious branches are added to the

aggregated nodes, constituting the set {4}.
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*
i ? . original
R : network
+
{R}i
- 3 . reduced
Ik : network
+

Fig. 4.4. The reduction of the network by aggregation of nodes using the Dimo’s method.

The admittance of each of the fictitious branches is expressed by the formula

—x

N

Yi =

i

VZ

for i e{4}. (4.13)

To obtain an equivalent node operating at nonzero voltage an extra fictitious
branch with negative admittance is usually added to node a (Fig. 4.4)

s
Yfa :F’ (4.14)

a

where: S, = Zg
}
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Features of aggregation of nodes using Dimo’s method

4. If the assumption, that admittances of the fictitious branches are constant , is not
valid, the obtained equivalent will only imitate the external network accurately.

5. The Dimo’s method produces a large number of fictitious branches due to the
elimination of node f'and nodes { 4 } .

6. A result of the Dimo’s method may be branches with negative admittances, of
which real parts have essential significance. This fact may cause convergence
problems during calculations

4.2.3. NODE AGGREGATION USING THE ZHUKOV’S METHOD

Aim of the Zhukov’s method is the same as it is for the Dimo’s method, i.e. it is
replacing a set of nodes {4} by a single equivalent node a (Fig. 4.5) [4.2].
The method ensures satisfaction of the conditions:

1. The currents and voltages, i.e. I, and V,, at the retained nodes cannot be
changed.

2. Su= zgi , where S; - power injection at the aggregated node i.
ie{d}
Before aggregation of nodes, the network is described by the formula

1] [Yee Yri[Vg
=] - T, (4.15)
I, Yur Yusa ||V,
where 4 — denotes the set of aggregated nodes.
After aggregation of nodes, the following relationship is valid

PR
Ry TR TR T 4.16)
I, Yir Yaw ||V,
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{A}
Ry |
i > v original v _
R . network . Ia

{R}
: > - reduced
Ik . network
+

Fig. 4.5. The reduction of the network by aggregation of nodes using the Zhukov’s method.

The condition: ,,The currents and voltages I, and V,, at the retained nodes
cannot be changed.” is satisfied when

YRRVR+YRAVA=?RRVR+YR¢1V‘I 4.17)
or
YriV,=YrV,. (4.18)
If the above condition is to be satisfied for any vector V ,, it must hold that
Yre =Yra3, (4.19)
where 9 = VZIVA .

The condition: ga = Zgz 1s satisfied when
ie{d}

Vala=Viala, (4.20)
what is equivalent with

VoYkrVR+VaYoaVa =ViYRVR+VIYu Vo | 4.21)
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If the equation (4.21) is to be satisfied for any vector V ,, it must hold that

Y, =9"Y,, (4.22)

and

Y, 9. (4.23)

One can note, that:

1. The admittances of the equivalent branches linking the equivalent node with
the retained nodes depend on 9 , and hence on the voltage angle at the

equivalent node d,.

2. To have equivalent branches with low resistances the angle 5, is assumed to
be calculated from:

for steady-state analysis

5, =<4l (4.24)
ie{d} ‘
for aggregation of a group of generators in the transient stability model
> M,
5 = ie{d}

DY

ie{A}

(4.25)

where M;=T,,S,;/o, the inertia coefficient of the unit installed at the i-th
aggregated node.

Features of aggregation of nodes using the Zhukov’s method
1. The admittances in the equivalent Zhukov’s network depend on the vector § .

This means that an equivalent network obtained for an initial (pre-fault) state is
only valid for other states (transient or steady-state), if 9, i e {4} can be assumed

to remain constant.

2. The Zhukov’s method does not introduce fictitious branches between the retained
nodes {R}. The Zhukov’s aggregation introduces some equivalent shunt
admittances at these nodes.

3. If the vector 9 is complex then Zhukov’s equivalent admittance matrix is not

generally symmetric (Y ,z# Yko ). This means that if ¥ =Y, fori € {R}, then
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the values of the admittances in the equivalent branches obtained after
aggregation are direction dependent.

PROBLEMS
4.1.  What are the reasons for power-system model reductions?
4.2.  How can we distinguish model-reduction methods?

4.3, What is an admittance of the fictitious branch, which is added to the node a
(Fig. 4.5), when the node aggregation with the use of the Dimo’s method is
utilized? What does this admittance depend on?

4.4.  What is the nodal admittance matrix after node aggregation with the use of the
Zhukov’s metod?

4.5.  What are differences between the Dimo’s method and the Zhukov’s metod?
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5. POWER SYSTEM MODEL REDUCTION.
AGGREGATION OF GENERATING UNITS.
EQUIVALENT MODELS
OF THE EXTERNAL SUBSYSTEM

5.1. INTRODUCTION

Continued development and interconnection of power systems results in increase in
model dimension and complexity. Modeling and analysis of systems with more and
more complex structure is challenging task. Despite the rapid growth of computing
capabilities there is still need of using system equivalents. Equivalent can be defined
as simplified model which can represent the original system without loss of any
significant characteristic behavior. It can be stated that in practice usually there is no
need to model entire power system in details. Using equivalents seems to be
advantageous:

o simplified representation by eliminating the elements that are influential
in power system operation but they are out of interest,

e avoiding serious difficulties with construction of detailed full scale
system model, e.g. problems with data availability,

e improving computational efficiency and simplification of result
analysis.

Some drawback of using equivalents concerns on possibility of obtaining
inaccurate results. In addition, using simplified representation is usually valid over a
limited range of operating conditions. It is worth noting that applying of simplification
rules may lead to creation the models with elements and parameters not existed in
original system.

Generally, model reduction methods can be classified into the following groups:

e physical reduction — elements without great influence on operation of
analyzed system are replaced by very simple models,

e topological reduction — using circuit-theoretic methods do develop
equivalents. elimination and/or aggregation of power network nodes in
order to simplify the network structure and reduce the number of
generating units,

e modal reduction — reduction of the linearized differential equation set
describing system in order to suppress the irrelevant system modes.

e identification technique reduction — using real-time data to develop the
equivalent by identification or parameter estimation methods without
detailed description of the power network.
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Topological reduction combined with physical reduction techniques are mainly
used in practice. The presented further topology reduction techniques are particularly
suitable for static analyses such as load flow. These methods extended by generator
coherency recognition and aggregation are also used for dynamic studies, e.g. transient
stability. It is worth noting that topological reduction methods can be easy
incorporated into power system analysis software. Some other power system
equivalent types and application are reviewed in [5.1].

For developing the power system equivalent the whole system is divided into
internal subsystem and external subsystem, as shown in Fig. 5.1.

L.
#) 111
. .
. o
Internal '. External (G
subsystem . subsystem .
* Tie lines —°

Fig. 5.1. Partitioning of power system into internal and external subsystem. {B} — set of boundary
nodes, {G} — set of external subsystem generator nodes, {L} — set of external subsystem load nodes.

The external subsystem is connected with internal one via tie lines adjacent to
boundary buses. Internal subsystem is part of the system under study and with detailed
representation of network elements, usually equipped with own energy management
system. External subsystem is replaced by equivalent network which contains only a
few boundary nodes and some nodes remained after original network transformations.
Eliminated nodes are completely removed from equivalent and aggregated group of
nodes is replaced by one node. In addition, branch parameters of equivalent are also
modified.

5.2. EQUIVALENT MODELS OF EXTERNAL SUBSYSTEMS

The node elimination and aggregation presented in Chapter 4 can be used to
develop the equivalent for static steady state. After identification of boundary nodes
which cannot be eliminated, eliminated and aggregated nodes are selected. The
network transformation are applied in order to obtain static equivalent.
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Exernal subsystem

Boundary nodes

Internal subsystem

Fig. 5.2. Example power system
divided into internal subsystem, external subsystem, and boundary nodes.

Equivalent for the external subsystem for dynamic studies is made in the following
steps:

Identification of external subsystem and boundary nodes.
Elimination/aggregation of the load nodes in the external subsystem.
Recognition of coherent groups of generators.

4. Aggregation of the coherent groups of generators.

w =

After dividing power system into internal and external subsystem the sets of
retained and eliminated nodes in external network are distinguished. Retained nodes
belong to external subsystem being also a node of equivalent network. Nodes which
are in original external subsystem but do not appear in of equivalent (their presence is
approximated by equivalent) are defined as eliminated nodes. Load nodes are
eliminated from external subsystem by topological reduction. After identification of
coherent generating units, each coherent group is represented by one equivalent
generator. The resulting equivalent network of external subsystem contains only
border nodes and nodes with aggregated generating units connected.
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5.2.1. ELIMINATION AND AGGREGATION NODES

Considering the external subsystem in separately from internal part as shown in
Fig. 5.2 the following network equations can be derived:

I, Y, Yo Y|V,
lG = XGB XGG XGL XG > (5~1)

IL XLB XLG XLL XL

where: I, I , I, — injection current vectors for boundary, generation and load nodes
respectively;
Vi, Ve, V. Vi — nodal voltage vectors for boundary, generation and load
nodes respectively;
Y:s, Yoo, Y. —self-admittance matrix derived for boundary generation and
load nodes respectively;
Y6, Y, — mutual-admittance matrices for boundary nodes;
Y5, Y, — mutual-admittance matrices for generation nodes;
Y5, Y;c — mutual-admittance matrices for load nodes.
After elimination of load nodes, the node currents for retained nodes (boundary and
generating nodes) can be calculated from:

|:13:| _ { XB _XBLXZILXLB XBG _XBLYgLIXLG }|:YB} + |:XBLXL1L

4 - 1} I,. (52
lG XGB _XGLXLLXLB XG_XGLXLLXLG XG XGLXLL

The load node elimination can be expressed in simpler form. Let assume that
generating and boundary nodes belong to the retained node set {R}. The equation
(5.2) can be re-written in the form:

Lg :|:XRR XRL:| XR ' (5.3)
I I XLR XLL Y L
Elimination of load nodes by network transformation yields:
IR :XRYR +KIIL5 (5-4)

where: Yg =Yre —XRLXL_LIXLR )

-1
Ki=YrYr.
The matrix Yzgis also called transfer matrix and matrix K; is distribution matrix. It
should be underlined that the currents in retained nodes depend on load node current.
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If the loads in eliminated nodes are replaced by constant admittances then node
currents I, = 0 and then term K1, in (5.3) vanishes. For load power S;~= P;+jO,; in
the node i and the node voltage V; the equivalent load admittance is derived from:

Li

v, =S (55)

The equivalent admittances are added (with appropriate sign) to corresponding
diagonal terms of Y;; matrix.

Equation (5.2) and (5.3) describe the equivalent network consisting only of
boundary and generator nodes. Hence, it is also called PV equivalent (similarly as
generating node type in load flow studies) or PV-Ward equivalent (this equivalent
method was originally proposed by J. B. Ward in the mid of the 20-th century) [5.11].

It should be underlined that Ward equivalent is accurate at the operating point at
which is derived. If the operating point moves away from the base point then the
equivalent model does not represent the external subsystem accurately.

Some analyses require adjustment of power demand in external subsystem and
flows through tie lines. In such case some selected nodes are replaced by the Dimo’s
REI equivalent.

a) L b
T* LYW
{B} T T T {G} B “
e | e N -
o | e ol | Bo!
TRCR R TR o ) o
; : . subsystem :

Fig. 5.3. Load node elimination: network before transformation (a), network after transformation (b).
{B} — set of boundary nodes, {G'} — set generation nodes, {L} — set of load nodes.

The objective of radial equivalent independent (REI) method originally proposed
by Dimo [5.3] is to replace external network by aggregating injections of a group of
the nodes belonging to external subsystem. Radial links connect fictitious node which
is added to the internal system and aggregated node. Each radial branch admittance is
chosen in a such way as to make the terminal voltage of all the added branches equal.
The nodes in external system are grouped according to a certain common criterion
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such as geographical or electrical distance, operation control area, generation or load

type.
Steps of formulation REI equivalent for external subsystem are shown in Fig. 5.4.

2 (B} (E}
>o— —e<-
»>eo— —e<¢
L, - External « S¢
: subsystem !
o e
v
—>o—]
»>eo—
I I External
= : subsystem
>
K (B)
—>e—]
o] Reduced
I; e external
: subsystem
—>o—

Fig. 5.4. External subsystem reduction using REI method: original subsystem (a), network with
additional branches (b), network after elimination of node 0 (c).
{B} —boundary node set, {E }— external subsystem node set.

Complex power S injected into node f'is an algebraic sum of node power S in
external subsystem:

S,=25,. (5.6)

kelE}
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Node currents for f'and & can be calculated from the relationships:

s,
I=1,=|=L] =y, - ). (5.7)

lk:[&J :ZOk(Zo_Kk)' (5.8)

I

Yoy =5 (>-9)
2r
.

V= (5.10)

The voltage V; at the equivalent node is equal to the weighted average of the
voltages at the aggregated nodes:

>SS

=k

L R— (5.11)

—f *
3 S
=i

Network matrix equation for REI equivalent shown in Fig. 5.4b is as follows:

I Y 0 Y 0 Vv

1, — BB —BE —B
LY L O m5 )l (5.12)
l E XEB 0 XEE XEO X E

10 0 - Zof XOE Xoo Ko
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Because V), and node current Iz and /, are equal to zero the matrix equation (5.12)
can be rewritten in the following form:

I, Y, 0 Y, 0 \4

l/ _ 0 }—Iff 0 _Zof Kf (5‘13)
0| |Y, 0 Y, Y, |V,/
0 0 ~Yos Y, Y, 0

where: Y — a self admittance matrix for boundary nodes;

Yz Y3 — mutual admittance matrices for boundary and external subsystem

nodes;
Yoo =y, + DV

kelE}
Xff:ZOf;XEo=[~. Ve ]T
Yoo=lo =y, ) kelE)

Node 0 and nodes from set {E} can be eliminated with use of the node elimination
method (e.g. with Gauss elimination). After removing these nodes the network

equation of the equivalent :
{13} Y, Y, F} (5.14)
L/’ X(/B Y[f K.f

where: Y’pp— a self admittance matrix for boundary nodes after elimination;
Y’;, Y’ — mutual admittances for boundary and equivalent node;
Y’y — a self admittance of equivalent node.

REI networks can be also derived multiple equivalent nodes, e.g. for generating
and load power separately (Fig. 5.5).

{B}
>eo—
o Reduced
Iy e external
subsystem
roul

Fig. 5.5. External subsystem reduction using REI for generating and load nodes
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Summarizing, in Ward equivalents it is difficult to analyze generation and load
variations in external subsystem. Due to the presence of generation and load node (or
nodes) in the REI network, investigation of generation and load changes in the
subsystem is much more convenient. However, admittances of fictitious branches in
the REI network (significant resistances, negative admittances) do not have simple
physical interpretation.

5.2.2. GENERATOR COHERENCY RECOGNITION

The step before aggregation of generating units is identification of coherent groups
of generators. The classical method for coherency identification is simulation in time
domain. The response of the system to the specified disturbance is computed and rotor
angle changes of generators are compared. The generators which swing together (have
similar speed deviation) are considered as coherent (Fig. 5.6).

The generating nodes can be aggregated if the coherency condition is satisfied:

16,(6)-5,(t) =[0,0(t) <&, te(0.7), (5.15)

where: 6(f), J(f) — generator rotor angles;
¢ —an assumed angle tolerance level;
T — asimulation time.
Several methods for generator coherence identification can be divided into the
following groups:

e simulation of the system perturbation with use of non-linear model,

e simulation of the system perturbation with use of linearized model,

e using relationships describing system parameters and perturbation
without simulation — coherence prediction.

(1)

16 (-6 (D] < &

»
>

t

Fig. 5.6. Rotor angle variations of coherent generators



The methods of coherency identification use various techniques to recognize such
coherent groups, e.g.:

concept of distance measure,
singular point analysis,
equal angular deviation,
mean square criterion,
Taylor series expansion,
frequency response,

energy function.

Identification of generator coherent groups in the presence of certain perturbation
and system parameters is also possible without making time domain simulation, i.e.
the coherence prediction.

The real power produced by the i-th generator in the external subsystem is [5.6]:

R = Vian + thVk [Bik Sin(@; - ek )+ Gik COS(H; - ek) +
ket (5.16)
+ 21, [B,.l sin(Hi' -6, )+ G, cos(@,' -6, )] ’
kelG}

where: V;  — a transient electromotive force of the i-th generator;

Vi, —avoltage at the border node,

&, 6., 6, —node voltage angles ;

Gi, Gy, G, By, By —elements of a transfer admittance matrix (conductances

and susceptances),

{B} — a set of boundary nodes,

{G} — a set of generator nodes.

Neglecting G, G;; and assuming that the perturbation cause the change in voltage
angle of the border node & from initial value &, by A6, i.e. =06, + AG, and voltages
of remaining nodes do not change, for Ag, =0, cos Ag, ~1 and sin Ag; ~ A6, , the
change of active power as a function of Ag,is given by:

AP(AB,)=h,AB,, (5.17)

where: h, =VV,B, cos(6, —Hko) — synchronization power between i-th generator and

k-th border node.
The change in synchronization power cause the rotor acceleration:

d*s, AP(AG,) h,
a = L=— =—"% A0, ,ic{G}, ke {B}. 5.18
R v 1y 00 1€1GY, ke (B} (5.18)

1 1

where: M; — an inertia of i-th generator;
d; — arotor angle of i-th generator.
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If the rotor accelerations of generators i and j caused by the perturbation are equal,
the generator are considered as electromechanically coherent:

h—‘=h—/’f ic{G}, ke {B}. (5.19)
M, M,

The equation corresponds to the fact that the parameter 4, of equivalent branch
determines the influence of change in electrical state of node & to the power injected

by i-th generator. The value L determines the generator rotor acceleration. The
change in electrical state of node k cause the same rotor accelerations of coherent
generators.

The condition of coherence is not usually exactly satisfied. The practical rule for
identification the coherence is the difference between maximal and minimal value of
synchronization power does not exceed the assumed tolerance level &:

b h, -
n’_lezcl;xﬁi—rflelcnv<g,, i,je{G}, ke{B}. (5.20)

The value g, is usually assumed to be dependent on distance of a certain generator
from border nodes.
The coherency identification algorithm contains the following steps [5.6]:
1. Elimination of load nodes and obtaining PV-equivalent.
2. Grouping all the generators in the external subsystem in one coherent
group.
3. Ordering all the equivalent lines in ascending order according to the
values of synchronization power.
4. Taking the next equivalent line with terminal nodes i and j until no lines
left. If all the lines are taken stop the algorithm.
If the generator i or j is not suitable for grouping, go to p. 4.
6. If the condition (5.10) is not satisfied for pair i and j go to p. 4. Otherwise
create group {g} consisting generators i and ;.
7. Search all the generators for a given generator e which satisfy the
condition (5.10) for the group {g, e} and gives a minimum value for the

b

: h, . h,
difference max—% — min—%. If such generator cannot be found create

icG M ieG
i

new group {g} and go to p. 4. Otherwise go to p. 8.
8. Mark generator g as non-eligible and include it to group {g}. Go to p. 7.
Simplified flowchart of the algorithm is presented in Fig. 5.7.
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START

Formulation of PV equivalent including border and generating nodes |

v

Including all the generators to one coherent group |

v

| Ordering equivalent lines in ascending order with respect to the synchronous power |

Considering next equivalent line connecting nodes i nad j |

v

Is generator i or j

A

grouped?

Is criterion (5.10)

A

satisfied for pair i,j?

Create group with generators i and j |

|A

Search for other generators satisfying criterion (5.10) |

Is coherent generator

found?

Add generator to the group |

Fig. 5.7. The flow chart of the coherent prediction algorithm.
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5.2.3. AGGREGATION OF GENERATING UNITS

After identification of coherent groups, each group is aggregated and replaced to
one equivalent generating units as shown in Fig. 5.8. In addition the network is
modified to preserve the steady state power flow conditions. Generator nodes
belonging to coherent group are linked together and network parameters are updated
with use of the selected method.

In dynamic analyses the generator in coherent group can be represented by
classical generator model with electromotive force behind transient reactance. Such
modeling method assumes neglecting of the control system that exists in the
generating units.

Classical model is valid only for few cycles after disturbance. Otherwise, the swing
equation should be solved to simulated rotor angle and speed changes in time domain.
Considering group coherent generators {g}, and using the second order motion
equation description gives:

M3 Do =P P,
dt e

n (5.21)

=,
dr
where: M; - an inertia;
@; —arotor speed of the i-th generator;
& —arotor angle of the i-th generator;
D; —adumping coefficient;
P,; —amechanical power of the i-th generator;
P, —an electrical power of the i-th generator; i € {g}.

The power generated by equivalent unit is equal to the sum of power generated by
the aggregated units. It corresponds to the synchronous rotation of masses one
common rigid shaft. The motion equation for equivalent generator is:

(ZM) —ZP—ZP (ZDJ (5.22)

zeLg ie ‘g IEI& IEI&

The inertia of the equivalent generator is given by:

M,=YM,, (5.23)

iclg}

damping coefficient:

D,=3%D, (5.24)
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electrical and mechanical power:
P,=>P P,=>PF. (5.25)
ielg} ic{g}

For classical generator model the equivalent transient reactance is calculated from
parallel connection of reactances of aggregated generators:

X, = (5.26)

2

ilg) X',

Although aggregation with use classical models is still able to provide a good
approximation a detailed aggregation of the control systems: exciter, power system
stabilizer, governor is also takes into account. These control system equivalent
parameters are obtained from identification procedure. Inclusion of control parameters
usually improves the accuracy during time domain simulations.

R} () Y
s
I <: ) Equivalent
q
generator
—Ppo—]
= o HO a Y,
external aggregated
. subsystem +@ . external .
| E equivalent . I . subsystem E
B3 . =8 E equivalent :
— O - O

Fig. 5.8. Aggregation of coherent group of generators:
network before aggregation (a), network after aggregation (b). {g} — coherent group.
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Zhukov aggregation method

After insertion of equivalent generator for each coherent group network should be
updated to preserve steady state load flow. Due to identification of »n coherent
generator groups the network equation needs to be re-arranged into the following
form:

13 X’BB XBgl XBgZ XB
1g1 _ Xng Xgng Xglgn Xgl (5 27)
lgn XgnB XgngZ e Xgngn Xgﬂ

where: Yg,; — an admittance matrix for the network regarding to boundary nodes and
generating nodes belonging to the i-th coherent group,i=1, 2, ..., n;

Y., — an admittance matrix for the network regarding to nodes belonging to
the i-th and j-th coherent group;i,j =1, 2, ...n;

V.. —avoltage vector for nodes belonging to the i-th coherent group;

I, —a current vector for nodes belonging to the i-th coherent group.

Aggregation of generating nodes for each coherent group yields:

IB X'BB XaBgl Tt XaBg” YB
la.gl _ Xa.gls Zajglgl )_,a%"g" K(fg' , (5.28)
lagn XagnB )_,agﬂgl e Xaé’"é’" Ka‘g"

The admittances can be calculated by applying Zhukov aggregation from the
following equations:

Yw=9_Y (5.29)

= giB —giB >

where: 9, =(K” )7]V i=1,2,...,n

gi —gi?

Zagi&’/ :QZg/Xginggigj s (530)
where: 9, =(Vg‘;)ﬁlyg/ i,j=1,2,...,n,
Y =Y, 3 s (5.31)

where: 4 :<Za‘)_lV i=1,2,...,n

~ Bgi gi —gi>

90



The voltage magnitude and phase for aggregated nodes in steady state static
analysis can be calculated as:

(5.32)

where: S, — an apparent power injected into the j-th node;
{g;} —a set of nodes belonging to the i-th coherent generator group,
For dynamic analyses equivalent node voltage is weighted sum of aggregated node
voltages:

Z{V[/V/‘ Z}Mjé’j

y - e g =il

gi B gi B
M. M
7 p

(5.33)

je{gi ie{gi

where: M, — an inertia of generating unit at j-th node;
{g;} — a set of nodes belonging to i-th coherent generator group.

Example 5.1

Replace the external subsystem shown in Fig. 5.9 by PV aggregated equivalent for
dynamic study. Generators connected to nodes 2 and 3 are recognized as coherent and
modeled as electromotive force behind transient reactance X’ » = X ;3= 0.015. Nodes
2’ and 3’ are internal generator nodes. Inertia of generators M, = M;=6.5.

1

\17 4

Boundary node

Fig. 5.9. Example external subsystem for dynamic PV aggregated equivalent.
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Branch and node parameters are given in Tab. 5.1.

Tab. 5.1. Brach parameters of system shown in Fig. 5.9.

Nodei | Node; pli’l_ p)il pj.gfl.
1 5 0,02 0,50 0,0
5 4 0,02 0.10 0,0
3 4 002 | 0.10 0,0
4 5 0.03 0,12 0,0
1 6 0,07 0,15 0,0
5 6 007 | 020 0,0
> > 000 | 0015 | 00
3 3 000 | 0015 | 00

Tab. 5.2. Node data obtained from load flow study.

Node, i Pai, Oci» Pri, OLis v, 1L,
p.u. p.u p.u. p.u. p.u p.u.

1 - - - - 1,032-j0,038 0,129-j0,055

2 0.250 0.021 - - 1,018-j0,061 0,244-j0,038

3 0.250 0.021 - - 1,018-j0,061 0,244-j0,038

4 0.200 0.020 1,009-j0,085 | -0,195+j0,040

5 0.250 0.025 1,003-j0,101 | -0,244+j0,050

6 0.180 0.020 0,996-j0,106 | -0,177+j0,040

Alternatively, load connected to eliminated nodes can be replaced by constant

shunt admittances:

Y=

LS

P, —jO,, 0.200-j0.020
v} 1.009* +0.085>
_P,-jO,; 0.250-30.025
Ve 1.003% +0.101?
_P,—j0,, 0.180-0.020
v? 0.996> +0.106>

ZL6

and then load node currents are zero I; = 0.
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=0.195-30.023,

=0.246 - j0.025,

=0.179-j0.021,




The electromotive forces of generators:
E,=V,+jX,I,=1.018-j0.061+j0.015(0.244 — j0.038)=1.018 - j0.057,
E,=V,+jX,,I1,=1.018-0.061+ j0.015(0.244 — j0.038)=1.018 - j0.057 .

Admittance matrix Y constructed for network with admittance load representation:

] 2
0,08-

Fliooo 0

200 66,67

3]0 0

210 166,67

3100 0

410 0
20,08+

S0 ©

6|0 0

3 2 3

0 0 0

0 66,67 0

66,67 i 0 166,67
1,92-

0 i7608 0

. 1,92-

66,67 10 176,28

0 1,92+ -1,92+
9,62 9,62

0 0 0

0 0 0

5

-0,08+
32,00

(=]

-1,96+
j7,84
3,85-
714,32
-1,56+
j4,45

6

(=]

-2,55+
j5,47
-1,56+
74,45
4,29-
79,95

Set of retaining nodes (generator and boundary nodes): {R}={B}u{G}={1, 2’, 3’}
and set of eliminated load nodes {L}={2, 3, 4, 5, 6}. Matrix Y is split into the self and
mutual admittance submatrices:

[0.08— §2.00
XRR = 0

L 0

[0 0
Y, = 0 0

1j66.67 0

[ 0

0

Y= 0

0

0 —0.08+j2.00 0]

0
0

0
—j66.67
0

0
0

0
—-0.08 +j2.00 0
0

0
0
~j66.67
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[1.92-76.28 0 ~1.92 +j9.62 0 0

0 1.92-j76.28 —1.92+j9.62 0 0
Y, =|-1.92+j9.62 —192+j9.62 8.56-i32.57 —1.96+j7.84 —2.55+5.47
0 0 ~1.96+(7.84 3.85-j1432 —1.56+j4.45
I 0 0 ~2.55+j5.47 —156+j445 429-j9.95 |

Transfer matrix calculated from (5.4):

0.149-j1.542  -0.026+j0.756  -0.026 + j0.756
Y, =|-0.026+j0.756 0.874-j4.614 -0.593+j3.825|.
-0.026 + j0.756  -0.593 + j3.825 0.874-j4.614

The next step is aggregation of nodes 2’ and 3’. The voltage in aggregated node:

_ M,E, +M,E, 651021+6.51.021

Ve = =1.021,
: M, +M, 6.5+6.5
M,0,+M,0, 6.5 (0. S5 (—0.
gr = MaOr 4 M6, _ 65 (0056)+6.5 (0.056) o
¢ M,+M, 6.5+6.5

Voltage of aggregated node is equal to electromotive forces of generator. Hence,
transformation ratio is simply:

Admittance matrices for aggregated PV equivalent are calculated with use of re-
arranged transfer matrix Yy are calculated from (5.28) - (5.31) and then:

Y',,=0.149-j1.542,
Y s =-0.052+j1.512,
Y s =-0.052+j1.512,
Y10 =0.563-1.578..

Equivalent network matrix:

v _{X'BB X"B,gl} {0.149—]'1.542 —0.052+j1.512}
_E‘q_ - .

Yus Yiau| |-0.052+ 1512 0563 j1.578
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Slow coherence aggregation algorithm

The coherent generators are aggregated at generator internal nodes. The machine
internal node voltages are computed and these nodes are linked to a common bus via
phase shifters to preserve power flows. Let consider the part of the system containing
two coherent generators as shown in Fig. 5.10.

The algorithm is as follows [5.1]:

1.

Computation of voltages of machine internal nodes with use power flow
calculation results. Using complex nodal power the node current injection is
calculated.

Creating the common node p. Calculation of common bus voltage V, with use
of inertial weighted average of the internal generator voltages E;, i € {a, b}.

_ME, +M,E,

5.34
o= 1 m, (5:34)

where: M; — inertia of i-th generator;

E; — complex internal generator voltage i-th generator.
Adding new lines connecting bus p with buses a and b. Calculation of
complex voltage transformation ratios:

3, zézg,.e”", iela,b}. (5.35)

=i

—1

The parameters of new lines are the series connection of reactance j.X°; and
transformer with complex ratio .9, i €{a, b} (Fig. 5.10b). Shunt parameters
are neglected.
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E, 1X b

b)
\% -
- lX da
1Xab

p
©)
p

iX’da

1X
Fig. 5.10. Inertial coherency generator aggregation steps.

Computation of inertia and transient reactance of the equivalent generator:

M, =M,+M, (5.36)
. 1
X, == — (5.37)
+
X’da X'dh

Creating of bus ¢. This bus cannot be used as generator internal node and the
branch connecting nodes p and g with reactance —.X° 4, is added, and then to
a bus r with line reactance jX" 4, The node p has the same voltage as node r.
Bus q is used as terminal and bus » as aggregated generator internal voltage.
The voltage at bus ¢ is equal to V, and the power flow to the buses a and b.
Adjusting generation at buses a, b, g. Generations at buses a, b are set to zero.
The generation on the new terminal bus ¢ is set equal to the power transfer to
buses a and b. Bus p does not have any generator or load, and can be
eliminated (Fig. 5.10c).



Example 5.2

Aggregate generating units connected to the nodes 4 and 5 as shown in Fig. 5.11
with use of inertial coherence method. Assume classical generator model
(electromotive force behind transient reactance). Branch data are as in Example 5.1.
Node data obtained from load flow study are presented in Tab. 5.3.

________________

Fig. 5.11. Example system for dynamic inertial aggregation.

Tab. 5.3. Load flow study results for system presented in Fig. 5.11.

NOde, i PGi,a QGi,7 PLi,7 QLi,7 Kia L’a
p-u. p-u. p-u. p-u. p-u. p-u.
4 0.30 0.085 - - 1.0035 -j0.114 0.285-30.117
0.30 0.061 - - 1.0085 -j0.084 0.291 -j0.084

Generating unit data:
Inertia: M,= 6.5, M5=3.0,
Transient reactances: X4 = 0.12, X’ = 0.18.
Inertial aggregation of generating unit is made in the following steps:

1. Generator internal voltages calculated from data:
Electromotive forces behind transient reactances:

E,=V,+jX,I,=10035-j0.1140+ j0.12(0.2858 — j0.1167)=1.0173- j0.0797 ,
E;=V +jX,.I,=1.0085-j0.0842+ j0.18(0.2905 — j0.0843)=1.0234 - j0.0319.
or in polar form:

E,=1.0204¢  E . =1.0239¢ """

2. Common bus voltage:
_ M,E,+M,E, 6.5(.0173-j0.0797)+3.0(1.0234 - j0.0319)
M+ M, 6.5+3.0

=1.0192 - j0.0646
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3. Voltage transformation ratios:

4 i _
g, ==L= 1.0192 ?0'0646 =1.0007 + j0.0149 =1.0008¢"" " |
=T E, 1.0173-j0.0797

V, 1.0192-0.0646 00321

9. ) =0.9969 - j0.0320 = 0.9974¢ """
E. 1.0234-j0.0319

4. Equivalent inertia and transient reactance:
M, =M,+M;=65+3.0=95,
, 1 1
X', = ] = = 0.072
+ +
X' X' 0.12 0.18
The network scheme with aggregated units is shown in Fig. 5.12.

d4 ds

100081014 j0.12

0.9974¢ 100321 jo.18

Fig. 5.12. Inertial coherency generator aggregation results.

Slow coherence aggregation algorithm

The slow coherency aggregation uses an impedance modification to the inertial
aggregation. Hence, the slow coherency aggregation can be considered as an inertial
aggregation with impedance correction.

Slow coherency aggregation procedure uses the linearization at the generator
terminal buses. The fast inter-machine variables are then eliminated, and the power
network is reconstructed from the reduced linearized model.

The slow coherency aggregation is as follows [5.1]:

1. After performing the steps 1 and 2 for inertial coherence algorithm the swing
equations for generators at the operating point are linearized.

2H1.A5.:,. - _ EioVio COS(&;O _HIO)Aé‘i _ EiO Sm(é‘io _QO)AVI. + EiOV;O 005(510 _Hio)Aa_ ,(5.38)
X’di X’di X’di
Jbo
Al =— Ej“ AS +~——— AV, + ZjO A0, iela,b), (5.39)
X'y JA 4 X',

where: H; — an inertia,
Ex— an internal generator voltage magnitude,
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Vio— a generator terminal voltage,
6 — a terminal bus voltage angle,
0,0 — a rotor angle,
Al;— a current injection.

Defining the following vectors:

AV

a

AS, AV, AL,
X= , Z= , Al= .
Ao, AG, Al

A6,

b
The equations can be written in matrix form as:
x=Kx+K,z, A=K ,x+K,z (5.40)

2. Transforming into slow and fast variables.

When the machines form a slow coherent group, their centre of angle as the slow
variables can be obtained, and the inter-machine oscillations as the fast variables. To
perform the slow coherency aggregation, the original machine angles are transformed
to slow and fast variables. The slow aggregate variable and fast local variable are

defined as:
5S :Ha5a +Hb5b 5f:5b _5a_ (541)
H, +H,

The linearized model after applying the transformation results in:

AS\' {Kn K12_|:A5:}+|:K21:|
.| = VA
AS, K, K] AS, K, , (5.42)
[AS.
Al= [K31 K;, Aé" +K,z
L= (5.43)

3. Creating of slow subsystem.
Neglecting the fast dynamic component AS, the quasi steady-state of slow
component:

A5, =K 1(K A5 +K z) (5.44)
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After neglecting AS '+ one can obtain:

A5 =K, A5 +K,z A=K, A8 +K,z (5.45)
where: K, =K, -K,K, K ;,
K, =K, -K,K.,K,,,
K, =K; _KszKl_iKm >
K, =K, -K,K,K,,.

Equation (5.42) represents the linearized model for the slow subsystem. The next
step is to reconstruct a power network whose linearization would yield equation
(5.45). The terms K5, K»s and Kj, are needed to construct lines connecting bus to the
original generator terminal buses a and b, and the term Ky, is needed for the lines
interconnecting buses a and b. The reconstruction will in general require phase
shifters. In addition, the reconstruction from K4, will not satisfy the network flow
condition. As a result, balancing the power flow is achieved by adding loads to these
buses. It is also possible that the impedances from the K, reconstruction are much
larger than those from the K, such that the K4 terms can be neglected.

5.3. DYNAMIC EXTERNAL-SUBSYSTEM-EQUIVALENT
METHODS

The great variety of methods for obtaining external system equivalent for both
steady state and transient operation have been proposed. Topological reduction and
coherency approach rely on elimination and aggregation of nodes to reduce equivalent
network complexity are presented previously. The other main approaches to dynamic
equivalent system are as follows:

o Infinite bus approach: external system is represented by voltage source
with constant voltage magnitude and frequency. Dynamical interactions
between internal and external subsystem are neglected. The model is
very simple but inaccurate.

e Modal approach: set of nonlinear differential equations is linearized and
eigenvalues are analyzed. The system matrix is diagonalized and modes
having small influence on system are neglected. Assuming the
linearized state equation describing the power system:

AX = AAX + BAu

, (5.46)
Ay = CAx + DAu
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where: A, B, C, D — state matrices;
AX — a state vector;
Au — an input vector;
Ay — an output vector,

the eigensolution is given by:

ax()= Y @, e (¥,Ax(0)). (5.47)

where: ®; — the i-th right eigenvector;

¥, — the i-th left eigenvector;

A; — the i-th eigenvalue;

n —asystem order.
The participation of each state on the mode ¢*' regarding intensity and
phase angle is described by the complex right eigenvector ®@;. The
excitation of the modes depends on the left eigenvector ¥; and the initial
state.
The reduction of the system order relies on elimination of the modes
having small influence on system. Different criteria for mode rejection
can be applied. The concept of participation factors assessment is often
proposed. Usually the single modes and given state variable dependence
is investigated with used of participation factors defined as the
sensitivity of the i-th eigenvalue to the k-th diagonal element of state
matrix A:

o,

P, = aakk ’

(5.48)

where: p; — a complex participation factor of the state variable x; and
eigenvalue A;.

Using this approach full knowledge on power system parameters is
required. New variables obtained during modal analysis do not have
simple physical interpretation.

e Identification approach: data obtained from internal system are used.
The external system is represented by equivalent with much more
simpler structure. An error objective function is used to adjust
equivalent parameters subject to minimize discrepancies between
original and equivalent system response. It requires few information on
external system and external system complexity may be significantly
reduced.

Summary of the power reduction methods is presented in Tab. 5.4.

101



5.4. AGGREGATION OF DISTRIBUTION NETWORKS
WITH DISTRIBUTED GENERATION

Distributed Generation (DG) are small generating units embedded in distribution
network. With the constantly increase in DG penetration their impact on power
network is noticeable, e.g. changes in power flow values and directions, influence on
stability etc. and cannot be neglected.

Typically, the power network with DG consists a great amount of generating units,
transformers, lines and feeders, capacitor banks etc. Building the detailed model of
such network requires many efforts and usually long computation time at simulation
step. Instead of using complete model, employing the simplified equivalent following
the behavior of the network with satisfied accuracy can be considered.

Most of these units, such as small thermal and hydro power plant, wind turbines,
are based on using induction generators. Further, such type of unit is considered.

A example of typical distribution power network with DG is shown in Fig. 5.13.

a) b)

N

PG]r QGI lPGnJ QGn l PGeqr QGeq
PL]r PLnJ @ PLqu
QL]

QLn QL eq

Fig. 5.13. Power network with connected distributed generators (a) and their equivalent (b).

According to 0 the following assumption for creating the equivalent are made:
e active and reactive power flows in the considered network are known,
e generator terminal voltages are assumed to be nominal,
e aggregated induction generator parameters are derived from no-load and rotor-
lock test of the parallel operation of individual machines.

No load impedance of i-th machine is as follows:
an,,- = R.s,i + j(Xs,i + Xm,i )’ (549)
where: R,,; — a stator resistance;
X, ; — a stator leakage reactance;

X,.; — a magnetizing reactance.
Hence, the equivalent no-load impedance:
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L R ex,). (5.50)

Znleq n 1

i=l an,i

where: n — a number of machines in a group.

The impedance of i-th machine for rotor lock:
Zrl,,' = (Rs,i + Rr,i )+ j(Xs,i + Xr,i )’ (55 1)

where: R,,; — a rotor resistance;
X,,; — a rotor reactance,
and the equivalent impedance of # parallel induction generators:

7 1

Zrleq = n 1

i=1 Zrl,i

—(R, +R. )+ilx,, +X.) (5.52)

where: n — a number of machines in a group.

It should be underlined that different types of machines can differ in parameters, so
they can be divided into the corresponding sub-groups.

Equivalent generating active and reactive power is obtained from:

g
B, = ;PG,; , (5.53)

O, = ZQ , (5.54)

where: Pg,;, Oc,;— an active and a reactive power of the i-th generating unit;
g —anumber of generating units.
Similarly, the equivalent load power is derived as:

g
})L,eq :Z})L,i > (555)

0. =§QL,,-, (5.56)

where: Py,;, O;;— an active and a reactive power of the i-th load;
L — a number of loads.
The slip of aggregated generator is obtained from 0:

Ps,

1

PN — (5.57)

eq

g

o

103



where: s; — a slip of the i-th machine.
Equivalent inertia constant:

g
SHP
H, == , (5.58)
! PG,eq
and equivalent moment of inertia:
2H,F,
J, =—=2, (5.59)
1)

where: @, — a synchronous angular speed.
Aggregated transformer parameters are derived from the losses of each device. The
overall active and reactive power losses:

AP, = 32 RT,iIi2 , (5.60)
i=1

AQT,eq :3ZXTJII'2 > (561)
i=1

where: Rr;, Xr;— aresistance and a reactance of the i-th transformer;
I, — a phase current in the branch representing the i-th transformer;
t — a number of transformers.
Hence, the parameters of equivalent transformer:

R, :N“’q, (5.62)
“ 3L
AQT,e

Xy = 315qq’ (5.63)

2
\/(PG,eq - PL,eq) + (QG,eq + QL,eq)2
where: [, =
V3,
system,
Vi — a line voltage magnitude the node £ (see Fig. 5.13).
Equivalent line parameters are derived from the following equations:

— a current magnitude for the aggregated

PM +PGeq _PLeq _APTeq
g = O e (5.64)
’ 3
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X — QM _QG,eq - QL,eq _AQT,eq

o 31
J

, (5.65)

2 2
J J

NEl

J
V; — a line voltage magnitude at the node ;.

Applying the equivalent procedure is advantageous especially when significant
number of generator operates in parallel, e.g. in wind farms. However, it should be
underlined that model simplification can lead to the inaccuracies and the equivalent
should be assessed if it is capable of giving satisfactory results.

where: [, = — a feeder current magnitude;

Tab. 5.4. Power network equivalent technique summary.

Equivalence . L .
approach Requirements Application Equivalent form
Voltage source with
Infinite bus No On-line constant voltage
and frequency
Modal analysis Linearized detailed fo-llne with small Modal quantitics
model disturbances
Topological . . .
reduction and Detailed model fo-hne with large | Aggregated equivalent
disturbances model
coherency
Identification Impedance
. characteristics of On-line Equivalent circuit
techniques
boundary nodes
PROBLEMS
5.1.  In Fig. P.5.1 power system shown where an internal and external subsystems

are distinguished Determine static Ward and REI equivalent of external
subsystem. Network parameters and load flow results for base case are in Tab.

P.5.1-Tab.P.5.3.
Tab. P.5.1. Branch data for Problem 5.1.
Nodes Parameters
i J R, %
p-u. p-u.
6 11 0,09498 0,19890
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6 12 | 0,12291 0,25581
6 13 | 0,06615 0,13027
9 10 | 0,03181 0,08450
9 14 | 0,12711 0,27038
10 | 11 | 0,08205 0,19207
12 | 13 | 0,22092 | 0,19988
13 | 14 | 0,17093 0,34802

Tab. P.5.2. Load flow data of external system for Problem 5.1.

Nodei | e | Ao T | O
10 1,05 -0,26 0,09 0,058
11 1,06 -0,26 0,035 0,018
12 1,06 -0,26 0,061 0,016
13 1,05 -0,26 0,14 0,058
14 1,04 -0,28 0,15 0,05

Tab. P.5.3. Boundary node voltages and injections for Problem 5.1.

Node i Vi b P Qinyi
p.u. rad p-u. p-u.

1,07 -0,25 0,33 0,13
9 1,06 -0,26 0,15 0,078




6 11 10
] ] |
| —— - A " g
s 4 7
1
B # _>

Fig. P.5.1. Power system for Problem 5.1. i ! external subsystem.

Check the coherency of the generators in power system shown in Fig. P.5.2. If
the coherency conditions are satisfied form coherent group and perform the
aggregation of generating units with use of Zhukov and inertial coherence
algorithm. Assume that generators are represented by classical model
(electromotive force behind transient reactance). The system data are given in
Tab. P.5.4-Tab.P.5.7.

External subsystem

Boundary bus
34 <20 19

@ Internal
—@— subsystem

3

On

Fig. P.5.2. External subsystem scheme for Problem 5.2.
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Tab. P.5.4. Generator data for Problem 5.2.

Generator é\/ﬁ fg’

G, 28,6 0,043

Gs 26,0 0,132
Tab. P.5.5. Branch parameters for Problem 5.2.

Nodeis || e | e

19-20 0.00 0.014 1.06
19-33 0.00 0.014 1.07
20-34 0.00 0.018 1.009

Tab. P.5.6. Load flow data for Problem 5.2.

[5.1]

[5.2]

[5.3]
[5.4]
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NOde, i Vl 9! PGi7 QG[: PLi,» QL[;
p-u. rad pu p-u. p-u. p-u.
20 0.99 -0.0799 - - 6.80 1.03
33 0.997 0.0358 6.32 1.0897 - -
34 1.01 0.0107 5.08 1.6700 - -
Tab. P.5.7. Boundary node voltages and injections for Problem 5.2.
Node i Vi o Ping Qi
p-u. rad p-u. p-u.
19 1.05 -0.055 -4.54 -0.597
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6. REAL-TIME MODELLING OF POWER SYSTEM

A real-time model is a quasi-static computer based mathematical representation of
current conditions in a power network [6.1], [6.2]. The real-time model is extracted at
intervals from ,,snapshots” of real-time measurements as well as from static network
data. Real-time measurements are analog measurements and the status of switching
devices. Static network data include a basic configuration and parameters of a
network.

The process of building real-time power system model is presented in the Fig. 6.1

Real-time data I I . Rezg-iime
es mode
- Determination of L Observability State N g:gi?:; [No| Building of
topology model checking estimation & identification external model

Bus Load
Forecast

Panalty factors
Factors

Fig. 6.1. The process of building real-time power system model.

6.1. DETERMINATION OF TOPOLOGY MODEL

The topology model says about present connections in a power system [6.1]-[6.6],
[6.10]. Topology model is determined by the network topology processor from the
telemetered status of circuit breakers.

Network topology can be described using terms of:

— bus sections and circuit breakers,

— Dbuses and branches.

6.1.1. BUS SECTION/CIRCUIT BREAKER TOPOLOGY MODEL

All equipment (generators, load feeders, shunt reactors, transformers, transmission
lines, etc.) are connected to bus-sections. Bus-sections within one voltage level at a
substation may be connected together by circuit breakers. An exemplary power system
with this level of detail is shown in Fig. 6.2. The data associated with a part of the
exemplary power system, which is distinguished by the gray circles, are given in
Tab. 6.1.
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Fig. 6.2. The example of a bus section/circuit breaker topology model.

Tab. 6.1. Description of topology using terms of bus section and circuit breaker.

Gub. Bus Sectiors Ciremit Breakers
station Ko Type Eq. ldent | Nc ;r;l; B.'I:SD& Status
1 | gen. unit 1 1 1 2 0N
2 | connection 2 2 3 ON
3 | transf TR 3 f 4 ON
4 | connection 4 5 7 ONM
| 5 | connection 5 7 5 OFF
6 | transf TEH: 6 4 8 ON
7 | lne LMI E 3 q ON
& | connection a 3 5 OFF
9 | line LN2 9 10 S OM
N[ Inad OBR4

6.1.2. BUS/BRANCH TOPOLOGY MODEL

In the bus/branch topology model, buses and branches are distinguished. A bus,
more exactly an electrical bus is a common electrical connection among different
elements of a power system such as power lines, transformers, generators, loads,
shunts, etc. A branch represents a power line or a transformer.
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The bus/branch topology model is determined using circuit breaker status data. If a
circuit breaker is on, a connection is modeled. If a circuit breaker is off, no connection
is modeled. Each of the buses must be identified together with the generation, loads,
and shunts at these buses.

Status of circuit breakers changes in real time and therefore the bus/branch
topology is expected to change. In this situation, whenever there is a change of status
of circuit breakers, the network topology processor must determine the new topology.
There are several methods to convert bus section/circuit breaker topology into
bus/branch topology.

The bus/branch topology model for an exemplary power system is shown in Fig.
6.3. That exemplary system is the same as the system for which the bus section/circuit
breaker topology model is presented in Fig. 6.2. The data associated with the model
from Fig. 6.3, are collected in Tab. 6.1.

Gt 1 TR1
@ | @ 2 LN1 4
lOB1
OB4 LN2 LN3
il
OB2+0B3

Fig. 6.3. The example of a bus/branch topology model.

6.1.3. DESCRIPTION OF TOPOLOGY USING INCIDENCE MATRIX

An incidence matrix of a power network represents interconnection of the branches
with respect to the nodes. As it was previously, the branch represents a power line or a
transformer. Saying “node”, we mean “electrical node”.

Let:

C - an incidence matrix,
n - a number of nodes in a power network,
b — a number of branches in a power network.
Under the mentioned assumptions C is a b x n matrix and:
C; = -1 if the branch i is incident to the node j and it is directed away,
— C,=1ifthe branch i is incident to the node j and it is directed towards,
C; = 0 if the branch i is not incident to the node ;.
where: i € {1, 2, ..., b},
je{l,2,...,n}.
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Tab. 6.2. Description of topology using terms of bus and branch.

From To Status at Status at
No | Name the bus the bus
bus bus « ., « ),
from from
1 |Gl 1 0 ON
2 | TR1 1 2 ON ON
3 | LNI 2 4 ON ON
4 | LN2 2 3 ON ON
5 | LN3 3 4 ON ON
6 | OBI 4 0 ON
7 | OB2+0OB3 3 0 ON
8 | OB4 2 0 ON

In Fig. 6.4, there is presented the incidence matrix for the power system, for which
the bus section/circuit breaker topology model is shown in Fig. 6.2 and the bus/branch
topology model in Fig. 6.3.

1 2 3 4
TR1 | 1 -1 0 0
IN1| O 1 0 -1
IN2| O -1 1 0
IN3| O 0 -1 1

Fig. 6.4. The example of an incidence matrix for the power system.

The incidence matrix is determined on the base of the bus/branch topology model.

6.2. STATE ESTIMATION

The state estimation is a calculation process which enables obtaining the best
estimate of the power system state vector [6.1], [6.2], [6.7]-[6.9]. Power system state
vector is a vector whose elements are bus voltage magnitudes and angles throughout
the network.

State estimation is a key function for obtaining a real-time network model. Inputs
for a state estimation are:

— atopology model,

— measurement data from a power network.
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6.2.1. MEASUREMENT DATA FOR STATE ESTIMATION

In the classical approach, the set of measurement data for state estimation includes:
— active and reactive power flows,
— active and reactive power injections,
— voltage magnitudes,
— current magnitudes (sometimes).
In the modern approach, we also utilise:
— voltage phasors,
— current phasors.

6.2.2. BAD DATA AND TOPOLOGY ERRORS IN STATE ESTIMATION

Problems of bad data and topology errors are essential problems in state estimation
[6.1], [6.2], [6.7]-[6.9]. Bad data is a data burdened with unusually large measurement
error (caused by meter-communication system failures). Usually, we assume that such
an error has a module which is much larger than standard deviation of distribution
describing measurement noise, e.g. larger than 6 standard deviations. Topology error
is improper modelling of any connection in a power network.

Bad data and topology errors have disadvantageous impact on state estimation.
They can be cause of divergence of an estimation process. They can decrease accuracy
of state estimation results, as well. Therefore, there is necessity of detection and
identification of bad data and topology errors in or also before state estimation starts.

Detection means a test to determine whether bad data or topology errors are
present. Identification means determination of data which are bad or connection which
is improperly modelled.

It should be underlined that topology errors occur rare but their consequences are
much more severe than it is in the case of bad data.

Identified bad data are eliminated from a data set utilized by state estimation. In the
case of identification of topology error the correction of topology model is made. The
next step is repetition of observability checking and estimation calculations. Such
iteration process is repeated until tests do not detect bad data or topology errors in
inputs for state estimation calculations.

6.3. NETWORK OBSERVABILITY

A network is observable, when sufficient measurement data are available so that
the entire state vector can be estimated [6.1], [6.2]. In other words, for the observable
network the state estimation can be made.

Network observability is dependent on:
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— the locations and types of available measurements,

— the network topology.

Normally, the metering system for the controlled portion of the network is
designed so that the network will not only be observable, but also redundant. The
network is redundant if the metering system provides measurement data whose
number is larger than 2n — 1 (n — a number of nodes).

There are different methods for checking network observability. They can be
divided into the following classes:

— numerically based methods,

— topologically based methods.

An observability test is performed every time when there is a change in the set of
available measurement data or the network topology. If the entire network is not
observable, unobservable buses should be determined. The unobservable buses have to
be either removed from the state estimator calculation or made observable by adding
pseudo-measurements.

If there are unobservable buses, a state eatimation is performed for observable
islands of buses.

6.4. BUS LOAD FORECAST FACTORS

Using results of state estimation, the ratio of each bus MW load to the system MW
load (and also the power factor) is calculated every few minutes [6.1], [6.2]. The
mentioned factors are utilized for forecasting the bus loads for a given system MW
load and a given month, day, and time. Purposes of the considered forecast are:

— utilization of the forecasted complex loads as pseudo-measurements to make
the buses observable if they are unobservable due to communication and RTU
failure,

— automatic specification of all the bus loads from a given system MW load.

6.5. EXTERNAL NETWORK MODELLING

The internal system is the observable part of a system solved by the state estimator
[6.1], [6.2]. It is assumed that the unobservable parts of a system are either lumped
into the external system or made observable by using pseudomeasurements
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6.6. PENALTY FACTORS

In the economic dispatching of generation, the sensitivity of the transmission losses
to the individual generation levels is taken into account by penalizing the incremental
cost functions of the generators [6.1], [6.2].

The penalty factors are given by:

1
PF =—— 1
R 6.1

oP,

where: L — the system loss,
P,;— the real power output of the i-th generator
With the availability of the real-time network model it is possible to calculate the
penalty factors right after the external model calculation is completed.

6.7. PROCEDURES
UTILIZING RESULTS OF REAL-TIME MODELLING

The most important procedures, which utilize results of real-time modelling, are:
— contingency analysis,
— optimal power flow with security constraints,

— optimal power flow with security constraints and post-contingency
rescheduling,

— dispatcher training simulator.

PROBLEMS

6.1.  What is a purpose of real-time modelling of a power system?

6.2.  What are the main stages of real-time modelling of a power system?

6.3.  Describe the topology of any power system using terms of bus section and
circuit breaker.

6.4.  Create a bus/branch topology model for the power system considered in the
previous problem.

6.5.  What is a purpose of utilization of the power-system state estimation?

6.6.  What is necessary condition to perform a power-system state estimation
process?

6.7.  Where are utilized results of power-system state estimation?

116



[6.1]

[6.2]

[6.3]

[6.4]

[6.5]

[6.6]

[6.7]
[6.8]

[6.9]

[6.10]

REFERENCES

A. Bose, K.A. Clements, Real-time modeling of power networks.
Proceedings of the IEEE, Vol. 75, No. 12, Dec. 1987, pp. 1607 — 1622.

A. Bose, T.A. Green, New Modeling, Analysis and Computation Techniques
Needed for Power System Control Centers. Inter. Journal of Electrical Power
& Energy Systems, Vol. 15, No. 3, June 1993, pp. 163-168.

R. Lukomski, K. Wilkosz, Power system topology determination: survey of
the methods. The 16th Inter. Conf. on Systems Science, Wroctaw, Poland, 4-6
Sept. 2007. Vol. 3, pp. 149-157.

R. Lukomski, K. Wilkosz, Power system topology verification method:
utilization of different types of artificial neural networks. The 16th Inter.l
Conf. on Systems Science, Wroctaw, Poland, 4-6 Sept. 2007. Vol. 3, pp. 149-
157.

R. Lukomski, K. Wilkosz, Method for Power System Topology Verification
with Use of Radial Basis Function Networks. Lecture Notes in Computer
Science, Vol. 4507, 2007, pp. 862 - 869.

R. Lukomski, K. Wilkosz, Power Network Observability for State Estimation
Review of the Method. The 9th Inter. Scientific Conf. on Electric Power
Engineering (EPE), Brno, Czech Republic, May 13-15, 2008, pp. 183-190.

A. Monticelli, State Estimation in Electric Power Systems. A Generalized
Approach. Boston, Kluwer Academic Publishers, 1999.

A. Monticelli, Electric power system state estimation. Proceedings of the
IEEE, Vol. 88, No. 2, Feb. 2000, pp. 262 — 282.

T. Okon, K. Wilkosz, Weighted-least-squares power system state estimation
in different coordinate systems. Przeglgd Elektrotechniczny, nr 11a, R. 86,
2010, s. 54-58.

K. Wilkosz, A Multi-Agent System Approach to Power System Topology
Verification. Lecture Notes in Computer Science, Vol. 4881, 2007,
pp- 970 - 979.

117



7. WEIGHTED LEAST SQUARES
POWER SYSTEM STATE ESTIMATION

7.1. LINEAR LEAST SQUARES ESTIMATION

The name least squares or weighted least squares results from the criterion for
finding the solution of the overdetermined set of equations made if more
measurements than state variables are available. The linear form of the equations is
assumed:

y = AXx, (7.1)
where: y = [y1, Vs, ..., vu]" — a measurement (output) vector;
X =[x1, X2 ..., xn]T — a state variable vector;

m -anumber of measurements,
n - anumber of state variables,
A —a mxn matrix with, m > n (matrix has more rows than columns).
In general, the equation (7.1) does not have the solution. In addition, measurement
data are burdened by errors and therefore one can write:

y=Ax+e, (7.2)

where: e — a vector representing measurement errors.

The solution of least square problem is based on the assumption that measurement
errors are independent random variables and they have the same distribution with zero
mean and variance equal to 1:

Efe}=0 E{eeT}= I. (7.3)

Searching for the estimates of state variables can be considered as the optimization
problem based on the minimization of the following objective function:

J(x)= E{(y ~Ax) (y- Ax)}: yy' -2y Ax-2"ATAx. (7.4)
The conditions for the minimum of the objective function are following:
2
) _, 0 J(f) >0. (7.5)
ox ox

The solution for the power system state estimation is:

x=(ATA)"A"y. (7.6)
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7.2. LINEAR WEIGHTED LEAST SQUARE ESTIMATION

Let suppose that for measurement errors E{e} = 0 and the covariance matrix is as
follows:

R= E{eer},
where Elee, |=0,i,j=12,...,mi# .
The objective function for the weighted least square estimation is to minimize:
J(®)=E{y- A2/ R (y—Ag)}=yR'y’ —2y'R 'A% -2"A"R 'A%,  (7.7)
and the solution of the estimation is:
x=(A"R'A)'A'Ry. (7.8)

Assuming that the matrix R is diagonal (the measurement errors are not
correlated):

R= . , (7.9)
0 O O 0-2”1”1
then the objective function is:
m _ 2
J(8)= Efy-As R (y—ag)}= 3 00 (7.10)
i=1 Gii
where: § = AX.
The difference between measured and estimated value:
r=y-y (7.11)

is called measurement residuals. The expected value and covariance matrix of
residuals are:

Elr}=0 cov(r)=A(A"W'AJ'A. (7.12)

and diagonal (random variables are independent).
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Example 7.1
Calculate the state estimates obtained with use of least squares for the
overdetermined set of equations:
4x, +7x, +x, =10
3%, —x, +2x, =1
2x, 4+3x, —x, =3

6x, +4x,+x,=8

Ox, +5x, —2x, =7

Compare the estimation results for the following cases:
a) without weighting matrix (or with unity weighting matrix),
b) with weighting matrix

1 00 0 O
010 0 O
R=|{0 0 1 0 O
0 00 01 O
00 0 0 0.1}
Writing equations in matrix form, one can obtain:
(4 7 1]
3 -1 2
A=|2 3 -1}, y=[1o 1 3 8 7]
6 4 1
19 5 -2

a) according to equation (7.8), the estimate of vector x is calculated as follows:

4 7 1774 7 1714 7 17710

3 -1 23 -1 2 3 -1 2|1/ [03261
x={|2 3 -=1|]2 3 ~-=1|||2 3 -1|]|3|=]1.1564];

6 116 1 6 1|8 |0.8118

9 5 —2]19 5 -2]/[9 5 -2][7]
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the residuals:

0] [4 7 1 [—0.2109]
1 3 -1 2 [03261] |-0.4455
r=y-Ax=|3[-[2 3 —1|1.1564|=|-0.3095].
8| |6 4 108118 0.6061
7119 5 -2 | —0.0931

b) the weighted least square estimates calculated with used of equation (7.8):

-1

4 7 171 00 0o o074 7 1]
3 -1 21/l01 0 0 0|13 -1 2
x=[|2 3 -1[|l0 01 0 0|2 3 -1|| x
6 4 1/(0 0001 0]]|6 1
9 5 -2]/[0 00 0 01]]9 5 -2]
4 7 1771 00 0 o07710]
3 -1 20/01 0 0 O0f]1 0.3566
x[2 3 —1/]0 01 0 0}|]|3]|=[11724
6 4 1//0 0 0 01 0|8 [1.0168
9 5 -2]/0 00 0 01]|7]
and the residuals:
[10] [4 7 1] [—0.6500]
1 3 -1 2 [03566] |-0.9310
r=y-Ax=|3|-|2 3 —1|1.1724|=[-0.2136|.
8| |6 4 1 [L0168 0.1539
7] 19 5 -2 | -0.0380 |

It can be noticed that the considerable reduction of residuals is obtained for
measurement with better accuracy stated by weighting factors in matrix R.

Example 7.2

Calculate estimates of voltages at nodes 1 and 2 in the DC circuit shown in Fig.
7.1. Find branch current and voltage estimates of sources. Meter readings are z,=5.1V,
z,=4.2V, zz=13.7A, z,=11.4A. Resistances of all branches are assumed R=0.5Q.
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Fig. 7.1. DC circuit for the state estimation calculations.

The state vector contains node voltages
x=[V, 1.

Knowing nodal voltages enables all other voltages and currents in circuit to be
calculated.

According the Kirchhoff and Ohm’s laws the functions related measurements and
state variables can be evaluated:

z1 = Vite,
z, = Vyte,,

1 1 2 1
n=hitpVi-V)ve=—V-—V+e,

1 1 1 2
= V=V —Vibe == Wi+ Vo te,.

Voltage measurement are assumed to be more accurate than ampmeter readings
and the weight matrix is as follows:

0.1 0
0.1

S = O O
- o O O
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The measurement function is linear (state variable estimates can be calculated
directly). Hence:

10
1 0
0 1 0
H=| 2 _1|_ .
R Rl la -2
20 1, 4
. R R |

Node voltage estimates are calculated from:

1 0701 0 00 0
1% _ 0 1//l0 01000 1
g=| '|=(H"R'H)'H'R 'z =
7, 4 —211l0 o 1 0|4 =2
-2 4010 0 0 1][-2 4
07701 0 0 0]'5.1
0 1//0 010 0|]42] [5362
X =
4 200 0 1 0] |13.7| |4.866
2 41l0 0 0 1| ]|114

The branch current estimates:
I, =4V, -2V, =11.715A,
I, =-2V,+4V, =8.741A.
The estimates of source voltages are:
E =Rl +V,=0.5-11.715+5362=11.219 V,
E,=RI,+V,=0.5-8.741+4.866 =9.237V.

7.3. NONLINEAR WEIGHTED LEAST SQUARE ESTIMATION

From practical point of view very important is the case when the measurements are
a nonlinear function of the state variables:
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z=h(x)+e, (7.13)

where: z  — a measurement vector;
h(x) — a non-linear function of state variables,
e —a measurement-error vector with zero-mean (E(e)=0) and with the

covariance matrix:
Elee” )=R. (7.14)
The state estimate X should minimize the objective function:

J(%)=[z-nR)] R [z -h(z)] (7.15)

Using Taylor series expansion around the point x* and neglecting higher order
terms the measurement function can be linearized:
oh(x)
~ hlx® ®)_ p(x® (k)
h(x)~h(x )+Fx(“(x—x )—h(x )+H(X—X ), (7.16)
where: H — the Jacobi matrix, i.e. the matrix of partial derivatives of the measurement
function elements with respect to state variables:

[ on(x) oh(x) oh,(x) |
ox, Ox, ox,
Oh,(x) Oh,(x) 0Oh, (x)
H=| oy ox, ox, (7.17)
oh,(x) oh,(x) (%)
| Ox Ox, ox, |
The incremental version of equation (7.8) can be written as:
H'R"'HAX=H'R'Az (7.18)
where: Ax =g — @,
Az=17- h(X(k))-
The matrix defined as:
G=H'R'H (7.19)
is called also the gain matrix.
The estimate of state is given by:
Ax=(H'R'H)'H'R Az =G 'H'R (2~ h(Z")) (7.20)

The estimate can be found with use the iterative scheme:
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QU g (H(k)TR—lH(k) )-IH(k)TR-l(z - h(&"”)) (7.21)

b

where: k — an iteration number.

Example 7.3
Find the state estimate with use of nonlinear weighted least squares for:

e SN

starting point £” =1.0 and the iteration stop condition ‘x(’”” —x )‘ <107,

1 0
R™ :{0 J. Assume the iteration

The Jacobi matrix of measurement function:

szh(sz[zx—ﬂ.

dz 2

The state variable estimate value at the k-th iteration can be calculated from:

-1
sk _ a0, | |25 -6 1 o' T232% —6]) [2:% —6]'[1 0] )
2 0 1 2 2 0 1

o {6}_ (x(k) )2 —6x"% +9 AN 1 [2)%(1() _6 2] (x(k) )2 —6xP -3
2 2x® -3 (224 —6) +4 2x9 —1

The solution for each iteration is shown in Tab. 7.1.

Tab. 7.1. The estimation solutions for each iteration.

Kk 20

0.9000
0.8560
0.8378
0.8304
0.8274
0.8262
0.8258

NNl lWIN] -
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7.4. POWER SYSTEM STATE ESTIMATION

7.4.1. GENERAL DESCRIPTION

Theoretical background for power system state estimation was originally proposed
in early 1970’s [7.3]-[7.5]. State of the power system is described by node voltage
magnitudes and angles (voltages can be also express in rectangle form). Only the
voltage magnitudes can be measured directly. However, it is possible to calculate
phase angle values using redundant real-time data acquired from the system. These
data are processed by state estimator. It is special computational routine calculating
bus voltage magnitudes and angles. Using state variables other estimated quantities
can be calculated (e.g. not measured voltage magnitudes, branch power flows). State
estimation produces results which are similar to these obtained from standard power
flow. The difference is in applied computational method and used input data.

The general scheme for power system real-time modeling is presented in Fig. 7.2.

ON/OFF Estimate of
statuses :D Topology processor \ system state
Observability State
Elimination of data analysis —®  estimation
burdened with
Analog gross errors / ¢

measurement Measurement Bad data
data consistency detection and

checking removing

Fig. 7.2. Real-time power system modeling steps.

The state estimator acquires the measurements delivered by Supervisory Control
and Data Acquisition (SCADA): voltage magnitudes at most of the buses, active and
reactive power flows in lines and transformers, active and reactive power injections at
buses with generators and loads, discrete statuses of switching devices. Every short
period of time (usually few seconds) the measurement units are scanned and the
measurement set is sent to the control center. Topology processing step determines the
current power network connectivity with use of reported ON/OFF statuses of
switching equipment. The result is bus-branch connectivity model or more detailed
topology model at the bus section level. In the initial step some measurement data
with outstanding gross errors are rejected and measurement set consistency test is
performed.
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In real-time environment some of measurements may be unavailable and some
network configuration changes may occur. The observability test checks whether
sufficient measurement data set is available so that the state vector can be estimated.

Bad data detection module decides whether bad measurements with large errors are
present using redundant measurement data set and state estimation results. After
rejection of detected bad measurement data, state estimation is re-calculated. Finally,
state estimation produces average estimate of the all state variables being the best fit
of the input measurement data.

In state estimation the number of processed data is much greater than in the number
of data required for standard power flow. As a consequence the number of equations is
also greater than the number of state variables. However, the data redundancy is
advantage because it enables elimination of bad data and perform estimation in case
when the part of measurement set is unavailable.

To compute power system state estimation non-linear weighted least squares
procedure is adopted. Flow chart for calculation of state estimates is presented in Fig.

7.3
l START l

Initialize the state vector with flat start, ~=0

1
K

Calculation of the gain matrix G(x*)= (H(x®))" H(x")

l | f=kt1
Calculation of (H(x®))" R (z—h(x*))

l T O A®
®

Decomposition of the gain matrix for finding Ax

max|Ax?| < € or
k>kopax

STOP

Fig. 7.3. Algorithm for calculations of power system state estimation.
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First, flat starting point is assumed as initial values of state vector estimates.
The Jacobi and gain matrices are constructed with use of initial state vector. The next
step in algorithm is calculation of differences between measurement values and
measurement function values /4(x). Gain matrix is decomposed for finding the
incremental values of state estimates Ax*. Convergence criterion is checked. If the
performance is not met the state vector is updated and iteration counter is incremented.
Next iteration of computations is performed. The calculations are continued until
reaching the convergence or maximal number of iterations (if the convergence is not
reached).

7.4.2. POWER SYSTEM MODEL FOR STATE ESTIMATION
State variable vector contains node voltage angles and magnitudes:

x=0, 0, .. 6 Vv. v, . V], (7.22)

n

where: n — a number of nodes in power network.

Note that voltage angle 6 is not included in state vector. Similarly as in
conventional power flow it is reference and their value is assumed to be zero.

Network equations relating node current injections and node voltages:

Ly |y, Y, ... Y, |V,
Dlof dm o Bl (7123)
L Y, v, - Y, |V,
or in matrix form:
I=YV (7.24)

where: I —anode current injection vector;
V - anode voltage vector;
Y - an admittance matrix.

The term Yj; is mutual admittance between the nodes i and j and it has the sign
which is opposed to the sign of the branch series admittance. The self admittance Y; is
equal to the sum of series admittances of branches connected to node i and shunt
admittances at node i. The assumed branch model for deriving measurement function
is shown in Fig. 7.4.
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Yi=gitiby

o ~.

1
| —

1
VI virgiby  viegidib |||

Fig. 7.4. Two port & branch equivalent.

The active and reactive power injected at node i are:

k= V,iV, (Gij COS(Q’ - 9/)"‘ B, Sin(‘gi -9, )):
A , (7.25)
= GuViz +V iV/ (Gg/ COS(Q‘ - ‘9/' )+ Bij Sin(ei - ‘9/' ))
=1,
0= V,iV/(Gq Sin(ei -0, )_ B, Cos(ei -0, )):
A : (7.26)
= _BiiI/iz +V, iV/ (Gij sin(&i - ‘9/' )_ B;’/’ COS(G:' - 9/ ))

=L

where: P, O;— a nodal active and reactive power at the node i;
n —a number of nodes in a power network;
Y, =G, + jB; — thei-j element of an admittance matrix;

The presented form of network equations is called hybrid form because
admittances are given in rectangular coordinates and voltages in polar coordinates.
Branch active and reactive power flows

B =V; (g'@/ +g4./.)— vy, (gi/' COS(HI -0, )+ b, sin(ﬁi -9 ))’ (7.27)

0,=-V’ (b'ij +bij)_ 44 (g,j Sin(ei - ej)_ b Cos(ei -9, ))’ (7.28)

where: Py, Q; — at the node i;
Y, =8; + jb, — an admittance of the series branch connecting the buses i
and .
Y';=g';+Jjb'; —an admittance of the shunt branch connected at the bus ;.
Branch current magnitudes are calculated from:
P+ O
ij ij
I, = Y (7.29)

i
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1 :\/(gaz' +b; XViz +V =21y, cos(@i _‘9/)): (7.30)

The measurement Jacobi matrix is constructed with use of the following structure:

aI’inj aPin/’ : al)inj aI’inj
00, 00 | o ov
aQ inj aQ inj i aQ inj aQ inj
862 e aeﬂ : al/l e a[/n
anrn anm i anrn anrn
H= 8‘92 aen i aVl aI/n , (7_31)
aQ brn aQ brn : aQ brn aQ brn
00, a6,y ov, T oV,
aI brn aI brn : aI brn aI brn
e | e e
a 62 a 9)1 : a I/1 a I/n
|
o o o ¥ N
L | oV, or, |

where: P, — a vector of active power node injection measurements;

Q.,; — a vector of reactive power node injection measurements;

P,,, — a vector of active power flow measurements at branch terminal;
Q,,» — a vector of reactive power flow measurements at branch terminal;
I,,, — a vector of branch current magnitude measurements;

V — a vector of node voltage magnitude measurements.

Elements of the Jacobi matrix are partial derivatives of P, Q;, P;, O; (the equations
(7.25) - (7.28)) with respect to state variables. The equations (7.25) - (7.28) used for
calculation of P, O, P, Oy are derived for the branch model shown in Fig. 7.4. The
terms of the Jacobi matrix are as follows:

a) active and reactive power injections:
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OP,

8_¢9i - inV/ (_ G, Sin(ei -0, )+ B, COS(HI' -0, ))_ V'B,, (7.32)
i I
OP, . .
%ZVIVJ'(G@/ sm(@ _3/)_30 COS(H:‘ _9/))’ 1= (7.33)
J
E—iV(G cos(@ —49)+B sin(@ —49))+VG (7.34)
ov, = i~ Y i Y i '
ﬁ=V(G.. cos(&. —19.)+ B. sin(H. —9.)) i#]j (7.35)
(A i J ij i A ’
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99, ZVV (G 005(9 0. )+B s1n(t9 0. )) VG, ,

89 J=1

00,
ZIQ/ ﬁ:V(G sm(H 49) B, cos(@ 9))

Zg V(G sm(& 9) B, cos(é’[ —Gj)),i;tj.

J

b) active and reactive power branch flows:

2? - V,.Vj(gg./. sin(@i - ‘9/')_ b COS(@" 9 ))’
J
e e j(gfj sin(@i _ej)_bif cos(@,. _Hf))’
1 fgycodl0 -0 )+, 5ml0-0)+2le, + 2, ¥,
oF,
o = V( cos(@ 0. )+b[/'Sin(9[ _3/))’
(Z%:—VV (g cos(H 0, )+b Sln(9 9, ))
g% =V, (g, cos(8, -6, )+ b, sin(6, - 6,)).
j
(Z?/ - V( sm(¢9 0, ) b; COS(Q‘ —6}.))—21/1.(19,.]. +b”7)’
0
8IQ/ (g sm(@ 9) b, 005(91-_9/'))'

¢) branch current magnitudes:

%— +b’2 V. s1n(€ 9)
00, I,

y

o0 VV( Gg./.cos(&i—Hj)—Bg/.sin(@[—Q/.)),i;tj.

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

131



ol g +b: )
4 sin(6, - 6,), (7.49)

J i

2

ol ~ gﬁ +b;
= yede o) (7.50)
ol 24 b’
= :_gul (v, —¥,cos(6, - 6,)), (7.51)

d) nodal voltages

Wiy g, iy, Ty, (1.52)
ov, | |

Example 7.4

Consider example 3-bus power system as shown in Fig. 7.5. For the given network
model, measurement system, volt- and wattmeter readings find the estimates of state
variables with use of WLS estimation. Parameter and measurement data:

Branch reactances: Xj,=j0.15 p.u., X;3=j0.10 p.u., X53=j0.09 p.u..

Voltmeters: V,=1.020 p.u., />,=1.015 p.u., V3=1.012 p.u..

Active power flows: P=0.60 p.u., P,=0.20 p.u., P;3=0.47 p.u., P»=0.32 p.u..

Measurement variances: oZV1=02V1=02V3 =0.001, 02]31:02P2:O'2p13 = Ozp23 =0.005

? h |

Fig. 7.5. Three-bus power system to illustrate state estimation.

W - active power flow measurement ® - voltage measurement.
State variable and measurement vectors defined for example system:
a a
X:[xl Xy X3 X xs] :[‘92 o Vv V3]

Z:[Zl Zy Zy zy, Zs zZg Z7]T:[Pl PP, P, VY V3]T
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Because branch resistances are assumed to be zero, the admittance matrix:

R 1 o1 o1
n in o1 Toa 015 Y010
1B, 1B, ]B; T L |
N 1 (1 1
i R e Y015 J(0.15 0.09) ¥0.09
1By 1By, By 1 1 (1 1
j—— j— —| =+
Y010 0.09 0.1 0.09)]

Covariance matrix for measurements:

R=diag{02m r2 02P13 02P23 o 021/1 OZV3}:
[0.005 i
0.005 0

0.005
= 0.005
0 0.001
0.001

0.001 |

Functions for the measurements are defined as follows:
a) measurement for power injection P;:

h(x)=VV,B,,sin(6, —0,)+V,V,B,sin(6, - 0,) = x,x, ﬁsin(— X, )+ Xy, %sin(— x,)

b) measurement for power injection P;:

h, (x) =VV,B,sin(0, -6,)+V,V,B,, sin(é’2 -0, ) = XX, ﬁsin(x, )+ X, X ﬁsin(x1 N xz)
¢) measurement for branch power flow P;3:

h, (x) =-VV.b, sin(é’1 -0, ) ==X, X, (— ﬁjsin(— X, ) =X, X, %sin(— X, ),

d) measurement for the branch power flow Ps;:

. . 1 .
h, (X) =-V,V.b,, sm(@z -0, ) =T Xs (_ _9j Sln(xl X ) = Xy Xs Wsm(xl — X ):

¢) measurement for the voltage magnitudes Vi, Vs, Vi:

h(x)=V, =x

39
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h6(x):V2 =Xy
h7(X)ZV3 =Xs.

The measurement Jacobi matrix has the following structure:

‘or 0P oP oP oP | [on(x) on(x) on(x) on(x) on(x)
00, 8_493 a_Vl ov, oV, Ox Ox ox ox Ox;
oP, oP, 0P, OP, OP,| |on, (x) oh, (x) oh, (x) oh, (x) oh, (x)
o0, 06, ov, oV, odV, Ox Ox ox ox, Ox
0P, 0P, 0B, 0B, 0B | |0h(x) () on(x) () an(y)
00, 06, ov, ov, dV, ox ox Ox ox Ox;
Loom op ony ony on| oY) on(x) an(y) onkx) an(y)
00, 00, ov, oV, JV, ox, ox, ox ox, ox, |’
ov, ov, ov, ov, oV, | |on(x) oh(x) ahS(x) oh,(x) 8h5(x)
00, 00, ov. av, oV, ox,  ox ox ox,  ox
ov, ov, ov, ov, oV, | |on, (x) oh, (x) oh, (x) oh,(x) Oh, (x)
08, 06, ov, ov, odV, Ox ox Ox ox Ox
ov, ov, ov, av, oV, ah7(x) 6h7(zx) ah7(x) ah7(x) ah7(x)
| 00, 06, oV, oV, JV;| | Oox ox, Ox, ox, ox; |
Calculation of corresponding partial derivatives yields:
X Lsin—x +
—xygﬁcos(—xl) —xlxsécos(—xz) 40'115 ( ) xlﬁsin(—xl) xsésin(—xz)
+ X asm(— xz)
X3X, ﬁcos(x1 )+ X, ﬁsin(x1 )+

0

0
0
0

x, ﬁcos(xl —x)

1
XX mcos(x1 - xz)

1
— X, Xs mcos(x1 -x,)

_xlxsﬁcos(_ )

1
— X, Xy mcos(x1 -x,)

0
0
0

X, ﬁsin(xl)

Assuming flat starting point for iterations:

@ =[0.0 00 1.0 1.0 1.0]
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X, Lsin(x, —xz) X, &sin(x1 —xz)

1.
+ X5 msm(xl -x,)

0

0.09
0

1
0

>

1 .
X, msm(}cI - xz)
1 .
Xy asm(— xz)

0
0
1




[—6.6667 —10.0000 0.0000 0.0000 0.0000 |
16.6667 —11.1111 0.0000 0.0000 0.0000
0.0000 —10.0000 0.0000 0.0000 0.0000
H”=| 11.1111 —11.1111 0.0000 0.0000 0.0000 |,
0.0000  0.0000 1.0000 0.0000 0.0000
0.0000  0.0000  0.0000 1.0000 0.0000
| 0.0000  0.0000 0.0000 0.0000 1.0000

z- h(x(o)): [0.6000 0.2000 0.4700 0.3200 0.0200 0.0150 0.0120] .
The increment of state vector is found from:

At = (HOTRHO [ HOTR z— Az @)=

=[-0.0192 -0.0473 0.0200 0.0150 0.0120]".
Updating the vector of state estimates according to:

£ =@ 4 A2© =[-0.0192 -0.0473 1.0200 1.0150 1.0120]".
Repeating calculations until tolerance level maXQAf(|)< 107 is reached after 3
iterations gives the final solution (angles are given in rad and voltages in p.u.):
%=[-0.0178 -0.0459 1.0199 1.0151 1.0120]
Performance index for state estimation:
J(s )=[z-nls R [z-n(s )]=0.0060

State vector estimates and measurement functions can be used for calculation of
estimates of other quantities: power branch flows and node injections, currents, power
losses etc.

PROBLEMS

7.1.  In the DC circuit shown in Fig. P.7.1, the loop currents I’; and I’, are
considered as state variables. Find WLS estimates of state variables. Using the
estimates determine branch currents, source voltages and voltage drops at
resistaces.

Resistances: R = 1Q, R, =2Q, R; = 3Q.
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Meter readings: z;= V=798V, z,=V,=9.03V, z;=1; = 1.96A.
Measurement weights are set to 10.0 for voltmeters and 1.0 for ampmeter.

1 & b
-
| I | -

Fig. P.7.1. DC circuit for the state estimation.

7.2.  In the simple power system shown in Fig. P.7.2 the meter readings are as
follows:
z1 =P, =250p.u., 6" p12 = 0.05,
z=Py =-2.48 p.u., 0’ pp1=0.05,
zZ3 = Q12 =0.50 p.u., GZQIZZ 005,
z=V,=1.00p.u., o*1=0.01,
zs=V,=099 p.u., ’»=0.01,

Line reactance: X1, =j0.10 p.u..
1. Determine WLS estimates of node voltages assuming stop criteria
|Ax|<10™ and calculate performance index J(x).
2. Change measurement deviations to: 1 =0 1n =0.1, pi» = py =0.5,
o 012=0.5. Re-calculate WLS state estimation and performance index
J(x). Compare the results with values obtained in point 1.

NN

1 2

Fig. P.7.2. Two-bus system for the problem 1.
Measurements: o - voltage B - active power A - reactive power

7.3.  In the simple power system shown in Fig. P.7.3, the meter readings are as
follows:

z=P,=13pu, & p=0.0I,
z=P,=05pu., pn=0.0I,
z=P;=08pu., op=0.0I,
z=0,=0.05pu., & pn=0.01,
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[7.1]
[7.2]

[7.3]

[7.4]

z=0;=0.10p.u., p3=0.01,
z4=P;3=0.70 p.u., ’p;3="0.01,
zs=Py;=0.10p.u., & p3=0.01,
Ze = Q13 =0.15 p.u., 02Q13 = 001,
z;= 0y =0.02 pu., 3= 0.01,
zg=V,=1.00p.u., & =0.005,
branch reactances: Xj, = Xj3=X33=j0.10 p.u..
1. Determine WLS estimates of node voltages assuming stop criteria
|Ax|<10-3 and calculate performance index J(x).
2. Remove 72, 74, z5, z7 from measurement set. Re-calculate WLS state

estimation, performance index and compare with results obtained in point
1.

? .

Fig. P.7.3. Three-bus system for the problem 2.
Measurements: e - voltage M - active power A - reactive power
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8. ALTERNATIVE FORMULATION
OF THE POWER SYSTEM STATE ESTIMATION

8.1. INTRODUCTION

In this chapter, some alternative formulation of the power system state estimation
are presented. Wide review of power system state estimation can be found in [8.5].
This chapter focuses on the decoupled formulation, the orthogonal factorisation, the
hybrid method, and the Peters and Wilkinson method, the equality constrained normal
equation formulation, and the augment matrix approach with the Hachtel matrix.

8.2. DECOUPLED FORMULATION OF WLS STATE ESTIMATION

It was observed that sensitivity of real power equations to changes in the
magnitude of bus voltages and active power equations to changes in the phase angle of
bus voltages are very low, especially for high voltage system which has large margin
of stability [8.9], [8.10]. These observations allow to partition measurement equations
into two parts:

— real power measurements,
— reactive power measurements, and voltage magnitude.

Basing on above observations, the vector of measurements can be partitioned in the
following way:

7=z 2,] (8.1)

and

H(x“)){ Hy,(x") H,, (X(“))}, 8.2)

H,,; (X(k)) H, (X(k)

R 0
R=| 7 . (8.3)
0 R,,
Ignoring off diagonal blocks H,, and H,,, in the Jacobi matrix H, the gain

matrix can be written in the following way:
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0 H;V/V( (k))'R HQV/V( ¢ :’ (8.4)
[G,,&") 0
) 0 Go (X ¢ )
(k)y — _H;’/(S(X(k))R [Z —h (X ] _ gp(x(k)) 8.5
g(x )_|:—H;V/V(X(k) Q,V[ Zy) — Q,V(X k))] - gQ,V(X(k)) ’ (8.5)

which leads to decoupled formulation where phase angle and magnitude of voltages
are calculated alternatingly. The steps of two algorithms are given below:

Algorithm 1

1. Set the iteration index £ = 1 and all bus voltages at the flat start, i.e.
Vi=1pug;=0foralli=1,2,...,N.

2. Build H,,(x*)) and H,,,, (x (")).

3. Calculate gain matrixes G, (x(k))and Gy (X(k)).

4. Calculate gp(x(k)) and gQ‘V(X(k)).

5. Solve G, (xV)- (3% -3")= —g,(x¥).

6. Solve G, (x*))- (VD —VEH)=_g  x¥)).

7. Check if ‘(6(1”1) — S(k)) < ¢ and ‘(V(k”) - V(k)] < g. Ifyes, stop. Else,

continue.
8. Goto step 2.

Algorithm 2

1. Set the iteration index £ = 1 and all bus voltages at the flat start, i.e.
Vi=1pud;=0foralli=1,2,..., N.

Build H,,(5,v®).

Calculate gain matrix G, (5 k)’V(k))‘

Calculate gP(S ,V ))_

Solve G, (6, V). (34 —a%))= g, 6%, V).
Build H,,,, (3%, V).

A e B

Calculate gain matrix G, (S(M),V(k)).
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8. Calculate gQ,V(ﬁ(k“),V(k))_
9. Solve G, (30, V) (VD _ v g @) vy,

10. Check if (ﬁ(k”) - ﬁ(k))< & and (V(k”) - V(k))< & . If yes, stop. Else,
continue.
11. Go to step 2.

8.3. DISADVANTEGES
OF NORMAL EQUATION WLS ESTIMATION

It has been observed that under certain circumstances Normal Equation (NE) is
prone to numerical instabilities. Numerical instabilities can appear when the
calculation problem is ill-conditioned [8.3].

If the estimation process is ill-conditioned then measurement errors have
significant influence on computational process. The measure of the ill-conditioning is
a condition number. If the condition number is large, even small errors in
measurement data may cause large errors in a state vector. The ill-conditioning of
the estimation process often leads to a worse convergence of the process, convergence
to wrong solution or even to lack of the convergence of this process. The reasons of
ill-conditioning can be large differences in values of the elements of the matrix R,
existence long and short lines connected with the same bus, large proportion of
injection measurements or existence of virtual measurements. The condition number is
defined as:

A

GM

, (8.6)
ﬂ'Gm

cond(A) =

where: Ag., Acy — @ minimal eigenvalue and a maximal one (by moduli) of the matrix
A, A € {G, U, L, F} respectively.

Example 8.1
If we recall normal equation formulation:
G(x®)-(x*) —x®)= H" "R [z - hx"))], (8.7)
where
G(x®)=H"(x") R -H[x"). (8.8)
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It can be seen that for the matrix H:

1 1 1

g 0 0].
H:

0 ¢ O

0 0 ¢

However rank(H)=3, if floating is le-10 for £=0.5¢-5, the & =0 and
rank(HT -H)z 1

1+ &2 1 1 111
H'H=| 1 1+ ¢&? 1 |~|1 1 1|
1 1 1+ &2 111

Although such extreme situation never happens in practice, this example illustrates
weakness of normal equations formulation [8.3].
In this chapter, several, numerically more robust methods will be presented.

8.3.1. ORTHOGONAL FACTORIZATION
For H=W"HandAZ = W"*[z-h(x)], where W= diag"'(cﬁ) is the weighting
matrix, the normal equation of WLS can be written in the following way:

H -HAx=H" AZ. (8.9)
[ —

G
In this method matrix H is decomposed in the following way:
H=QR, (8.10)

where Q - an mxm orthogonal matrix which Q'=Q’,
R - a m*n upper trapezoidal matrix (first » rows are upper triangular while
remaining rows are null.
Further partitioning Q and R leads to the reduced form:

H=[q, QO]-[E}QHU- (8.11)

Using the property Q- Q" =1. Equation (8.9) can be written as:

H”-Q-Q7 -HAx=H' -AZ, (8.12)
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R -R-Ax=R"-Q" -AZ, (8.13)
U U-Ax=U"-Q," -AZ. (8.14)

Finally, last expression leads to:
U-Ax=Q," -AZ. (8.15)

Orthogonal factorization is more robust than Normal Equation. The drawback of
this approach is the need to obtain and store matrix Q which is much denser than the
gain matrix G [3, 5].

8.3.2. HYBRID METHOD

Using properties (8.11) that:

H=Q,U=H"=U"-Q,". (8.16)

And substituting for U™ -Q," in equation (8.12) the hybrid method can be written
in the following way:
U’ - U-Ax=H" -AZ. (8.17)

Hence, in the hybrid method, there is no need to store the matrix Q.

In the hybrid method, the orthogonal transformation is made on the matrix H
instead of the Cholesky decomposition of the gain matrix G [8.3], [8.5], [8.6]. This
fact allows avoiding situation mentioned in the example 8.1.

8.3.3. PETERS AND WILKINSON METHOD

In this method decomposition LU of H is performed [8.3], [8.5], [8.7].
H=L U, (8.18)

where L — the mxn lower trapezoidal matrix (mark that it is not the same matrix as
the matrix L in the Cholesky decomposition),
U — the nxn upper triangular matrix (note that this matrix is different from the
U matrix in the orthogonal or hybrid method).
Normal equation can be written in the following way:

H? -OAx=H -AZ (8.19)
%,—/

G

which can be transformed as follows:

U"-L" L-U-Ax=U"-L" -AZ, (8.20)
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L' L-U-Ax=L"-AZ, (8.21)
L' -L-Ay=L"-AZ, (8.22)
where:

Ay =U-Ax, (8.23)

Algorithm of method
1. Perform the LU decomposition of H
2. Using the Cholesky factorization of L'-L, followed by the
forward/backward substitution, compute Ay (8.22)

3. Compute Ax by backward substitution using (8.23)

8.3.4. EQUALITY-CONSTRAINED WLS STATE ESTIMATION

Using of very high weights for virtual measurements, such zero-injections, cause
ill-conditioning of the matrix G [8.3], [8.5]. One way to solve this problem is
considering equations related to zero-injection measurements as equality constrains.
This problem of state estimation can be considered as minimization of the objective
function J(x) under the constraints ¢(x) = 0:

Minimize J(x)= %[z “h()f R [z=h(x)], (8.24)
subjected to ¢(x) =0 (8.25)

where c¢(x) =0 - an equation set related to zero-injection measurements,
R = diag(cﬁ ) = W' — a diagonal matrix of measurement covariances.
The formulated problem can be solved with the use of the method of Lagrange
multipliers, using the function:
L(x): J(x)— ch(x) (8.26)

where A - a vector of multipliers.
The solution of the state estimation is obtained in a certain iteration manner from
the following equation set:

. x 1) _ () _ H'R™! [z—h(x(k)) (8.27)
A ~c(x®)

F is a coefficient matrix.
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(8.28)
C 0

Tp -1 T
. :{H R'H C }
Excluding zero-injections measurements in the NE/C method causes that matrix
R has no longer so differentiated values and one of the main sources of ill-
conditioning of the estimation calculation process has been eliminated. Consequently,
the NE/C method should be more numerically stable than the NE method. However,
the coefficient matrix F from (8.28) is indefinite. This fact causes that row-pivoting
must be combined with sparsity-oriented techniques during the LU factorization to
preserve numerical stability. However, we can expect that additional computation
should not be too extensive [8.3], [8.5].
It is noteworthy that the condition number of the coefficient matrix can be
improved by scaling the term of the Lagrange function corresponding to the objective
function. After the scaling, the Lagrange function can be written as [8.3]:

L(x)= aJ(x)- 1" ¢(x) (8.29)

where L =
Now, the following nonlinear-equation set is solved in following way:

H'R'H €] [x* —x®] [aH"R[z-n(x")) (8.30)
C 0 =y —cx®)
It is noteworthy that oo =1 may lead to conditioning even worse than for the NE
method. The factor a should be chosen as:
a=minR,

P (8.31)

8.3.5. AUGMENT MATRIX APPROACH

The need to perform calculation of H'R™'H is a disadvantage of the equality
constrained WLS method [8.3], [8.5]. Augmented matrix approach may overcome this
drawback. The problem of state estimation can be considered as minimization of the
objective function J(x) under the constraints ¢(x) =0 and r —z + h(x) =0, i.e.:

Minimize J(x) = %rr ‘R"-r (8.32)
subjected to ¢(x) =0

l‘—Z+h(X)=0' (8.33)

The formulated problem can be solved with the use of the method of Lagrange
multipliers, using the function:
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L(x)=J(x)-2"e(x) - p (r -z + h(x)) (8.34)

The solution of the state estimation is obtained in a certain iteration manner from
the following equation set

R H 0 n [z — h(x(l‘))
HT o CT/|. X(k“) _ X(k) — 0 (8.35)
0 C 0 M —cx®)

The coefficient matrix in this method is called the Hachtel’s matrix. As in the
previous method proper scaling of weight matrix improves conditioning:

a'R H 0 p [z—h(x(k))
H' 0 C7 | |x*)_x®|= 0 : (8.36)
0 CcC 0 A —c(x(k))

8.4. GUIDELINES FOR PROGRAMMING IN MATLAB®

As it can be seen one of the major problem is solving linear equation Ax =b where
A is square nxn matrix, b, X are n rows vectors. It is not recommended to solve this
problem in the following way [8.1]:

x=1nv(A)*b

It is recommended to use backslash divide “\”:

x=A\b

In this way the specific algorithm is used. Depends on A the appropriate method is
used for solving this problem. Bellow there are information for sparse matrices.
Checking which algorithm is used, during solving the mentioned equation, can be
done in the following way

spparms('spumoni’', 1)
x=A\b
spparms('spumoni',0)

Example for normal equations:
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Gx=H’*W*H %H-Jacobi matrix, Ww-weighted matrix
gx=H’*w*dz %dz=z-h(x) -residue of measurements

Theoretically the gain matrix should be symmetric, but because of some round off
error during calculation of H’ *W*H, can be asymmetric. Therefore solving in this
way:

deltax=Gx\gx

the LU decomposition instead Cholesky decomposition may be employed. If we
want to use Cholesky decomposition it can be done in the following ways:

L=cho1(Gx, ’Tower’);
deltax= L’\(L\gx);

or we can made the gain matrix real symmetrical using 0.5*(Gx+Gx’) instead of
Gx;

deltax=(0.5*(Gx+Gx"))\gx;

In this way Matlab® automatically uses Cholesky decomposition if the gain matrix
is real sparse (band density is lower than 0.5).

Example for orthogonal factorization:

H_t=W.A0.5%H;
dz_t=w.A0.5%dz;
[Q,RI=qr(H_t);
[m,n]=size(H_1t);
Qn=Q(:,1:n);
U=(R(1:n,:));
deltax=u\(Qn'*dz_t);

Example for hybrid method:

deTtax=U\(U'\(H_t'*dz_1t));
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Example for Peters Wilkinson Method:

[L,u]l=Tu(H_t);
Lt_L=L"*L;

In this method we need to use similar operation as in NE if we want to employ
Cholesky factorization:

L_chol=cho1(Lt_L,  Tower’);

deTtay=L_chol’\(L_chol\(L’*dz_t));

or:
deTtay=(0.5*(Lt_L + Lt_L))\(L’*dz_t));

The deltax is computed in the following way

deTtax=U\deltay;

8.5. EXAMPLES OF MATRICES

Example 8.2
Considering the power system presented in the example 2.1 with measurements
given in Tab. P.8.1.

Tab. P.8.1. Measurements of 4-bus power system

Measurement | Type Value \/E
p-u p.u.
1 Vi 1.0011 0.004
2 V, 0.9895 0.004
3 P, 0.0000 0.001
4 Q; 0.0000 0.001
5 Py, -0.5123 0.008
6 Py -0.9731 0.008
7 Qi 0.0281 0.008
8 Qi3 -0.1098 0.008
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8.5.1. MATRICES FOR NORMAL EQUATION FORMULATION

25,

oP, [ 15.00

oP, 0

oP, | 35.76

20,,| —5.00
H(x(“)): agz X

13

20, | —9.00

oV, 0

ov, 0

[ 1.3633
~0.3220
~0.4561
G(x®)=10"| -0.0438
~0.0029
~0.0710
| 0.1148

25,
0
15.00
~8.00

-5.00
4.00

0

0

—-0.3220
0.0839
0.1020

—-0.0200
0.0723

0

—-0.0510

Cholesky decomposition of G

[ 3.6923
~0.8722
~1.2352

L(x®)=10"-| —0.1186

~0.0078

~0.1923
0.3109

0

0.2799
—-0.2032
—1.0848
2.5587
—-0.5993
—-0.8540

05,
0

—-0.4561
0.1020
0.1627
0.0638

-0.1148
0.0510

0

0

0.2450
1.1054
—-2.6026
0.6157
0.8591

o,
-5.00
-5.00
-5.00

—14.80
—-14.75
—15.00
1.00

0

—-0.0438
—-0.0200
0.0638
0.2577
—-0.5900
0.1362
0.1913

0

0

0

0.4049
-0.6132
0.0198

ov, oV, v,
5.00 0 0]
0 5.00 0
9.00 —4.00 0
15.00 0 0
0 15.00 0
36.08 —8.00 —12.76
0 0 0
1.00 0 0]
-0.0029 -0.0710 0.1148]
0.0723 0 -0.0510
—-0.1148 0.0510 0
-0.5900 0.1362 0.1913
1.3840 -0.3246 -0.4601
—0.3246 0.0836 0.1020
-0.4601 0.1020 0.1627 |
0 0 0]
0 0 0
0 0 0
0 0 0
0.4092 0 0
—0.2433 0.0651 0
0.1831 -0.1609 -0.0503 0.0321 |
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8.5.2. MATRICES FOR ALTERNATIVE FORMULATION

OF WLS ESTIMATION METHOD

[ 0.1875 0 0 -0.0625 0.0625 0 0
0 0.1875 0 -0.0625 0 0.0625 0
3.5755 -0.8000 -1.2755 -0.5000 0.9000 -0.4000 0
H(x(o)):104- -0.0625 0 0 —0.1850 0.1875 0 0
0 -0.0625 0 -0.1844 0 0.1875 0
—0.9000  0.4000 0 -1.5000 3.6076 —0.8000 -1.2755
0 0 0 0.0250 0 0 0
i 0 0 0 0 0.0250 0 0]
[ -64.0375]
-121.6375
0
A'Z(X(O))= -8.9875
-29.3500
-160.3082
0.2750
| -2.6250
Orthogonal and hybrid method
[3.6923 -0.8722 -1.2352 -0.1186 —0.0078 —0.1923  0.3109]
0 0.2799 -0.2032 -1.0848 2.5587 —-0.5993 -0.8540
0 0 -0.2455 -1.1054 2.6026 -0.6157 -0.8591
R(x(o))—104 0 0 0 -0.4049 0.6132 —-0.0198 -0.1831
0 0 0 0 —-04092 0.2433  0.1609
0 0 0 0 0 0.0651 -0.0503
0 0 0 0 0 0 0.0321
L 0 0 0 0 0 0 0
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[ 0.0508  0.1582 -0.3872  0.7727 -0.4691 —0.0664  0.0099 —0.0283]
0 0.6699 -0.5555 -0.1236 0.4700 0.0789  0.0161  0.0000

09684  0.1593  0.1921  0.0000 -0.0000  0.0000 -0.0000  0.0000
Q(x([’)): -0.0169 -0.0527  0.1291  0.2508  0.4091 -0.7676  0.3918 —0.0850
0 -02233 0.1852 05480 0.6029  0.4893 -0.1126  0.0000

-0.2437  0.6695  0.6735 0.1436 -0.1261  0.0395 -0.0251  0.0000
0 0 0 -0.0617 -0.0925 03271  0.6250 -0.7000

0 0 0 0 -0.0611 0.2284  0.6649  0.7085 |

Peters and Wilkinson method

[ 0.0524 02112 04444  1.0000 0 0 0

0 09440  1.0000 0 0 0 0

1.0000 0 0 0 0 0 0

L(x(o)): -0.0175 -0.0704 -0.1481  0.2595 0.5700  1.0000 0
0 -0.3147 -0.3333 0.5910  1.0000 0 0

-0.2517  1.0000 0 0 0 0 0

0 0 0 -0.0720 -0.1218 -0.3679 1.0000
L 0 0 0 0 —0.0520 -0.2434 0.9830 |

[3.5755 —0.8000 —1.2755 -0.5000  0.9000 -—0.4000 0]

0 01986 -0.3211 -1.6259  3.8341 -0.9007 -1.2755

0 0 0.3031 1.4723 -3.6193 0.9127 1.2040
U(x®)=10*- 0 0 0 —03472 08141 —0.1944 —02657
0 0 0 0 -04811 03232 0.1570
0 0 0 0 0 —-0.0690 0.0680
0 0 0 0 0 0 0.0250]
PROBLEMS
8.1.  Consider power system from example 8.2. P, and Q, are zero-injection

measurement. Obtain condition number of:
— the gain matrix from NE method,
— U matrix from orthogonal method,
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8.2.

8.3.

[8.1]
[8.2]
[8.3]
[8.4]

[8.5]

[8.6]

[8.7]

[8.8]

[8.9]

[8.10]
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— coefficient matrix from NE with equally constrained,

— Hachtel matrix.
The same as problem 1, investigate influence of weigh matrix on condition
number.
Investigate influence of scaling parameters o on condition number of Hachtel
matrix.
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9. NETWORK OBSERVABALITY ANALYSIS

9.1. INTRODUCTION

The set of available measurements in power system are used by power system state
estimator in order to estimate the system state. Before installation of power system
state estimator network, observability analysis should be carried out in order to check
adequacy of existing measurements configuration. If system appears unobservable it is
necessary to add addition meters in particular locations. During exploitation some
measurements may fail, topology may change. Therefore it is necessary to perform
observability analysis on-line. During this analysis there is no possibility to add any
additional measurements if system appears unobservable, but it is possible to
distinguish a observable islands. In this situation each island will have its own phase
angle phase reference. Network observability analysis has to detect such cases and
identify all existing observable islands before execution of power system state
estimation [9.2].

Observability analysis can be carried out using fully coupled or decoupled
measurement equations. Both approaches have some drawbacks. Using fully coupled
model may lead to non-uniqueness of the solution. This can be illustrated by
considering the following case of two bus system [9.2].

Example 9.1.
Consider the power line presented in Fig. 9.1, where: V; = 1.00 p.u., V,=0.99 p.u.,
Q12 =0.80 p.u., X12 =0.20 p-u.
V4 \

| |
|_g12 I
|

Fig. 9.1. 7-bus test system and its measurements

If we set 6, =0 as reference, the 6, can be calculated by solving the following
equation:

2
V-V,
0, =—1-2cos0, +—1—,

X X1y
2
0, = arccos =0 X 1 = arccos(w) =131.95degrees.
Vv, 1-0.99
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Both solutions are equally likely. The decoupled approach does not have such
disadvantage. At the beginning, analysis based on P-# model and then on Q-F model
should be performed. Observability of power system consists of intersection of results
from these two models. However, active and reactive power measurements usually
occur in pairs and second step can be avoided.

The theory of observability has evolved into two classes of algorithms: numerically
and topologically. In literature numerous algorithms of these approaches can be found.
In [9.1], review of most of them is presented.

Topological approaches use the decoupled measurement model and graph theory.
They are free of round-off errors because floating point operations are not employed.
The topological methods can be several times faster than numerical ones [9.4].
However decoupled measurement model excludes using them when current magnitude
measurements are present.

Numerical approaches may use fully coupled or decoupled models. They are based
on the numerical factorization of the measurement Jacobi or gain matrix. Advantage
of numerical methods is that they allow the use of existing routines for sparse
triangular decomposition and sparse vector methods. However they require floating
point operations so they are prone to round-off errors [9.1], [9.2], [9.4]. This chapter
focuses on numerical method based on the nodal model and topological method.

9.2. THE METHOD BASED ON THE NODAL MODEL

For observability analysis a linearized measurement error free model can be
employed:

Az=H-Ax, ©.1)
where: Az=z— h(x(o)), AX = X — X(o)’ H= alg(x)’
X
Az - the mismatch between the measurement vector and its calculated

value at an estimate x*.

Ignoring the week coupling P-V and Q-6, the decoupled formulation can be
written as:

Az, =H,; -AS, (9.2)

Azy, =Hgyy -AV. (9.3)

As it was mentioned before, power and reactive power measurements usually occur
in pairs only P- 68 test can be performed. Further, it should be checked if at least one
voltage measurements exists per observable island.
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For observability analysis, all system branches can be assumed to have impedance
of j1.0 p.u., shunt parameters are neglected and all bus voltages can be set equal 1.0
p.u. Therefore, power flows in all power system branches can be written as:

P, = Ad, (9.4)

where &= (H,TD/(3 “H,, )_lHl{,/(3 z,= (GP/& )_l “t,, 9.5)
P, - a vector of branch flows,
A - a branch-bus incidence matrix,
0 - a vector of bus voltage phase angles,
Branches which have nonzero flows, i.e. P, # 0 are unobservable.

9.2.1. DETERMINING THE UNOBSERVABLE BRANCHES

For observability analysis, matrix H,, contains all columns unlikely in state

P/
estimation when reference bus (column) is removed. In practice, the equation (9.5) is
solved using the Cholesky decomposition. Since H, contains all columns it is not

=L-L"at

least one pivot point is zero. When zero pivot is encountered, it is replaced by 1.0 and

Pl
full-rank, therefore during Cholesky decomposition of the gain matrix G,
the corresponding element of vector t, is assigned an arbitrary value. This values

should be various, this can achieved by assigning integer numbers in increasing order,
for example: 0,1,2, etc.[9.2]

Example 9.2.
Consider the system and measurement configuration shown in Fig. 9.2.

N
N
w

'

@
4 5 6

Fig. 9.2. 7-bus test system and its measurements

Incidence matrix A is created in the following way:
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1 if bus j is the sending terminal of branch i
A(i, j)= —1 if bus j is the receiving terminal of branchi - (9.6)

0 otherwise

For considered system, the matrix A can be written in the following way

1 -1 0 0 0 0 0]
1 0 0 -1 0 0 0
0O 1 -1 0 0 0 0
0 1 0 -1 0 0 0
A=[0 1 0 0 -1 0 o0
0 0 1 0 -1 0 0
0 0 1 0 0 0 -1
0 0 0 0 1 -1 0
0 0 0 0 0 1 -1

For observability analysis, as it was mentioned before, all system branches can be
assumed to have impedance of j1.0 p.u., shunt parameters are neglected and all bus
voltages can be set equal 1.0 p.u. Using this assumption The Jacobi matrix can be
written in the following way:

— for power injection measurement
z for injection bus of i” measurement
H(i,j)=<—1 for other ends of connected branches of ;" measurement » 9.7)

0  otherwise
where: Z — a number of connected branches to the j-th bus,
— for power flow measurement

1 forend of branch where i” measurement is placed
H (i . ) =4—1 for other end of branch . (9.8)

0  otherwise
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For the considered power system the gain matrix can be written in the following
way:

4 -2 0 -2 0 0 O
-2 3 1 0 -3 1 0
O 1 3 0 -4 2 -
G,,=H,,-H,;=[-2 0 0 2 0 0 :
0 -3 -4 0 10 -3
o 1 2 0 -3 2 -
0 0 -2 0 0 -2 4]
where
(2 -1 -1 0 0 0]
0 -1 -1 0 -1 0
H,,={ 0 0 -1 0 0 -1 2
00 1 0 -1 0 0
0 -1 0 1 0 0 0

During Cholesky decomposition one zero pivot point is encountered and replaced
by 1.0

[ 2.0000 0 0 0 0 0 0
—~1.0000  1.4142 0 0 0 0 0

0 07071  1.5811 0 0 0 0
L=|-1.0000 -0.7071 0.3162  0.6325 0 0 0
0 —2.1213 -1.5811 -1.5811 0.7071 0 0

0 07071 0.9487 03162  0.7071 |1.0000 0

i 0 0 —-1.2649 0.6325 -1.4142 0 |1.0000]

and right hand side vector is equal to:

t,=[0 0 0 0 0 [0 []

The estimated state is obtained by:
d=L-U) t,=[4 4 2 4 2 0 1],
and branch power flows are equal to:

P=A5=[0 0 2 0 2 0 1 2 —1].
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Non-zero flow indicates that the corresponding branch is not observable.

‘

'>

4 5 6

Fig. 9.3. 7-bus test system and its measurements and unobservable branches

9.2.2. DETERMINING THE OBSERVABLE ISLAND

The procedure of identifying unobservable branches can be also used in
determination of the observable islands in the system. Procedure needs to be
performed in the following way:

1. Perform procedure of determination unobservable branches.

2. Identify and remove all unobservable branches and all injections that are
incident to these unobservable branches.

3. If unobservable branches are found go to step 1. Else determine
observable branches.

It must be mentioned that sometimes the determination of observable islands is
done in the first iteration as in the example 9.2.

Example 9.3.
For the system presented in Fig. 9.4, matrix A can be built in the following way:

(1T -1 0 0 0 0 O]
1 0 -1 0 0 O O
0 1 -1 0 0 0 O
0 1 0 -1 0 0 O

A=l0 0 1 0 -1 0 oOf

0 0 0 1 0 -1 0
0 0 0 0 1 -1 0
0 0 0 0 1 0 -1

o 0 0 0 0 1 -1}
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4

Fig. 9.4. 7-bus test system and its measurements

the Jacobi and gain matrices can be built as below:

HP/«S =

GP/(3 =

2
0
0

-1
-1
0

-1

S OO O = =N

0

During Cholesky decomposition four zero pivot points are encountered and

replaced by 1.0:

2
-1
-1
L= 0

0
0
0

|
S = O N O = O

and right hand side vector is equal:

¢=b o @00 DE

0
0

B
oooHooo

0
0
0
0

N == OO O O

0
0
0
0
0

—_—

0

—_| o O O O O O
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the estimate state is obtained by:
s=(L-LU') t,=[0 0 0 1 4 2 3]
and branch flows are equal:
P,=A5=[0 0 0 -1 -4 -1 2 1 —1].

Non-zero flow indicates that the branch is not observable.

'

e

o> -

2 4 6

Fig. 9.5. 7-bus test system and its measurements and unobservable branches

It can be seen that after first procedure of determining the unobservable branches,
branches: 2-4, 3-5, 4-6, 5-6, 5-7, 6-7 can be removed from further consideration.
Measurements: P, P; as injections incident to unobservable branches have to be
removed.

Now matrix A and can be written as follows:

1 -1 00 00O
A=1 0 -1 0 0 0 O}
0 1 -10000O0

The Jacobi and gain matrices without P, and P; measurements can be written as:

H,;=[2 -1 -1 0 0 0 0

(4 -2 -2 0 0 0 0

-2 1 1 0 0 0 0

-2 1 1 0 0 0 0
Gyu=| 0 0 0 0 0 0 0
0O 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0]
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During Cholesky decomposition six zero pivot points are encountered and replaced
by 1.0:

2 0 0 0 0 0 O]
-1 0 0 0 0 0
-1 0 0 0 0 0
L= 0 0 0 0 0 0
0 0 0 0 0 0
00 0 0 0 0
0 0 0 0 0 0

and right hand side vector is equal:

t=lb pOHpeE

and branch flows are equal:
P,=A5=[0.5 -05 -1.0].

Finally, all branches in considered system are declared unobservable.

1 3 5

‘

— S

e

Fig. 9.6. 7-Final results of identified observable islands

9.3. TOPOLOGICAL OBSERVABILITY ANALY SIS METHOD

As it aforementioned, topological observability concept employs graph theory and
decoupled measurement model. As it was defined in [9.8] that, given power network is
solvable, if and only if, it is possible to find a tree which contains all buses. This leads
to the concept of maximal forest of full rank (or simply maximal forest).

The tree is built according to the following rules:

— flow measurements, if assigned, must be assigned to the corresponding
measured branch,
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injection measurements, if assigned, are assigned exactly to one of its
incident branches.

Example 9.4.

For the power system from example 9.2., the following graph of possibilities of
each measurement can be formed:

1 2 3
1-2

7-3 7
5-3
1-4 4-2
5-2 35

7-6

56
4 5 6

Fig. 9.7. The component graph for the 7-bus network from example 9.2.

At the beginning we have to construct the tree of flow measurements:

1 2 3

4-2
3-5

4 5 6

Fig. 9.8. Tree containing flow measurements

Injection measurements: at bus 1 we can assign to branches 1-2 or to 1-4, at bus 5
to branches 5-2, 5-3 or 5-6 and at bus 7 to branches 7-3 or 7-6. It must be mentioned
that there is no way to predict the correct sequence for processing injections.
Implementation of method requires proper back-up and re-assignment if injections if it

is necessary. Fig. 9.9 presents tree containing flow measurements and proposition of
injection measurements assigned to single branches.
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5-3
1-4 4-2
5-2 3-5
7-6

Fig. 9.9. Tree containing flow and injection measurements

It can be seen that it is impossible to build a single tree which will contain all
busses. Therefore it is necessary to identify the observable islands. This can be done
by removing the injections which have at least one incident branch and does not form
a loop with the branches defined as a forest. Accordingly we have to discard injections
at buses 5 and 7. According to Fig. 9.10 obtained results are the same as in numerical
method.

53
1-4 4-2
3-5

Fig. 9.10. Final tree containing flow and injection measurements

PROBLEMS

9.1.  Consider system shown in Fig. P.9.1. Use the topological and numerical
observability method to determine:

— all irrelevant branches,
— all irrelevant injection,
— all observable islands,
— all unobservable branches.

9.2. Suggest the location and type of a set minimum number of measurements to
be added to the measurement list in order to make the system observable.
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[9.1]

[9.2]

[9.3]

[9.4]

[9.5]

[9.6]

[9.7]

[9.8]
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@ P/Q flow measurement

3 -+ @P/Q injection measurement

Hl Voltage measurement

Fig. P.9.1. The 6-bus power system.
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10. BAD DATA DETECTION AND IDENTIFICATION

10.1. INTRODUCTION

Power system state estimation is mainly aimed at providing a reliable information
about power system ie.: power flows, bus powers, and voltages. In order to this, it
should detect measurement errors, identify and eliminate them. We can distinguish the
following errors:

*  Small measurements errors may appear because of various reasons. They are
related with uncertainty of metering systems and communications errors.
Small measurements errors are filtered during standard state estimation
procedure.

* Large measurement errors appear when the meters have large biases which
can be caused by: wrong connections, damage. Unexpected interferences in
telecommunication system may also lead to large errors. Large measurements
errors should be: detected, identified and eliminate.

* Incorrect topology information may mislead state estimator and provide to
wrong identification of large measurement errors. This situation is far more
complicated.

Some bad data such: negative voltage magnitudes, measurements several orders of
magnitude larger or smaller than expected values are easy to detect apriori state
estimation. However, sometimes it is not possible to detect bad data in this way and it
is necessary to equip state estimator with more advanced tool for bad data detection.

In this chapter we will focus on the bad data detection and identification techniques
which related with WLS method. For this method dad data detection and identification
is performed only after the estimation process by analyzing measurements residuals
[10.1].

10.2. FEATURES OF MEASUREMENT ERRORS

The non-linear equation relating the measurements and the state vector are:
z=h-(x)+e, (10.1)

where: x —a vector nx1 of true states (unknown),
z — a vector mx1 of measurement (known),
h(x) — the nonlinear measurement function,
e —a vector mx1 of random errors.
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Bad data detection and identification are performed by analyzing the measurement
residual vector,

r=z-h(@%), (10.2)

where: X — the estimated value of x.

It must be noted that however measurement errors are not correlated, independent
measurement residuals may be correlated, which can be approximated as follows
[10.1]:

r=S-e, (10.3)

where residual sensitivity matrix S is given by:
S=1-H-(H"-R"-H)'-H"-R", (10.4)

where R = cov(e) = diag(akz).
Using above properties and fact that £(e)=0, the residual covariance matrix {2 can
be obtained as follows:

E(r)=E(S-e)=S-E(¢)=0, (10.5)
Cov(r)=Q=E[r-r"]=S-Er-r"]-8" =s.R-S” =S-R. (10.6)

10.3. TYPES OF MEASUREMENTS,
BAD DATA DETECTABILITY AND IDENTIFIABILITY

Measurements may have various properties and influence on state estimation,
according to their values and location. The following types of measurement can be
distinguished [10.1]:

1. Critical measurements: Elimination of this measurement leads to
unobservability of power system. Measurement residual of a critical
measurement is always zero.

2. Redundant measurement: Non-critical measurements. Only redundant
measurements may have nonzero measurement residuals

3. Ciritical pair: Two redundant measurements which simultaneous removal
from set of measurements leads to unobservability of power system.

Detection belongs on determination if given set of measurements contains any bad
data. Identification it is a finding out of specific “wrong” measurement. Only
redundant measurement containing bad data can be identified. In other words critical
measurements and critical pair may contain bad data and one never find out about it.
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10.4. METHODS
FOR BAD DATA DETECTION AND IDENTIFICATION

Problem of bad data processing has been presented in many papers. In this chapter,
three methods are described: the y2-test, normalized residuals and hypothesis testing
identification (HTI).

10.4.1. USE OF CHI’ DISTRIBUTION FOR BAD DATA DETECTION
IN WLS STATE ESTIMATION.

048 Chi’ Probality Density Function

0,16
0,14 -
0,12
0.1 Degrees of fredom=5

0,08 -

Chi?(x)

0,06 - Area=0.05

0,04 -
0,02 -

Fig.10.1. 5 Probability Density Function

Fig.10.1 presents the y* probability density function (p.d.f). The area under curve
represents the probability of finding x in a corresponding region, for example [10.1]:

Prix>x, = | 7 (u)du- (10.7)

It represents the probability of x being larger than a certain threshold x,. For error
probability equal 0.05 and degrees of freedom equal 5, the threshold x, is equal 11.071
which can be found in statistical tables or calculated in such software as Matlab®.
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In WLS estimation when there is no bad data the index J(x) follows Chi-square
distribution. The computed value of J(x) is compared as follows [10.5]:

J(X)>;[2m—n,a- (108)

where: J(x)=[z—hx)] R™[z-h(x)],
m — a number of measurements,
n — a number of state variables,
o — the probability of false alarm.

If relation is true, then data is suspected to be biased by large error. The detection is
calculated assuming a certain probability for false alarms.

Example 10.1.
Considering the following 4-bus system and its measurement configuration shown
in Fig. 10.2

-

® Power measurement

3 B \/oltage measurement

Fig.10.2. 4-bus system and its measurement

The corresponding network data are given below:

Tab. 10.1. Data of 4-bus power system

Bus k£ Bus m R X B Tap
p.u. p.u p.u.
1 2 0.02 0.06 0.20 -
1 3 0.02 0.06 0.25 -
2 3 0.05 0.10 0.00 -
2 4 0.00 0.08 0.00 0.98

The number of state variables, n for considered system is 7 (four voltages
magnitude and three voltage phase angles). There are altogether m=12 measurements,
i.e. two voltage magnitude measurements 3 pairs of real/reactive flows and two pairs
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of real/reactive injections, where bus 2 is a zeroinjection bus with attributed higher

weights for measurements. Therefore, the degree of freedom is equal 5.

The base case of power flow is used to generation of measurements by adding
Guasian distributed errors. In first case no bad data is introduced, where in second one
measurement P, is changed intentionally in order to simulation bad data. Tables
below present results for load flow and both cases of estimation.

Tab. 10.2. State Variables

Estimated State
Bus Load Flow Results
o No Bad Data On Bad Data
vV 1) vV ) vV )
1 1.000 0.0000 1.0024 0.0000 1.0038 0.0000
2 0.9858 -1.7171 0.9881 -1.7162 0.9874 -2.0901
3 0.9682 -3.1426 0.9706 -3.1404 0.9707 -3.3505
4 0.9977 -2.8589 0.9999 -2.8629 1.0000 -3.8327
Tab. 10.3. Measurements
No Bad Data One Bad Data
Meas. Meas. Real
no: Type Value Measured Estimated Measured Estimated
Value Value Value Value
1 Vv, 1.0000 1.0011 1.0024 1.0011 1.0038
2 Vv, 0.9858 0.9895 0.9881 0.9895 0.9874
3 P, 0.0000 0.0000 0.0000 0.0000 0.0001
4 | -0.2500 -2.2486 0,2503 -2.2486 -0.0882
5 Q; 0.0000 0.0000 0.0000 0.0000 -0.0014
6 Q, -0.1000 -0.1010 -0.1019 -0.1010 -0.3830
7 P -0.5162 -0.5123 -0.5178 -0.7684 -0.6279
8 Pis -0.9625 -0.9731 -0.9666 -0.9731 -1.0287
9 P, 0.2571 0.2452 0.2584 0.2452 0.2326
10 Qi 0.0285 0.0281 0.0279 0.0281 0.0247
11 Qi3 -0.1087 -0.1098 -0.1089 -0.1098 -0.1125
12 Qa2 0.0393 0.0386 0.0389 0.0386 0.0434
J(x) 2.58 18.98

The test threshold at 95% confidence level can be obtained using Matlab® function

CHI2INV as [10.1]:

CHI2INV(0.95,5)= 11.0705
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As it can be seen J(x) is lower than 11.0705 only in first case so no data is
suspected, in the second J(x) is higher, therefore the bad data is detected.

10.4.2. UTILIZATION OF NORMALIZED RESIDUALS
FOR BAD DATA DETECTION
AND IDENTIFICATION IN WLS STATE ESTIMATION

The main drawback of the y2-test described above is indirect approach. Therefore
normalized residuals should be more accurate for the bad data detection than the y2-
test. Normalized value of residuals can be obtained in the following way [10.1]:

S (10.9)

where: r=z-h(x), @=R-H-(H" -R-H)' -H",
r - a vector of measurement residues,
R - a variance matrix,
H - aJacobi matrix.

The measurement with the largest normalized residual and larger than detection
threshold is identified as bad data. The algorithm of identifying bad data is presented
below [10.1]:

1. Determine estimate of x using WLS procedure.

2. Calculate normalized residuals as in (10.9)

3. Find measurement i which has the largest normalized residual (absolute
value)

4. If r>>cthen largest i-th measurement is suspected as bad data. Here, c is a
chosen identification threshold and usually set on 3.0

5. Eliminate or correct the i-th measurement from measurement set and go
to step 1.

Correction of measurement with bad data can be done in following way:

2~ gl _ i bad (10.10)

State estimation can be repeated after correcting the bad measurement. Sometimes
iterative correction is required.

Example 10.2
The table below presents presented residuals for cases considered in example 10.1

Tab. 10.4. Measurement residuals

Measurement Measurement No bad data One bad data
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no: type i PN i wN
1 A\ -0.0013 0.4452 -0.0027 0.9473
2 Vv, 0.0014 0.4849 0.0021 0.7451
3 P, -0.0000 0.0380 0.0013 19.6213
4 Py 0.0017 0.2460 0.1345 19.8488
5 Q, 0.0000 0.2696 -0.0001 1.6377
6 Q, 0.0009 0.1360 -0.0128 1.8979
7 Py, 0.0055 0.9028 -0.1406 23.2698
8 Py3 -0.0065 1.8285 0.0556 15.6872
9 Ps, -0.0132 1.8771 0.0126 1.7946
10 Q12 0.0002 0.0385 0.0034 0.5693
11 Qi3 -0.0009 0.2623 0.0027 0.7620
12 Qs -0.0003 0.0412 -0.0048 0.6839

It can be seen that the largest value for normalized residuals is related with P;, and
simultaneously this value is greater than threshold equal 3. That means that
measurement has been identified as a bad data. This measurement must be removed
from measurement set or corrected according to (10.10).

10.4.3. HYPOTHESIS TESTING IDENTIFICATION

Identification of bad data by Hypothesis Testing Identification (HTI) method is
based on computed estimates of measurement errors instead of measurement residuals
as in normalized residuals. This approach may overcome problem when good and bad
data have comparable residuals when multiple bad data appears [10.1], [10.2], [10.4].

Partitioning sensitivity matrix S and error covariance matrix R on suspected and
true measurements we obtain:

S:[S“ S“} (10.11)

Sts Stt

r,=S.e +S.e,, (10.12)

r,=S.e, +S,e,, (10.13)

R= R0 , (10.14)
0 R,

where: rg, r, - the residual vectors of suspect and true measurement,
e,, e, - the error vectors of suspect and true measurement.
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Assuming that true measurements are free of errors (E [et]: 0) the following

equations can be derived:

€& =5 K, (10.15)
és zes+sssil'sst'et' (1016)
The e, has following properties:
Mean:
If Ele,]=0, then E[é |=¢,
else E[e |=é,
Covariance:
If Ele, =0, then
Cov(e,)=Cov(e,)+S, 'S, Cov(e, )(Sssflsst )T , (10.17)

S
Cov(é,)=Cov(e,)+S,,'S,R,S,'S, . (10.18)
Using a following properly:
S-R-S"=S R, (10.19)
the following relation can be derived:

S.-R,-S."+S,-R,-S, =S_ R, (10.20)

Ss S

and substituting equation (10.18)

Cov(&,)=Covle,)+S, (SR, ~S RS,
= Covle,)+S, ' [R,S,” ~S, RS/, " (10.21)
Jels.

S$TSS
= Cov

1R,

Decision rules
Two alternative strategies can be distinguished:

Fixed probability of false alarm, o

a= Pr(reject H,|H, is tme)

If H, is true = &, (i)~ N-(0,T,0;? ) then:

ii 1
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o =Pr Qew.

)

Substituting a é,; by normalized absolute value of the estimated terror:

A N exi
esi =
T,
we obtain:
e..
a=Pr —=>N,
oNT; []75]
and threshold is:
A, =0, N

Fixed probability of bad data identification, (1-8)

p = Pr(reject H, \ H, is true)
1-4= Pr(accept H, ‘ H, is true)

If H, is true = &, (i) ~ N - (esz,( . —1)o; )Then
B="Prle,; <i;)-Prle; <-1,)
B~Pr(e, <A;) '
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The algorithm of bad data identification under fixed 5 [10.1]
Steps of the algorithm

1.Select set s, based on r™ and calculate
-1 A
Ts] = Ssl,xl and es] = Tslrs]

2.Calculate N [17%}_ :

N _ +o, Ny T, —1
(-5} onT,
with0<N, | <N

5=t

3.Calculate the threshold for each s,

_ esi

A, =0, Ti"N[1-%}" i=1,...,s,;

4.Select measurement s,

> A
Form short list of suspect measurements selected at step 4. Repeat steps 1-4 until
all measurements in the previous iteration are all selected again at step 4

A
esi

PROBLEMS

10.1.  Consider the following linear model:
y=a+b-x+e

where, E[e]=0 and cov[e]=I. The measurements are given as:

i 1 2 3 4 5 6 7 8 9

x; | -4.000 | -3.000 | -2.000 | -1.000 | 0.000 1.000 | 2.000 | 3.000 | 4.000
yi | -4.002 | -2.008 | 0.031 2.055 | 4.056 5.96 8.004 | 9.939 | 11.944

Find the WLS estimate for a and b. Use Chi2 test to detect any bad data. Use
the largest normalised residue to identify bad data.

10.1. Consider example 10.2 if measurements: P;, and Q;, are removed. Find
critical measurements.
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11. NETWORK PARAMETER ESTIMATION.
TOPOLOGY ERROR IDENTIFICATION

11.1. NETWORK PARAMETER ESTIMATION

11.1.1. INTRODUCTION

The key element for power system security monitoring and analysis is a complete
and correct network model. In the model two parts can be distinguished:

e the part including reported switching device statuses, branch power
flows, the power supplied by generation and by used by loads,

e the part storing parameters of network components, e.g. series
admittance and shunt susceptance of branches modeled as two port 7
equivalent, transformer tap changer positions. These values are stored
in dispatching center database. The database is modified if new network
component is added or existing element is upgraded.

The errors in network component parameters appear relatively rare. However, they
can potentially degrade the results supplied by the state estimator. In addition these
types of errors are much more difficult to detect than bad measurements and topology
errors. The main reasons of network parameter errors are as follows:

e using non-adequate models describing network components, e.g. using
7 equivalents for very long transmission line modeling,

e inaccurate data supplied by the component manufacturers,

e network connectivity changes and component upgrading without
updating relevant information stored in dispatching control center
database,

e parameter changes resulting from environmental conditions
(temperature, humidity etc.),

e erroneous information on transformer tap changes.

The most common parameter errors usually reveal as erroneous values of branch
impedances/admittances and bad transformer tap changer positions. In the presence of
branch parameter errors the power balance equations redistribute power flows in the
adjacent branches and measurements with acceptable errors level can be recognized as
bad data.

Significant degradation of state estimation results is observed in presence of
parameter errors despite of the availability of highly redundant and accurate
measurements.
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Example 11.1

Parameter error in the considered 3-bus system (Fig. 11.1) relies on incorrect value
of branch reactance in network model X, = j0.2 p.u. instead the correct value
X12=j0.15 p.u.. The measurements are assumed to be correct.

Perform the estimation and compare the results in case of parameter error presence
and without error. Measurement results are shown in Tab. 11.1

? h |

Fig. 11.1. Three-bus power system to illustrate state estimation.

B - voltage ® active power flow measurement.

Tab. 11.1. Measurement data for example power system.

Measurement Value, p.u. | Variance
P, 0.60 0.005

P, 0.20 0.005

Pi; 0.47 0.005

P; 0.32 0.005

vy 1.020 0.001

V 1.015 0.001

Vs 1.012 0.001

The estimation results and measurement residuals are presented in Tab. 11.2 and
11.3.
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Tab. 11.2. State estimation results for correct case and in case of network parameter error.

Correct case Parameter error
i Vi 0, Vi 0,
p.u rad p.u. rad
1 1.0199 0.0000 1.0196 0.0000
2 1.0151 -0.0178 1.0157 -0.0201
3 1.0120 -0.0459 1.0117 -0.0472
I(x) 0.0060 0.1016
Tab. 11.3. State estimation residuals for a correct case and in the case of a network-parameter error.
Measurement Correct case Parameter error
r r
P, 0.0030 0.0096
P, 0.0019 -0.0049
Py; -0.0040 -0.0164
Py -0.0010 0.0110
14 0.0001 0.0004
V, -0.0001 -0.0007
V3 0.0000 0.0003

One can observe that the performance index J(x) residual absolute values are
significantly larger in case of parameter error presence. Parameter errors can degrade
the estimation quality and produce the effect similar to bad data occurrence.

Fig. 11.2 shows the influence of the error of the branch reactance X, on the state-
estimation performance index J(x). It can be seen that branch parameter errors can
seriously deteriorate the state estimation quality.
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Fig. 11.2. Influence of branch reactance parameter error on state estimation performance.

11.1.2. DETECTION AND IDENTIFICATION OF PARAMETER ERRORS

Parameter error in the considered branch reflects in set of correlated errors
burdening measurements incident with this branch: power flow at the ends of the
branch and power injection located at the branch terminal nodes. Denoting by s the set
of measurements related to the “suspicious” branch, the measurement vector can be
formulated as [11.1]:

z, = hs (Xﬂp)+es = hs (X5p0)+ [hs(xﬂp)_hs(xﬂp0)]+es > (111)

where: z, —a measurement vector,

X — a state vector,

hs () — a non-linear measurement function,

p — a vector of real values of the network parameters,

Po — a vector of bad values of the network parameters,

€, — a measurement-error vector,

s —aset of incident measurements.

One can be stated that if the parameter error is of significant value then the incident

measurements will be probably observed by those having largest residuals. Using
Taylor expansion the measurement error can be approximated as:

Oh. oh.
h(x,p)~ h (x,p,)+ % (p-p,)="h(x.p,)+ o " (11.2)
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where e, = p — po.

Detection of parameter error is based on the analysis of large normalized residuals
of measurement related to the erroneously modeled branches.

Some of the methods of parameter error detection use the fact of presence of large
residuals remain despite bad data rejection. Other methods consider analysis of state
estimation performance index and statistical testing.

11.1.3. ESTIMATION OF NETWORK PARAMETER

Methods aimed at estimation of power network parameters basically use:

e residual sensitivity analysis,
e augmenting the state vector.

The main difference is that the first group of method use the classical state vector
including voltage magnitudes and angles whereas new variables related to the network
parameters are added to the state vector in the second group of methods.

More detailed explanation of the mentioned group of methods is given further.

Parameter estimation with the use of residual sensitivity analysis

This approach use state estimation results to asses network parameters. After
successful execution of estimator the measurement residuals are calculated.
The relationship between residuals and measurement errors is given by:

r=(I-HG 'H'R')e=S-e (11.3)

where: r — a measurement residual vector;
e —ameasurement error vector,
S=I1-HG'H'R" — a sensitivity matrix;
I - the identity matrix;
H - a Jacobi matrix,
R - a covariance matrix;
G =H'R' H - a gain matrix.

Note, that the set s of incident measurements comprise: erroneous branch, terminal
buses, branches connected to the terminal buses, and the terminal buses of connected
branches. The linearized relationship among residuals belonging to the set of incident
measurement and parameter errors:

l‘s:;s+ SS ahx (p_po):;s+ Ss% €, (11'4)
op op )"’

where: S; — submatrix of sensitivity matrix corresponding to the adjacent
measurements belonging to the set s;

r.— a residual vector which can be obtained in case of correct network

N

parameters.
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Equation (11.4) determines the linear relationship between residuals r; and
parameter errors e, to be found. In such case determination of parameter error
estimates can be considered as local weighed least square estimation task. Assuming
that e, are normally distributed with zero mean and diagonal covariance matrix X, the
optimal WLS estimates are given by:

T
e, =[S, —* Oh 2 S, —* Oh, gahé‘ ', (11.5)
! op op " op

where: € , - a vector of parameter error estimates.

The updated parameter vector can be obtained by:
P=p,+e, (11.6)

After modification of the network parameters, state estimation is re-calculated and
checked for result improvement. In some cases, the parameter upgrading can be
performed iteratively until no further state estimation improvement is reached.

Parameter estimation with use augmented state vector
The conventional way to solve weighted least squared estimation is to solve the
normal equation:

GAx=H'"W'Az, (11.7)

Estimation of network parameters can be made by augmenting the state variable
vector by parameters. The parameters of suspected branches are included in the state
vector and the modified weighted least square objective function is given by:

J(x,p)= Zw[ h(x.p)f . (11.8)

where: z; — the i-th element of a measurement vector,

hi(x, p) — a non-linear measurement function,

p — a vector of suspected parameters,

w; — weight of the i-th measurement or pseudomeasurement,

m — a number of measurements.

Usually the approximate values of the parameters p, can be obtained from the data

base storing network model and can be incorporated as pseudomeasuremets. The
modified objective function is:

J(x,p)= le [z, - h(x.p)] + ilwp} (p, - p,, ), (11.9)

where: w,, — a weight assigned to the pseudomeasurement,
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k — a number of pseudomeasurements related to the considered erroneous
parameters.

To ensure the system observability, the number of additional state variables should
be as low as possible. From that point of view the second formulation of objective
function is preferred. The great impact on accuracy of the parameter estimation have
the weighting coefficients w,,.

Reduction of extra state variable number is possible for branches representing
transmission lines. Usually the line impedance parameters per length unit are known
with good accuracy and the single variable, normalized line length can describe the
parameters. The parameter of the line connecting nodes i and j one can obtain:

gi' + Jbl .
==y )=kl (11.10)
where: /—a normalized line length.
Parameter estimation with use of augmented state vector can be performed by
solving classical normal equations. The modified, extended Jacobi matrix has the
following structure:

(11.11)

where: H — the old Jacobi matrix with size mxn,
n — anumber of state variables;
H,— the Jacobi matrix including partial derivatives of the measurements with
respect to the additional state variables.
Jacobi matrix elements corresponding to the power flow measurements:
OP, P ; P
SH_o s L (11.12)
ol [ ol )
2 2 2 2
00; 0+, b,1+) o0, 0. +Vb,(1+1)

- L—_ 11.13
ol I’ ol I’ ( )

i

Example 11.2

For the three bus system from Example 11.1 find the estimate of relative length /;,
of branch connecting nodes 1-2 by state vector augmentation. It is assumed that the
branch reactance per length unit is x1, = j0.1.

State vector augmented by additional variable has a form:

X=[92 03 nvw llz]r'
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Hence, the addition of an extra column in the Jacobi matrix for WLS estimation is
needed. The extra column terms are as follows:
or 1 OP, 1

1 1
—=——VV,—sin\g,-0,), —==-—VV,—sinld,-0,),
8112 1122 172 X, ( 1 2) 8112 1122 172 X, ( 2 1)

OFy Ok oV, _ 0V, OV,

o, o, o, o, adl,

0)—

Starting from flat point and assuming that the initial relative length /;,"’=1.0 one

can obtain:
x"=[g, 6, v, v, v, 1,] =[0.0 00 1.0 1.0 1.0 1.0].

It is easy to observe that the initial point results in zero column term in the Jacobi
matrix and estimated variables cannot be calculated from normal equation for WLS.
To overcome that the results of first iteration of estimation without an extra variable
[1, are applied as starting point for second iteration:

xV=[g, 6, v, v, v, 1,] =[-0019 -0.047 1.020 1.015 1.012 1.0] .

Continuing the calculations the state estimates are as shown in Tab. 11.4. Relative
length of branch 1-2 is /;; = 1.459. Hence, the estimated reactance of branch 1-2 is: X,
=[x, = 1.45940.1 = j0.146 (the correct value is Xj, = j0.150). One can observe
improvement of estimation by small reduction J(x) value (see Example 11.1). Adding
an extra variable the convergence was reached after 5 iterations (one extra iteration).

Tab. 11.4. State estimation residuals for the correct case and in the case of a network-parameter error.

oo,
p.u. rad
1 1.0199 0.0000
2 1.0151 -0.018
1.0120 -0.046
P 1.459
J(x) 0.0050
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Parameter estimation using series of past data

Network parameters are assumed to be constant and it enables to estimate them off-
line with the use of great amount of measurements recorded in a data base. State
vectors and measurement vectors are are as follows:

Xz[x1 X, ... xq‘p]T, (11.14)

z=[z1 z, .. zq]T. (11.15)

where: g — a number of used measurement sets,
x; — the i-th state vector,
z; — the i-th measurement vector,
p — a vector of parameters.
The Jacobi matrix related to the extended model is as follows:
h

1 1p

h
H= T 7. (11.16)

H | h

q ar

Using the normal equations for finding the parameter estimates:

GAx=H'"W'Az, (11.17)
leads to the gain matrix with the following structure:
_G] 1 g]p ]
Gzz g5
G=H"W'H= R Sl (11.18)
G‘I‘I gqp
_ngp ggp g;p Gpp_

where:
G, = H,.TW[IH,. i=1,2,---,q,

g, = H[T“]iilhip i=1,2,,q,
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The right hand side of the normal equation:
H'W'Az=[b, b, ... b, |b,], (11.19)

where:

The task leads to the processing the matrices with large size and special
factorization techniques should be applied to perform the computations.

11.2. TOPOLOGY ERROR PROCESSING

11.2.1. INTRODUCTION

Elements of power systems (transmission lines, transformers, generators, loads
etc.) are connected to the network buses. The buses are divided into the sections which
can be connected or split by switching of circuit breakers. During the power system
operation statuses of circuit breakers may change and network topology is then
modified. The credible information on power network connectivity is very important
from viewpoint of real-time modeling purposes. Conventional state estimation
performs only bad data detection and it is based on the assumption that the network
topology is correct. Current power network topology model is supplied by topology
processor with use of telemetered statuses of switching devices. Unreported or falsely
reported changes in switch statuses may result in wrong connectivity definition and
topology errors. Topological errors can negatively affect the credibility of results
obtained from state estimator. Incorrect connectivity model may cause:

obtaining erroneous state variable values,

detection of false, multiple bad data,

determining of improper network model for security assessment,
reporting of non existing violations of acceptable limits.

Topology errors are not so common as analog bad data. However, they are
potentially more dangerous. Hence, checking the correctness of network connectivity
model becomes very important task.

The further part of the chapter is aimed at the giving some consideration on the
topological errors and the characteristic of method for connectivity error detection.
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11.2.2. CHARACTERISTICS OF TOPOLOGY ERRORS

All the power network elements are connected to the bus sections through circuit
breakers. Bus-sections at the same voltage level in certain substation can be linked
together. Hence, substations are capable of operating with different configurations.
Topology errors resulted from falsely reported statuses of switching equipment can be
generally classified into the following groups:

e substation configuration errors,
e shunt element status errors,
e branch status errors.
The brief description of the errors with some examples is shown in Tab. 11.5a —

11.5d. Considering the number of topology errors being at the same time, one can
distinguish single and multiple errors.

Tab. 11.5a. Substation topology errors. [ - open circuit breaker, B - closed circuit breaker.

Description Example
3| 4 3[ 4
Substation
reconfiguration —
network element
(branch, load,
generator) modeled as
connected to improper
bus. 1 2 1 2
1 3 1 2
2 4 4 3
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Tab. 11.5b. Bus topology errors. [I - open circuit breaker, B - closed circuit breaker.

Description

Example

Bus split — single bus is
modeled as two or
more buses.

Bus merge — two or
more buses are
modeled as single bus.
Actual and modeled
number of nodes are
different

4

2

i

I

1

Tab. 11.5¢. Shunt element topology errors. [ - open circuit breaker, B - closed circuit breaker.

Description

Example

Shunt element
inclusion — shunt
element (generator,
load, reactive shunt)
out of operation
included in the model.
Shunt element
exclusion — shunt
element (generator,
load, reactive shunt) in
operation excluded
from the model.

T
Lhod
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Tab. 11.5d. Branch topology errors. (I - open circuit breaker, B - closed circuit breaker.

Description Example
1 2 1 2
Branch exclusion —
operating branch
excluded from the |
model 1 )

Branch inclusion —
branch out of operation
included to the model

-El—l

11.2.4. INFLUENCE OF TOPOLOGY ERROR ON STATE ESTIMATION

As mentioned earlier topology errors can be considered in some cases as parameter
error with 100% error of branch admittance value. The topology error influence on
state estimation is illustrated by the example 11.3.

Example 11.3

For the 5-bus system the active power measurements are available as shown in Fig.
11.2 and DC formulation of state estimation is considered. Variance of all
measurements is assumed c=10" and susceptances of all the lines are equal to b =
100.

Tab. 11.6 shows the measurement values and corresponding estimation results with
normalized measurements. It can be stated that estimation process was performed with
good accuracy: all the residuals have relatively small absolute values.

In the next estimation run topology processor reported wrong topology: the branch
linking nodes 2 and 5 being actually in operation was removed from the model. As a
result measurement residuals grown significantly. The injection measurements P, and
Ps at the line terminal nodes having the largest residual absolute values were flagged
as bad (Tab. 11.7). State estimator removed theses measurements (the system
remained observable). All the residuals have small values what can be observed in
Tab. 11.8. Topology error remains to be undetected and two correct measurements
were neglected in estimation.
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Fig. 11.3. Example power system: correct topology (a), erroneous topology (b).

Tab. 11.6. State estimation results for correct measurements and topology.

Type and location of measurement

Po | P | P | P | P | Po | Ps | Ps | Pu | P

Measurement results, p.u.

0.650 | -0.500 | 0.650 | 0350 [ -0.450 | 0286 | 0363 [ 0201 | 0359 | 0.091

Power flow estimates, p.u.

0.650 | 0500 | 0.650 | 0350 [ 0450 [ 0286 | 0364 [ 0201 | 0359 | 0.009

Normalized residuals

0.013 | 0.002 | 0.002 | -0.004 [ -0.007 [ -0.008 | -0.017 [ -0.0009 | -0.002 | -0.002
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Tab. 11.7. State estimation results for correct measurements and wrong topology:
branch 2-5 not included in the model.

Type and location of measurement
P | p | P [ P [ P [ Po | P | Py | Py | P
Measurement results, p.u.
0.650 | -0.500 | 0.650 | -0.350 | -0450 | 0286 | 0.363 | 0291 | 0359 | 0.091
Power flow estimates, p.u.
0.6497 | 0528 | 0.643 | -0.343 | -0422 | 0258 | 0392 | -0270 | 0373 | 0.030

Normalized residuals
0013 | 1318 | 0328 | -0334 [ -1.325 | 1.019 | -1.046 | -0.772 | -0.516 | -0.773

Tab. 11.8. State estimation results for correct measurements and wrong topology:
branch 2-5 not included in the model, rejection of P, and Ps.

Type and location of measurement

PP P | P [P P [ P [ Pw | Py | P
Measurement results, p.u.
0650 | - | 0650 | 0350 | - | 0286 | 0363 | 0291 | 0359 | 0.091
Power flow estimates, p.u.
0650 | - | 0650 | 0350 [ - [ 0286 | 0363 | 0291 [ 0359 | 0.009
Normalized residuals
0018 | - | -00006 | 00019 | - | -0.014 [ -0.015 | 0.0003 | -0.0002 | 0.0024

11.2.5. METHODS
FOR TOPOLOGY ERROR DETECTION AND IDENTIFICATION

Detection of topology errors is not trivial problem and researchers have proposed
great variety of topology error detection methods. The general classification of these
methods is presented in Tab. 11.9.

The real-size transmission power network contains thousands of circuit breakers
and the detailed modeling of individual circuit breakers is practically impossible. In
such case methods using detailed representation apply the two-step procedure:

e “suspicious” network parts are detected by using the residual analysis,
e performing of detailed modeling of areas selected in the first step.

This procedure is more complicated and time-consuming than bus-branch
representation based methods. However, the measurements neglected by bus-branch
model can be taken into consideration.

Methods based on pre-estimation approach exploit the relationships among
measured quantities and network topology. Using artificial intelligence techniques
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(neural networks and expert systems) is also widely proposed. Validation of topology
model before state estimation has many advantages in comparison to post-estimation
approach: it usually much less sophisticated and time consuming. In addition in the
presence of topology error state estimator may fail in convergence and detection of
these errors may be impossible.

In the further part some more detailed considerations on the outstanding methods
are presented.

11.2.6. PRE-ESTIMATION
TOPOLOGY ERROR DETECTION AND IDENTIFICATION

This approach take advantage of checking raw measurement data before state
estimation is running. Network topology validation is performed with use of data
plausibility checking. For this purpose testing of fulfillment of relationships describing
power network resulting from Kirchhoff and Ohms laws is applied, e.g.:

e sum of active and reactive power at node should be equal to zero or
small value resulting from measurement noise,

e active power flows at terminals of branch should match if losses are
also considered,

e active power flows in open ended branch should be near to zero and
reactive power flows results from distributed shunt branch reactance.
Large active power flows in such case may result from topology errors.

Tab. 11.9. Classification of topology error detection and identification methods.

Group Approach Description
Bus-branch Using conventional bus-branch model
Used network topology representation (breaker statuses are neglected)
model representation Detailed substation | “Suspicious” part of network modeled
representation with individual breaker statuses
Topology model validated with use of raw
Pre-estimation analog measurements and ON/OFF
Source of data statuses of circuit breakers
for tOPOIOE?’Y error Topology errors detected by state
detection estimation residual analysis or by

Post-estimation S .
considering of circuit breakers statuses as

state variables

Measurement checking is possible if high local measurement redundancy is
available (e.g. all branch power flow and injections adjacent with certain node).

Except for simple measurement consistency testing some other pre-estimation
topology verification methods have been proposed:
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e graph search technique [11.2]: current and voltage consistency is
checked by graph search: if voltage drops in loops or sum of powers in
node exceeds tolerance level, then bad marks are assigned to the
quantities which failed the test. Hence, the errors in topology can be
detected. Additional measurements that are not used originally in
calculation can be used for validation.

e application of artificial intelligence technique such as knowledge based
systems, artificial neural networks, hybrid systems combining various
techniques [11.5], [11.7], [11.8].

11.2.7. POST-ESTIMATION
TOPOLOGY ERROR DETECTION AND IDENTIFICATION

This approach use the weighted least square method and detection of topology
errors is based on the residual vector analysis 0, 0. However, the observed effect of
wrong topology is reported in a false detection of bad data burdening node injections
and branch flows.

The topology errors lead to the incorrect measurement function 4(x) and it reflects
in the Jacobi matrix. This can be described by the following equation [11.3]:

H=H, +E, (11.20)

where: H — an actual Jacobi matrix,
H, — an incorrect Jacobi matrix due to a topology error;
E — a Jacobi matrix error.
The true linearized equation for state estimation is:

z=Hx+e, (11.21)
and inserting (11.20) into (11.21) gives:
z=Hx+Ex+e, (11.22)
Due to topology error measurement residual will have the following properties:
r=z-Hx=(I-K,)Ex+e) (11.23)
E(r)=(I-K,)Ex, (11.24)
cov(r)=(I-K,)R, (11.25)

where: K, =H,(H'R'H,) 'H'R "
The measurement bias can be described as follows:

Ex = Mf, (11.26)
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where: M — a measurement to branch incidence matrix,
f — a vector of branch flow errors.
The measurement residual are given by:

r=(-K,Mf, (11.27)

Now, it is possible to express the expected value of the normalized residuals in
terms of branch flow error:

1

E(r")=Q 2 (1-K,Mf = Sf, (11.28)
where: Q = diag{cov(r)},

1
S = Q 2(I- K, )M - sensitivity matrix.
Assuming that bad measurement data are eliminated, normalized residual test can
be then applied for detection of topology errors.
Let consider the linear relationship between the measurement residuals and branch
error flows:

r=(1-K_ )Mf =Tf, (11.29)

If the single topology error exist in the j-th branch, there will be a change in the
corresponding branch flow f; = « and f; = 0 for k#j, where « is the scalar
corresponding to the topology error. Hence, the measurement residual vector r will be
collinear with the vector T}, being the j-th column of matrix T.

The geometric interpretation of the measurement residual can be used for detection
of single branch topological error. Geometrically based method contains the following
steps [11.3]:

e solving weighted least squares estimation and calculation of residuals ,

e calculation of sensitivity matrix T for measurement residuals with
respect to branch flow errors f,

e testing the co-linearity between the measurement residual vector and
the columns of the sensitivity matrix T using the dot product:

T

cos@ =T i1 (11.30)
Do

where: b — number of branches in the power network,

e if cos @= 1 and for other branches cos 6, < 1 for k#j, a single topology
error may occur in the j-th branch.

It should be noted that detection and identification of topology errors based on the
measurement residuals analysis will require high enough measurement redundancy. In
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some cases of errors, the capability of detection and identification can be significantly
limited by the network configuration.

Example 11.4

For 5-bus system shown in Fig. 11.4 DC state estimation is performed. However,
the branch d connecting the nodes 2 and 5 is assumed to be open but actually it is in
operation.

Fig. 11.4. Example power network and its measurement system.

For simplicity all measurement weights are assumed to be 1, and branch reactances
are 0.01 p.u.. Measurement data are gathered in Tab. 11.10.
Tab. 11.10. Measurement data for the exemplary power system.
P P, P Py Ps Py, Pis Py Py Pys
0.65 | -0.50 | 0.65 | -0.35 | -0.45 | 0.28 | 0.36 | -0.29 | 0.36 | 0.01

The Jacobi matrix with correct topology:

(100 0 0 —100]
300 —-100 0 —100
-100 200 -100 0

0 —100 200 —100
-100 0 —100 300 |. (11.31)
-100 0 0 0

0 0 0 —100
100 —-100 0 0

0 100 -100 O

0 0 100 ~-100|

Due to exclusion error (actually closed branch d is modeled as open) the Jacobi
matrix is modified:
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The measurement to branch incidence matrix is defined as follows:

=
I

[-100 0 0 —100]
200 —-100 0 0
—100 200 -100 0O

0 —100 200 —100
0 0 —100 200
-100 0 0 0
0 0 0 -100
100 —100 0 0
0 100 —100 0O

Favia- R N vl -

b [ [ 8]

I R

o

0 0 100 -100

a b ¢ d e f
1 1. 0 0 0 O
-1 0 -1 1 0 O
0 0 1 0 1 o0
0 0 0 0 -1 1
0 -1 0 -1 0

1 0 0 0 0 O
0 1. 0 0 0 O
0 0 -1 0 0 O
0 0 0 0 1 O
|00 0 0 0 1

(11.32)

(11.33)

Using equations. (11.27) - (11.30) the geometric test is performed and the results

are shown in Tab. 11.11

Tab. 11.11. Measurement data for example power system.

Branch j cos 6
a 0.0007
b 0.0007
c 0.0007
d 1.0000
e 0.0007

If cos 6, =1.0000 and other values significantly smaller than 1.0, single topology
error affecting branch d is detected with use the test.
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11.2.8. SUBSTATION CONFIGURATION ERRORS

Power system substations can operate in many different configurations. The most
common used circuit breaker schemes are: single bus, double bus-double breaker,
main and transfer bus, breaker and a half, ring bus. The number of electrical nodes
depends on the substation connectivity scheme and circuit breaker statuses.

Many methods of topology error detection concern on modeling of individual
circuit breakers statuses in substations. After validation procedure substation
connectivity scheme is converted into bus-branch model. If the status of every breaker
in certain substation needs to be checked, a sufficient measurement redundancy within
substation is needed. Otherwise the statuses cannot be correctly estimate because
different configurations can correspond to the available measurement set.

The closed circuit breakers is represented by zero-impedance, and open by zero
admittance. Inserting very small impedance or admittance values of breakers into
estimation equations usually leads to the ill-conditioning of estimation computations
and may cause convergence difficulties. The more suitable representation concerns on
power flow through breaker.

Considering the state estimation equation with augmented measurement set:

z,=h(x)+Mf +e, (11.34)

where: z, — an augmented measurement vector,
h() — anonlinear function relating measurements to the states assuming all
breakers are open,
X -— astate vector containing bus voltage magnitudes and angles,
M - a measurement to circuit breaker incidence matrix,
f —a vector of power flows through the circuit breakers,
e —a vector of measurement errors.
State variables and breaker flows form the augmented state vector:

_|* 1135
X =g | (11.35)

and new nonlinear measurement function %, is formulated. The state estimation
equation:

z,=h,(x,)+e, (11.36)

a

Measurements and constraints including in (11.36) comprise the following types:

e ‘“regular” analog measurements:
z=h(x,)+e, (11.37)

e operational constraints imposed by status of the circuit breaker as
presented in Fig. 11.5,
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These constraints can be expressed in matrix form as :
Ax, +e,=0. (11.38)

e structural constraints imposed by network connectivity structure, e.g.
zero injection constraints at some nodes:

c(x,)=0. (11.39)
The estimation objective function and constraints are as follows:
min J(r,r,)
s.t. h(X)+r=z
AX+r,=0

c¥)=0 (11.40)

where: J— an objective function;
r, ry —residuals for conventional measurements and operational constraints,
X - an augmented vector of state estimates containing voltage angles,
magnitudes and power flows through circuit breakers.

b)

Q) m k m
Vk: Vm Pkm:()
91-: 9/ ka =0

Fig. 11.5. Operational constraints for circuit breakers in the generalized state estimation:
(a) closed circuit breaker, (b) open circuit breaker.

Example 11.5
For the substation presented in Fig. 11.6 create detailed substation model of DC
state estimation for augmented state variable vector.
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b)

Fig. 11.6. Detailed substation representation (a) and its bus-branch model (b).

As the state variables the substation internal node angles and two external node
angles (6, &) are considered. In addition power flows through switching branches are
also included into the state vector.

x=[6, 6, 0, 6 B, R, B, P; R[T
Measurements in terms of state variables are as follows:
P3=—Py;+Psste,
Ps=—Ps—Pyste
The constraints related to the circuit breaker statuses:
6 — 6,=0,
6 — 6:=0,
6, — 65=0,
P4=0,
P5=0.
The constraints related to the zero-injection pseudo-measurements:
Pi=0: P+ Pis=0,
Py=0: Py + Py=0,
P=0: —Pyy— Psy— Xr"'(6,—6,)=0,

One can observed that variable &, does not appear in state vector because it is
considered as reference.
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Running local weighted least square calculations for detailed bus section level for
substation with suspicious measurement or switching device statuses is possible.
It enables detection of bad data and doubt statuses of switching branches if the local
observability is ensured.

Example 11.6

In the substation presented in Fig. 11.6 the state of switching branch connecting
nodes 3 and 4 is assumed to be unknown. Measurement values: P;= 2.50 p.u.,
Pg;=-1.10 p.u., Ps= —1.45 p.u. Measurement variances are set to 0.01. Transformer 7}
reactance is 0.1 p.u..

Three separated areas can be distinguished in substation: node 1, nodes 2, 3, 5 and
nodes 4, 6. The measurement, topological and operational constraints can be written in
matrix form as:

0 0 0 0 0 -1 0 1] P,
00 10 0 0 0 0 o0f4] |2,
00 0 0 -1 0 -1 0|6 |P
0 -1 0 0 0 0 0 04/ |6
1 0 0 0 0 0 0 0|2 |6,
00 0 1 0 0 0 0|2 |2,
00 0 0 1 0 0 0|A]| |P,
00 0 1 1 0 0 O}A| |P
00 0 0 0 1 1 0fA]| |A
0 0 -10 -1 0 0 0 -1] |B]

The results of weighted least squares estimation are:

4,1 [ 0.0000]
0; 0.0000
0, | |-0.1091
B, 0.0029
2. | 00029
P, | |-1.4294
P, 1.4382
_P34_ | 1.0794 |
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It can be observed that power flow Ps, differs considerably from zero and doubt
circuit breaker status is assumed to be closed.

PROBLEMS

11.1. For three-bus power system from Problem 7.2 (chapter 7) find the relative
length estimation of branch 2-3 by state vector augmentation (see Example
7.2). Assume that reactance per unit length is x =j0.15. Compare the obtained
estimated branch reactance with actual value and assess the estimation
performance index.

11.2.  Five-bus system as presented in Fig. 11.7 the branch e shown as doted line is
modeled as closed but in fact it is open. All measurement shown in Tab. 11.12
have weights assumed to be 1, and branch reactances are 0.01 p.u.. Perform
the DC state estimation and make colinearity test with (11.30) for detecting
the topology errors. Is topology error in branch e detectable? Why?

Fig. 11.7. Power system for Problem 2.

Tab. 11.12. Measurement data for example power system.
P, P, P; Py Ps Py Pis Py Pos Pys
0.65 | -0.50 | 0.65 | -0.35 | -0.45 | 0.16 | 0.48 | -0.65 0.31 | -0.35
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12. STATE ESTIMATION
USING AMPERE MEASUREMENTS

12.1. INTRODUCTION

Nowadays, state estimation is also applied to lower voltage networks where
measurement set usually consist of a large proportion of voltage magnitude and
ampere measurements. Power measurements usually are used for power transformers.
In this situation there is need to incorporate of ampere measurements into the state
estimation. Using ampere measurements instead of pair of power measurements
causes several problems, such as possibility of non-unique solution and lack a
possibility of decoupling [12.1].

12.2. MODELING OF AMPERE MEASUREMENTS

For a branch connecting nodes k and m (Fig. 12.1), the following current equation

can be derived:
I, =ab Lon [K vV ]T (12.1)
km abs) | — 2 +ka ka ) k —m ’ ’

X.yh
2 V.,

Fig. 12.1. Two port IT-model of transmission line.

Current can be calculated also from the following equations:

/ 2 2
Pkm + ka . (122)

I =
km Vk

However for distribution network shunt elements of branch are negligible and for
polar coordinate system the following equation can be derived [12.1]:
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I, =le2, + b2 V2 +V2 —21V, cosd,, ). (12.3)

From (12.3) it is ease to obtain the Jacobi-matrix elements for state variables of the
bus &:

a[ 2 2
km — gkm +bkm Vka Sin 5km’ (124)
851{ ]km
ol : 4b:
km :_gkm + km Vka Sin 5]{”1’ (125)
65m km
ol gl +b;
b _ Sk " (7 c0s 6, ) (12.6)
ov, 1,

ol Z +bl
km — gkm + km (Vm _ Vk cos5km)' (127)
an Ik

m

Figures below present 7, —and its derivates as a function of 7, and §, for 6, =0,
V., =1, R =0.02, X;,=0.06 and shunt admittance equal 0.

Current magnitude

o
Sus, 004 095 o™

Fig. 12.2. Current magnitude.
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—
1

a|bue aseyd yIma

§3

'o
1eAlleq

1.05

Fig. 12.3. Derivate of current magnitude with respect to phase angle.

1.05

apnyubew abe}joA )I'Mm BjeALsq

Fig. 12.4. Derivate of current magnitude with respect to voltage magnitude.
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It can be seen that for strong non-linearity at 7, =1 and §, =0 derivates abruptly
change which is shown in Fig. 12.3 and Fig. 12.4. That means that derivates of 7, are
undefined at this point. The solution of this problem is using / ka instead of 7, . Then

derivates can be written as:

2

a;g";= 2(e2, +b2, V.V, sin S, - (12.8)
aalgf = 2(g2, +b2, WV, sin 5, (12.9)
5;;,,2 =2(g?, +b3, ¥, ¥, cos 5, ) (12.10)
a;f/"’:=2(gim +b2, ), ~V, cosd,,)- (12.11)

Figures below present plot of / kmz and its derivates as a function of V, and o, .

N

N

~
~

o
®

Squared current magnitude

Fig. 12.5. Square current magnitude.
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a|bue aseyd ‘yJIm ajealsqg

1.05

Fig. 12.6. Derivate of square current magnitude with respect to phase angle.

apnyubew abe}joA ) 4'M BjeAleq

1.05

Fig. 12.7. Derivate of square current magnitude with respect to voltage magnitude.
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It can be seen that derivates for the flat start are null which can cause ill-
conditioning of the gain matrix. Therefore, the following solutions to overcome this
problem can be suggested [12.1]:

— initiate state variables with a random small perturbation,
— add artificial shunt elements which are removed after first iteration.
If by, is considered, the /;,, has following derivates:

vy, (gim + bkm[bzsh +b,, B sind,,, + g, sz“cos 5,(4
U L , (12.12)
851‘ Ikm
| 2 bsh . bsh
Vk Vm gkm + bkm 2 + bkm s 5km + gkm ) COsS 5km
i S— . (12.13)
85'" Ikm
2 bsh ’
gkm + 7 + bkm V;c
alkm _
o, Ly , (12.14)
Vilg +b ﬁ+b coso, — bﬁ ind,
m| | 8km T Okm ) km om — Ekm > SInoy,
km
a[km _ (gim + bim )Kn
al/m [km
b b > (12.15)
Vk{(gim + bkm( 25h + bkm Jj COs 5km - gkm 25h Sin é‘km:|

1

km

where [, is calculated from (12.1) or (12.2).

Derivates of I, can be written in the following way:

ol ’ b b
agm =20V, [{gim +b,, (2‘1 +b,, B sind,, +g,, TShcos é‘km} (12.16)
k
ol ’ b . b
T;’” :—2Vka[[gim +bkm(25h+bkmﬁsm§km +gkm25hcos5km], (12.17)
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ol

2 b 2
B/ :2 2 + 7Sh+b V
ov, [gk“‘ [ 2 "mj } ¢
2 bsh bsh .
_2Vm gkm+bkm 2 +bkm COSé‘km _gkm 2 Slné‘km

ar,’
ﬁ = 2(glzm + blzm )Vm
p . (12.19)

b b
—2Vk[(gim +bkm[ 2Sh +bkmBC085km — 2Sh sin5km]

(12.18)

b

12.3. OBSERVABILITY ANALYSIS FOR POWER SYSTEM WITH

AMPERE MEASUREMENTS

Observability is defined as the ability to uniquely estimate the state of system using
given measurements. In classical state estimation where measurements come in real
and reactive pairs observability analysis can be performed using decoupled models.
But, when ampere measurements are considered, the decoupled model of power
system cannot be employed and for observability analysis fully coupled model must
be used. However, as it was written chapter 9. observability analysis for fully coupled
model doesn’t guarantee uniqueness of solution. This can be illustrated by considering
the following case of two bus system:

Example 12.1.
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Fig. 12.8. One-line diagram of a 2-bus power system

2 2 2 2
cos 8, =L =i 2 (12.20)
! 2:-Ve-V,




It can be seen that two opposite values of ¢o,, fulfill equation above (
arccosd,,, =+0,,). Therefore according to equations below one can notice that two

solutions for active and reactive power are possible:

P, =b V.V, sinG, + % g v, =V )-1,2n, ] (12.21)

Oy = %[bkm (sz - sz )_ [kmzka ]"‘ &inViV, sin oy, - (12.22)

Problem does not exist if power system is observable without ampere
measurements or if they are added in order to improve accuracy of state estimation
instead of extending the observable network. Extending observability by adding
ampere measurement is possible if power flow direction is know a apriori which
usually is true for radial networks.

12.3.1. PROCEDURE BASED ON THE RESIDUAL COVARIANCE MATRIX

The covariance matrix {2 can be obtained from [12.3]:

Q=S-R=R-H-G"'-H". (12.23)

where: Q — a residual covariance matrix,
S — a residual sensitive matrix,
R — a covariance matrix of measurement error vector.

If column of Q is equal null then corresponding measurement is critical. If a
measurement belongs to a residual spread component then, £ column is null except
entries corresponding to the same residual spread component. Therefore, only for the
current magnitude measurements residual spread component need to be determined.

Q, can be calculated as follows:
1. Solve G-y, =h,”,
where h,_ : £” row of H.
2. Compute , as:Q, =R, —H-y,,

where R, is the & column of R .

The algorithm of the method [12.3]

1. Compute the columns of Q corresponding to the current magnitude
measurements.

2. If column k of Q contains a nonzero entry corresponding to a power flow or
an injection measurements, skip that column.
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3. If column k of Q contains a zero entry corresponding to a power flow or an
injection measurements, flag the current measurements together with all the
other measurements with nonzero entries in that column, as a v-i residual
spread component that has potential to yield multiple solutions.

4. 1If the column is completely zero, flag the current magnitude measurements as
critical

If no measurement is flagged then the system is uniquely observable. During steps
2-4 it is necessary to decide if a given entry is zero. This decision must be made based
on numerical threshold which can be different for different system. Therefore Q
should normalized in order to make threshold independent of the system. Decision of
zero can be made as follows:

Q,]/Q,. <&

where: e.g.e =1.0e—4

Example 12.2.
Consider following 4-bus power system

| > N 4
| t:1

A=

< @- P/Q injection measurement

3 (O Ampere measurement

@ Hl Voltage measurement

Fig. 12.9. One-line diagram of a 4-bus power system

Assuming unity reactances and null resistances and non-flat start:

Tab. 12.1. Initial values for state vector

Bus v 3(°)
1 0.95 0
2 1 -1
3 1.05 -2
4 1.1 -3

The following Jacobi matrix is obtained:
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s,

OP, | 36.66

oP, | -8.32
20, | -8.56
o 00| 43
v, 0

v, 0
al,” | —8.29
or,’| 0

o5,  as, oV, v, oV, ov,

-847 -14.02 -526 944 -3.86 0.44 |

23.10 0 -580 —-435 952 0
405 -049 -1491 3517 -8.07 -12.75
-9.85 0 -1556 -8.32 2498 0
0 0 1 0 0 0

0 0 0 1 0 0

0 0 —-2492 2507 0 0
-17.41 0 —49.68 0 50.29 0

If R is assumed to be the identity matrix then:

oP,

oP, [-0.000

oP, | —0.000
00, | -0.000
o_ 90: | 0.000
ov, | 0.000

op,  0Q, 00, oV, oV, al,
0.000 0.000 -0.000 -0.000 0.000 0.000
0.000 0.000 0.002 0.006 —0.008 0.001
0.000 0.000 -0.000 0 0 -0.000
0.002 -0.000 0.049 0.129 -0.170 0.023
0.006 —0.000 0.129 0.339 -0.447 0.062

oV, |-0.000 —-0.008 0.000 —-0.170 -0.447  0.588 -0.081

al,,” [ —0.000

0.001 -0.000 0.023 0.062 -0.081 0.011

8[132_ 0.000 -0.001 -0.000 -0.025 -0.065 0.086 -0.012

al,’
0.000 |
—0.001
—0.000
—0.025
—0.065
0.086
-0.012
0.012 |

It can be seen that measurements: Ps;, Os, V;, Vs, 155, 113, forms a v-i residual spread
component, while P, and O, are critical. That means that system is not uniquely
observable and more than one solution are possible. Solution depends on initiate point.

12.3.2. PROCEDURE BASED ON THE JACOBI MATRIX

Observability analyses are also possible without computing residual covariance
matrix. Presence of v-i residual spread components can be obtained from the Jacobi

matrix [12.2].

Partitioning a linearized error-free measurement equation leads to:

)

(12.24)
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Ly
S,=H,-H,
or using Peters-Wilkinson decomposition
H,| [L][U]
H=|--- |=]|.- ’
H, M
L-S,=M,

where: H;=L-U — nxn square matrix,
H,, M — (m-n) xn rectangular matrices,
L — nxn lower triangular matrix,
U — nxn upper triangular matrix.

(12.25)

(12.26)

(12.27)

(12.28)

Matrix S, is called the measurement sensitivity matrix where each row correspond
to redundant measurement. Null column indicates that corresponding measurement is
a critical and nonzero element in each row indicates that those measurements belong

to the same residual spread as the redundant measurement.

Example 12.3.

a6, 6, a6, v, ov,

oP, [ 36.66 —847 —1402 -526 9.44

oP, | -832  23.10 0 -580 —435

g1 00:|-856 405 -049 -1491 3517
"l 00, 435 -9.385 0 -1556 -8.32
H, oY, 0 0 0 1 0
v, 0 0 0 0 1

o' | 7829 .. 9, 052492 2507
e S T Ty e

or, or; 00, 00, OV,

S, =H,H, " =[0.000 0.090 —0.000 1.978 5214
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v, ov,
—3.86 0.44 |
9.52 0
~-8.07 -12.75
24.98 0
0 0

0 0

0 0
"'s'i)'fi'é""""""'d'_
ov, o’
~6.866 0.946]



P;and Q; are critical measurements where remaining ones belong to v-i redundant
set.

12.3.3. PROBLEM OF BAD DATA

As it was explained in chapter 10, measurements may have various properties and
influence on state estimation, according to their values and location. When ampere
measurements are considered the following types of measurement can be
distinguished [12.1], [12.4]:

e Noncritical: when deleted, the system remains uniquely observable.

e C(Critical: when removed, the system becomes unobservable.

e Uniqueness-Critical: when eliminated, the system becomes not uniquely
observable, i.e., several solutions are possible.

Bad data detection and identification are carried out according to the procedure
presented in chapter 10. They include:

e Standard bad data detection and identification.
e Checking whether or not the identified bad data correspond to
noncritical measurements.

It must be noted that when only conventional measurements are used there is no
risk of eliminating critical measurement. However if ampere measurements are used
there is need to check if identified bad data correspond to noncritical measurements.
Procedure of checking of noncriticality is presented below:

o [f the measurement belongs to residual spread componenent containing
only power and voltage measurements, then declare it as noncritical.
Else, continue.

e [f the measurement refers to power flow or injection and the residual
spread component does not contain any other power measurement then
declare it as uniqueness-critical. Else, continue,

e Check if any of the remaining ampere measurements in the same
residual spread component will become critical when this measurement
is eliminated. If, yes, then declare the measurement as uniqueness-
critical, else declare it as noncritical.

PROBLEMS

12.1.  Consider if adding measurement Qy,, in the example 12.1. will make a Power
system observable.

12.2.  Consider example 12.2. Suggest the location and type of a set minimum
number of measurements to be added to the measurement list in order to make
the power system observable.
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12.3.

[12.1]

[12.2]

[12.3]

[12.4]

[12.5]

[12.6]
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Perform observability analysis of the power system shown in Fig. P.12.1.

H >, N 4

@ P/Q flow measurement

3 -<+@P/Q injection measurement

Il Voltage measurement

6 (O Ampere measurement

Fig. P.12.1. The 6 bus power system
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13. DISTRIBUTION POWER SYSTEM STATE
ESTIMATION — SPECIFIC PROBLEMS

13.1. INTRODUCTION

In the past, load flow was used for planning and operation. Recently, with
installing in distribution system SCADA systems real-time control becomes possible.
New methods are proposed for obtaining the consistent and accurate real-time data
needed for monitoring and operation of distribution systems.

Distribution automation is the real-time monitoring and control of distribution
circuits to facilitate feeder analysis function such as: voltage and reactive power
control, network reconfiguration, demand side management etc. To perform these
tasks distribution system state estimation is recognized as efficient tool which enables
providing the real-time state estimates.

Using the results of state estimation for distribution systems can contribute to:

e improve reliability by faster failure detection and supply restoration,
detection of overloads,

e improve network operation efficiency,

e develop energy customer response.

State estimation of distribution power network differs considerably from state
estimation routines applied to transmission network and should be re-defined. This
chapter is aimed at presenting some special problem regarded to this subject.

13.2. DISTRIBUTION POWER NETWORK CHARACTERISTIC

The methods of conventional state estimation originally developed for transmission
systems cannot be simply adopted for distribution networks. The essential differences
between both types of power systems result in fact that transmission system state
estimation assumptions are not longer valid. Tab. 13.1 provides comparison between
transmission and distribution networks. Essential differences among these systems
result in developing some special methods for distribution system state estimation.
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Tab.13.1. Transmission and distribution system comparison.

Characteristic Transmission systems Distribution systems

Symmetry The degree of phase unbalance | The degree of phase unbalance
is small and only positive | is usually significant and three
sequence network can be | phase representation is required
analyzed
Single phase representation
possible

Network topology Meshed Radial or weakly meshed;

substation supply independent
radial feeders

Line parameters

Long lines with low R/X ratio

Short or medium long lines with
relatively high and varying R/X
ratio

Measurement
distribution
redundancy

and

Very good, much of the
network has  measurement
redundancy and network is
observable as a whole

Poor, there is much more loads
than available measurements

Network highly unobservable,

Loads wusually need to be
estimated

Network size

From several hundred up to
several thousand nodes

From several thousand to several
dozen thousand nodes

13.3. MODELS

OF DISTRIBUTION POWER SYSTEM COMPONENTS

13.3.1. DISTRIBUTION SYSTEM STRUCTURE

General structure of distribution system is shown in Fig. 13.1. It has usually radial
structure with possible lateral connections. The loads are connected to the nodes by
transformers and are supplied from main feeder via overhead or cable lines. Some of
the branches are equipped with switching sections. To improve power factor
capabilities capacitor banks can be inserted into power network. Distributed
generation can be also embedded in network.

Recently distribution system have been equipped with Distribution Automation
Systems (DAS) enabling monitoring and control of network elements installed in
substation and feeders: switching equipment, capacitor banks, transformer tap position
etc. Modern DAS are capable of providing real-time measurements of voltages,
currents, active and reactive power flows. Theses data can be processed in order to
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support operator decisions. In such environment state estimation for distribution
system can be implemented.

- Overhead or cable line - Overhead or cable line
~|_®_|7 - Transformer M - Transformer +
- Switch - Switch

Main feeder

- Load
- Small generation
- Capacitor bank

Fig. 13.1. Power distribution system structure.

13.3.2. DISTRIBUTION LINE MODELS

Fig. 13.2 presents a three-phase line section m connected between nodes i and j.
The relations between node voltages and branch currents is as follows:

Za S Za N Zau,[/ Zab,[/ Zac,[/’ la S
Kb,i = Kb, it Zlm,[/’ Zopp i Zbc,g/ by | (13.1)
—c,i —c,j —ca.ij by —cc,ij —c,ij
or in concise matrix form:
——abc,i = Xabc,j + Zabc,[/’ labc,[/’ . (132)

where: Z.,. — an impedance matrix of line section,
Vaves=Vai Vi Zc,,»]T — a vector of phase voltages at the node i,
Lpeij = Loy Iy L.,i,»]T — a vector of phase currents in the branch m connecting
the nodes i and ;.
The impedance matrix comprising self- and mutual terms is given by:
Z Z

aajj  =abjj  ac,ij

z. Z. .| (13.3)

Zabc,(/ = Zbu,[/’ = bbij Zbe,ij

ecalij b, Zeeyij
The elements of matrix can be derived from Carson’s equations, by assumption
that well grounded distribution system is well grounded and ground voltages are zero.

Then Kron reduction matrix method can be applied to obtain 3x3 impedance matrix of
line section. Rearranging equation (13.1) the phase currents are given as:
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!a,ij Xaa,ij Xab,ij Zac,ij Ka,i - Ka,j
ib,ij = }_/ba,ij be,ij }_fbc,fj Kb,i - Kb,/ > (13.4)
lc,[/’ Xca,ij 2 e ij ce.ij Zc,i - Kc,j
or in matrix form:
labc,ij = Xabc,l/ + Xabc,ij Vabc,i - Xabc,j ) 2
1 . . . .
where: Y . . = Zape,;j —a line section admittance matrix.

i node i i 7 Z., + nodej i
v Yis o4—> 1 —OV,, |
| : Zu | |
! 7 Zn Zu | !
L Vi o > { } —oVi»
: i Zbc : i
I A Zec ! ;
i Vie o > { — IJ\)_V, !

Fig. 13.2. Three phase line section.

13.3.3. STATIC LOAD MODELS

Loads can be represented in the following connections:

o four wire wye system: phase to phase or phase to neutral connection,
o three wire delta system: phase to phase connection.

The loads can operate as symmetric or asymmetric in single-phase, two-phase and
three-phase mode and can be modeled as:

e constant apparent power (constant PQ),

e constant current,

e constant impedance,

e combination of the above mentioned models.

Fig. 13.3a presents the wye connected load.

1. Load model with constant apparent power:
s s, s Y
I,=|=%1|, I[,=|=|, [.=|=%]. (13.5)
B Kan a Kbn - Kcn
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!
N

\ 4

b)

Zbc

Fig. 13.3. Three phase load configurations: wye (a), delta (b).

2. Load model with constant impedance.
The impedance is first obtain:

2 V2 VZ
Z, = Z Z, = S” Z, = S , (13.6)
=a =b

—C

and then the currents as a function of constant impedance are derived
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L==, I,== [ === (13.7)

“a =b Zc

3. Load model with constant current.
The current magnitudes are obtained from equation (13.5).
Fig. 13.3b shows the delta connected load model.

1. Load model with constant apparent power.

s, ) s, ) s, )
I,=|=2%\, I, =|=1, [, =|=*]|. (13.8)
- Kab B Zbc a an
In this model the line to line voltages are adjusted to maintain constant power.

2. Load model with constant impedance.
The impedance is first obtain:

2 2 2
z,=te gz -t gz la (13.9)
§ab §bc §ca

and then the currents as a function of constant impedance are derived:

V V V
I :_ab’ 1 :—_bt" 1 ==« 1310
Loab Z Zbc Z —ca Z ( )

=ab —bhc “ca

3. Load model with constant current.
The current magnitudes are obtained from equation (13.8).

Calculation of load parameters for different load models is shown in Tab. 13.2.

Tab. 13.2. Load model parameter calculations. k& € {a, b, ¢} for wye, k € {ab, bc, ca} for delta connection.

Load model Impedance Z, | Current [, | Power S;
. v, A
Constant impedance Zx e P
Z, Z,
Vi :
Constant current - I V.1,
L,
v S,
Constant power — = Sk
§k Zk
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The methods for state estimation of distribution networks usually use the grounded
wye load model irrespective of number of phases. In such case the load power:

S, =V.I . kelab c} (13.11)

13.3.4. LOAD PSEUDOMEASUREMENT ESTIMATION

As mentioned, network observability analysis determines whether the given
numbers and location of measurement are adequate to estimate the state vector.

The number and localization of these measurement is insufficient to obtain network
observability. The way of increase of measurement number is estimation of loads.
Obtaining of credible estimates of loads is not simple task. The information on loads
concerns on basic customer information: group of customer, its location in power
network, and historical data regarding to energy consumption, weather conditions.
Customers are usually classified into groups with common demand profile. Usually
the residential, commercial, industrial classes are distinguished.

Load demand depends on great variety of factors and estimates based on load
curves have very limited forecasting capabilities. For customer classes with similar
load profiles, standard load curves illustrating power demand as a function of time
(Fig. 13.4) . These standard curves are based on historical data obtained by monitoring
of customers within the considered time period. For state estimation purposes it is
necessary do develop algorithms estimating loads with respect to statistical data
analyses of customer loads.

0,8

0,7

0,6

0,5

0,4 "4 N

0,3

Load

0,2

0,1

0

0 5 10 15 20
Hour

Fig. 13.4. Example averaged daily load curve for residential customers.
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Great number of methods for load estimation have been presented n technical
literature. Brief characteristics of load estimation methods are given in Section 14.

13.4. DISTRIBUTION POWER SYSTEM
STATE ESTIMATION METHODS

Initially, distribution power system state estimation methods originated from
weighted least square estimation formulated for transmission systems. Recently, the
great variety of state estimation methods have been developed and they can be
categorized into the following groups:

o weighted least squares based methods:

— three phase node voltages as state variables: [13.1], [13.6], [13.8],
[13.9],

— branch currents flowing in each phase as state variable: [13.2],

[13.3], [13.7], [13.11],

e load flow calculation based methods — using the backward-forward
sweep load flow method for radial distribution networks. Measurement
data are used in calculations as possible [13.10].

Some more detailed information on will be given in the further part.

13.4.1. NODE VOLTAGES-BASED STATE ESTIMATION

The weighted least square estimation described in Chapter 7 is adapted for three
phase distribution network representation. Objective function formulation and solution
scheme of state variable estimates given by equations (7.36), (7.37) is still valid in
three phase case.

State variable vector
Node voltage angles and magnitudes are selected as state variables:
x=[0, 0, ... 0 V., V, .. V], (13.12)

n

where: 0;=1[6,; 6, 0.;] —a vector of angles of voltages at the node i for the phases a,
b and c respectively;
V.= [V.:Vs:V.i] —a vector of magnitudes of voltages at the node i for the
phases a, b and ¢ respectively,
n — a number of nodes.
Note that 0; = [0 exp(j2n/3) exp(—j27/3)] is assumed to be reference angles and
this term is neglected in state vector.
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Derivation of measurement functions

The measurement functions A(x) are considered for branch current magnitudes,
branch power flows and power injections and node voltage magnitudes.

Assuming the line section model as shown in Fig. 13.2 the branch current in phase
k is given by:

lk’] _I;U klj_ ZYkmy(_ _Zm,j)ﬁ (1313)

meab(

where: Y}, ; —an element of the line section admittance matrix Y s ;;
I} j» 1} ;—areal and an imaginary part of the complex branch current J;

73]
k e{a, b, c}.
The measurement function related to the branch current magnitude:

hC(X):Ik N/ ( k’”)z ( lft/)z (1314)

* . .
Branch power flow measurement at node i, S, ; = £ ; — 0, ; , is expressed as:

kij
hPij(X)_thi/'(x):gk,g _kz {sz}kml/(_ml _Zm/) (1315)
where: k €{a, b, c}.
Power injection measurement at node j, S’ Sy, —JQ,;,1s given by:

h (%)= jhy(x)= S}, =V, > ZYkm,]Lm,—_m]) (13.16)

JENi me a b(;

where: N, — a set of nodes connected with the node i; k € {a, b, c}.
Measurement function for voltage magnitude at node i for phase k is given by:

h(x)=V,,. (13.17)

where: k €{a, b, c}.

One can observe that measurement functions, except the functions for voltage
magnitudes, are non-linear functions of state variables. Three phase representation
results in more complicated form of these function in comparison to single phase
representation described in chapter 7. The number of state estimates and the Jacobi
and gain matrix sizes are much larger. However, due to radial network configuration
they are sparse and some modifications concerned on maintaining the Jacobi matrix
with constant terms are possible.

Derivation of Jacobi-measurement-matrix terms

Measurement functions are derived for hybrid network equations: voltages are
represented in polar form and admittances in rectangular form.
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Expanding the measurement function for power flows one can obtain:

h(x)=PB, =V, Z[kaU(V cos(H -0, ) |4 cos(H -6 ))+

m,j m,j

nelabe . (1318
+Bkmzj(V sm(H 16 ) sm(H Hmﬁj))] ( )
h(x)=0,, =V, ZlemU(I/ms1n(¢9. 0,)-v, s, -0, )+

nefahe) . (13.19)
+Bkm,,(Vm,cos(«9 -9,,)-7,,cos(6,,-6,,))

where: Y, ;= Gimiy +Bimy; - an element of line section admittance matrix,
k,m e{a,b,c}.

Significant simplification of Jacobi matrix terms is possible if the approximations
concerned on constant voltage magnitude and small angle differences are used and it
can be expresses as:

v, =10, coslg, 6, )~1.0, sin(6,, 6, )~0.0, (13.20)

m,j

The non-zero terms of the approximated Jacobi matrix are:
— branch power flows:

OoP.. 00, .
Py Qo p il kelab chmela b cl (13.21)
oo, ov,, N
OP.. 00, .
i z&zBM, j=1 kelab cl,mela b ch. (13.22)
aHm,l aI/m,l i
OF, 00,
— Y~G, ., i=1l,kef{a b cl,me{a b c}. 13.23
a I/m g a em g " { } { } ( )
or, 00,
—x— -G ., j=I,kela b c},mela b c}. 13.24
v, 20, s J { } { h ( )
— power node injections:
oP. 20,
—~x—"~->»B . i=l,kela b c},mei{a b c}. 13.25
2 o~ B {a b ch,mela b c} (13.25)
or, 0
& QO ~B,,, €N, kela b, ci,mela b, c}. (13.26)
ae aI/ml i
OP. 00,
— L x—2>»G, ,, i=1,ke{a b c},me{a b c}. 13.27
anJ aem,l ]EZN, km il { } { } ( )

224



OB, _ 99,

P zag ~-G,;.» €N, ,kela b ci,mela b, c}. (13.28)
m,l m,l
— branch current magnitudes:
Oy Oy B i=1,kela b, c} {a, b, c} (13.29)
—_— X — ., =1, Kea, b, cy,mexq, D, Cy. .
00, ~ov, ™
%~—%z3kw, j=1,kefa b c},meia b, c}. (13.30)
m,l m,l
Oy iy G i =1,ke{a b, c} {a, b, c} (13.31)
—4x—=G,., i=l,kefa b c},mela b, c}. .
aI/m,l aem,l o
Oy Oy G =1, kef{a b, c} {a, b, c} (13.32)
—x—2~-G_ ., j=I ke{a b c},me{a b, c}. .
v, o8 o

State estimation algorithm
Computational algorithm is very similar to the weighted least squares estimation
for transmission system presented in Chapter 7:
1. Initialization of the iteration counter £=0.
2. Initialization of the state vector with use of the flat start or with use measured
values if available.
3. Forming the Jacobi and gain matrices.
4. Calculation of H'R™(z-A(x)) and decomposition of the gain matrix for finding
AX.
5. Check for convergence, max(JAx |)<gor k>k,,,.?
6. If yes stop, otherwise updating the solution x*"P= x®+Ax and the iteration
counter k=k+1. Go to step 3.

When the Jacobi and gain matrices are formed some problem occurs with current
measurement. The phase of measured current is required to determine real and
imaginary part of complex branch current (see equation (13.14)). However, only
magnitude is available. It is proposed to eliminate current measurements (without
losing the observability) and perform first few iterations. Then the estimated current
phase values, current measured magnitude are included onto the Jacobi matrix, and
state estimation is re-calculated.

Example 13.1
For radial distribution system shown in Fig. 13.6 find the estimates of 3 phase node
voltages.
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Line section impedance and admittance matrices in p.u:
2.4388+j6.1727 0.4132+j3.2579

Zors =Z sy =107 0.4132+ (32579 2.4388+j6.1727
0.4132+3.2579 0.4132+j3.2579

l START l

Initialize the state vector with flat start or measured values, k=0

0.4132 + j3.2579
0.4132+3.2579 |,
2.4388+ §6.1727

«

Calculation of equivalent currents from V* and measurements

v

Forming the Jacobi and gain matrices
G(Py= (H)" H(xP)

v

Calculation of (H(x®))"R™" (z—h(x"))

|

Decomposition of gain matrix for finding Ax

(k)

max|Ax?| < € or

Updating node
voltages V¥

k=k+1

D= g4 AL

k>kinax

Fig. 13.5. Flowchart for state estimation calculations .
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Fig. 13.6. Example simple radial distribution system. e voltage measurement.

1.1352-31.7887  -0.4725+j0.5248 -0.4725+j0.5248

Yors =Yory =107 04725+ j0.5248  1.1352-j1.7887  -0.4725+j0.5248 |.

-0.4725+j0.5248 -0.4725+j0.5248 1.1352-j1.7887

Load pseudomeasurements obtained from load estimation step are in Tab. 13.3.

Tab. 13.3. Load pseudomeasurements.

Py Oui Py, Oy, P, Oci
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0640 0.0128 0.0040 0.0018 0.0010 0.0028
0.0180 0.0048 0.0180 0.0048 0.0180 0.0048

~.

W~

Voltage at main feeder as reference: ¥ =1.0[1 exp(j2n/3) exp(-j2n/ 3)]T
Power flow in branch 1-2: P,,; 7= Pp,1 )= P.,12=0.080 Q1 2= Op,1 5= Q.1 ,=0.017
Measurements weights (elements of R matrix) are set to 1.

Convergence criterion is assumed as max(JAx [) < 107

The structure of the simplified Jacobi matrix built with use equations (13.2
(13.28) is presented in Fig. 13.7.

1) -
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V;l E E X I I
Fig. 13.7. Structure of the simplified Jacobi matrix H. x - non-zero term.

The values of measurement functions in vector of measurement mismatches [z-
h(x)] are calculated with use of equation (7.37) for flat initial point.
After calculation the state variable vector the following results are obtained.

Tab. 13.4. State vector estimates.

Node i Va,i ) éa,i > Vb,i: éb,i > ch > éc,i )
p-u. deg p-u. deg p-u. deg
1 1.0000 0.000 1.0000 120.000 1.0000 -120.000
2 0.9999 0.027 1.0001 119.998 0.9998 -119.998
3 0.9999 0.030 1.0001 120.001 0.9998 -119.995
Tab. 13.5. Branch current estimates.
Branch, i j ia,i/’ ’ (T)alj ’ jb,i/' > &)b,i/ > jc,i/' ’ J)c,i/ ’
p-u deg p-u deg p-u deg
1-2 0.0839 -12.0865 0.0230 103.3013 0.0290 -135.1820
2-3 0.0186 -14.9013 0.0186 105.0698 0.0186 -134.9263
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The convergence were achieved after 3 iterations.

13.4.2. BRANCH CURRENTS-BASED STATE ESTIMATION

Alternative formulation of state estimation problem for three phase distribution
network is using branch current as state variables. Knowing these currents other
quantities as complex node voltages, power branch flow and power injections can be
calculated. The node voltages can be found by forward sweep procedure. Starting
from substation voltage and moving toward leaf nodes of the radial network using
equation (13.1). Current and power injection can be found with use of Kirchhoff
Current Law.

The state variable vector is former as:

x= I, . 1 ..o, (13.33)

where: 1';=[I',;I'y;I.;] — real parts of the branch current flowing into the bus i for
the phases a, b and c¢ respectively,
I',=[F,; [} I'.;] — imaginary parts of the branch current flowing into the bus i
for the phases a, b and ¢ respectively,
n — a number of branches.

Measurement function

Regarding to the power measurements it is assumed that the actual power flows
measurement and load pseudo-measurements are available. These measurements are
converted into currents with use of the following relationship:

P, +i0. )
+il* :(“—‘]Qk”] , (13.34)

1 k.ij V(t)
Yoki

L

:Ir

k.ij

where: Py, Or; — an active and a reactive branch power flow measurements at the
node i for the phase £,

Zy)l - a voltage at the node i and the phase k in #-th iteration of solution

process, k €{a, b, c}.
The load pseudo-measurements can be obtained from:

P
L, =1, +il;; { (13.35)

where: Py ;, O, — active and reactive load pseudo-measurements at the node i for the
phase &,

Kﬁ:}i — a voltage at the node i and the phase & in the #-th iteration of solution

process,
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k€{a, b, c},
Note that the actual node voltages are not available and they are obtained from
calculations.
Measurement functions for equivalent currents are linear:
h(x)+jh (x)=1] +jI; (13.36)

=iy kij

where: k €{a, b, c}.

Node (load) currents are linear function of state variables and they can be
calculated from Kirchhoff Current Law. The concise form for describing that uses the
node-branch incidence matrix A defined as:

1, if branchj is directed away from node i
a; = —1, if branch j is directed towards from node i
0, if branch j is not incident to node i

The relation between node currents and branch currents (state variables) is:

h(x)=AT", h,(x)=AT", (13.37)
where: 1" = [Ilr b ... I ]T — a vector of real part of branch currents,
I' = [If b ... I ]T —a vector of imagine part of branch currents,

A’ — the three phase incidence matrix with the following terms:

L3.3, if branch j is directed away from node i
a’;= —Is,3, if branch j is directed towards from node i
05,3, if branch j is not incident to node i

Current magnitude measurements are directly incorporated into the state
estimation. However, it is non-linear function of state variables:

he(x)=1,, =17, ] + (15, . (13.38)

Voltage measurements are neglected in measurement vector, except the main
feeder voltage to be the reference, because they do not have significant influence on
state estimation results quality.
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Fig. 13.8. Current phasor for phase 4 in flowing through branch connecting nodes i and .

Jacobi matrix derivation
Linear form of measurement functions simplifies considerably the Jacobi matrix
derivation. The structure of the Jacobi matrix is as follows:

H

P

s

H-= : (13.39)

The terms of Hp are defined as:

3.3, if i-th active power flow measurement is adjacent to branch j
h,,; =
05,3, if i-th active power flow measurement is not adjacent to branch j

Note, that Hp = Hy holds by assumption that the power measurements are in pairs.
Matrix H'; corresponds to load pseudomeasurements and node equivalent currents.
It is defined as three phase incidence matrix A’. Also, H; = H; holds.
Current magnitude measurement introduce nonlinearity and coupling between real
and imaginary parts of current phasor. The non zero terms of H'; are as follows:

oh, (x) _ I, —cosd, ., (13.40)
ol . " ¥ o(r } !
kg ( ky) +( k,ij)
and for matrix H',:
oh.(x) _ Liy _sing, | (13.41)
o, " ¥ ) !
kg (Ik,fj) +( k.ij)
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1.
where: ¢, , = arc tan[ I':_’” J :

k.ij

Objective function
The objective function for state estimation can be decomposed into three terms as it
can be seen in the following fomula:

I =l =, W @), ) e, ) R e 00
el e & e el

where: 2 zZ° — measurement vectors related to the real and imaginary parts of
equivalent current phasors obtained from actual power flow
measurements and load pseudo- measurements,
z" — avector of current magnitude measurements,
h(), h(T"), K(I") — measurement functions involving real, imaginary parts and
magnitudes of current phasors,
R’, R*, R” — measurement error covariance matrices.
First term of objective function relates to the power flow measurements and the
second to measured current magnitude. The notation for phases is neglected for better
clarity.

. (13.42)

State estimation algorithm
Computation of branch current estimates is performed in the following steps:
1. Initialization of the iteration counter £=0.
Initialization of the voltages with use of the flat start or with use measured
values if available.
3. Calculation of equivalent currents with use of the voltages V¥, power flows
measurements and load pseudomeasurements.
4. Forming the Jacobi and gain matrix.
5. Calculation of H'R™'(z-h(x)) and decomposition of the gain matrix for finding
AX.
6. Check for convergence, max(JAx |)<&or k>k,,..?
7. If yes stop, otherwise updating the solution xX*"P= x®+Ax and the iteration
counter k&=k+1. For given branch currents update the voltages by the forward
sweep procedure. Go to step 3.

Note, that when the Jacobi and gain matrices are formed some problem with
current measurement occurs, because its phase is not available. It is proposed to
eliminate current measurements (without losing the observability) and perform first
few iterations. Then the estimated current phase and measured magnitude are included
into the Jacobi matrix and the state estimation is re-calculated.
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Modifications of the described method are concerned on maintaining the Jacobi
and gain matrix with constant terms and phase decoupling.

Example 13.2
For the distribution network shown in Fig. 13.6 in Example 13.1 find the state
estimate with use of branch current based state estimation formulation.
Active power flow measurements: P,;,=0.082 P, ,=0.022 P,,=0.028
Reactive power flow measurements: Q,;,=0.017 0;,=0.006 Q. ,=0.007
The Jacobi matrix has the following structure:

P12
P12
Py 12
Pa,l
Py
P
Py
Py,

29 29 29 29 29 29
Iy Thin Tenn Ty Tops Teps T Ton T Taps oy Ten

———————————————————————————————————————————————————————————————————————————————————————————
-------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------

———————————————————————————————————————————————————————————————————————————————————————————

Note that the Jacobi matrix contains only constant term and its recalculation during
iterations is not needed.

During each iteration, once the voltages are updated the load pseudomeasurements
and power flow are also modified to obtain new equivalent current values (equation

(13.5)).

Final branch current estimates converted into polar form are shown in Tab. 13.6.
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Tab. 13.6. State estimation results.

Branch,ij | e Pai> Ly UNE Ly Ocijs
p-u deg p-u deg p-u deg
1-2 0.0839 -12.0865 0.0230 103.3013 0.0290 -135.1820
2-3 0.0186 -14.9013 0.0186 105.0698 0.0186 -134.9263

13.4.3. ESTIMATION
BY BACKWARD-FORWARD SWEEP LOAD FLOW CALCULATIONS

Load flow based state estimation methods use backward-forward sweep in three-
phase networks with radial configuration. Conventional weighted lest squares methods
suffer form ill-conditioning of the gain and Jacobi matrices. The backward-forward
scheme is usually much more robust to low R/X values and fast in convergence.

Scheme of simple radial distribution network is shown in Fig. 13.9. For better
legibility single phase representation is used.

n+l k+1 k k-1 2 1
4.|7 _____ l Zy | Z) . | Z |
— — —>
| L1k Lpj I,
Skt Sk Skt Ay} Si

Fig. 13.9. Radial distribution network scheme.

Initially the node voltage magnitudes are set to the measured values if available,
otherwise the flat starting point is applied.

To calculate node voltages and branch current the following equation based on
Kirchhoff laws can be written:

labc,Lk = labc,k +1abc,Lk—] 5 (13.43)

Xabc,kﬂ = Xabc,k + Zabc,k 1abc,Lk > ( 1 3 44)

where: L., —a vector of phase currents at the node m,
k
Lope sk = Zlabc,m — a vector of phase currents in the branch £,
m=1
Z.».r — an impedance matrix for the section corresponding to the branch £,
ke {l,2,...,n}.
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The node current is calculated from:

la,k (§a,k /Za,k )* (Rzk - an,k )/(Ka,k ):
labc,k = lb,k = (§b,k /Zb,k ) = (Pbk - ij,k )/(Kb,k ) . (13.45)
!c,k (§c,k /Kc,k ) (})ck - ch,k )/(Zc,k )

where: k=1,2, ..., n.
Hence, the nodal voltages can be obtained:

Zaa,k Zab,k Zac,k (Pak - an,k )/(Za,k )*

Zb,k+1 = Zb,k + Zba,k be,k Zbc,k (})b,k_ij,k)/(Kb,k)* (13.46)

Kc,k+l Zc,k an,k Zcb,k ch,k (Pck - ch,k )/(Zc,k )*

Analytical solution of the equation (13.46) is difficult and the iterative method are
applied to solve it. To maintain observablity it is assumed that load
pseudomeasurements for all nodes are available.

|4 |4

—a,k+l —a,k

Backward sweep

First, the initial voltage at node 1 is set and node current is calculated. Current in
branch connecting nodes 1 and 2 is equal to the node current. Next, voltage node 2 is
calculated with equation (13.46). Current in branch connecting nodes 2 and 3 is
calculated with equation (13.43) as sum of node current in node 2 and branch current
of former branch. Once the branch current is calculated , the voltage at node 3 can be
found. The propagation moves towards the main feeder until node # is reached. Then
all branch currents are calculated.

Forward sweep

Having branch current calculated during forward sweep voltages at each node
starting from main feeder can be calculated. The voltage magnitude of main source is
set to measured value. Phase angles are assumed as the reference:

Opra =10 272/3 —27/3]. (13.47)

The node voltages are calculated starting from feeder with use of:

vV vV Z,.1 (13.48)

——abc.k = ——abc,k+1 L ek =abc,Lk >

Once the node 1 is reached all the node voltages are available.
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Convergence condition

The steps in backward and forward sweep are performed during each iteration. The
convergence condition is that, the voltage magnitudes are compared with previous
iteration:

max(V, ~ Vi )<e k=12, ot (13.49)

where: Va(;z, ; - a voltage magnitude vector at the node & for i-th iteration.

If the voltage mismatches exceeds the assumed threshold the computation are
continued, otherwise stop. Having node voltages calculated all branch currents, real
and reactive power flows, losses can be calculated.

l START l

Load pseudomeasurement determination. Flat starting point, A=0

>
l

Backward sweep to calculate branch currents and flows

!

Detection of bad data. Removed bad data replaced by
pseudomeasurements

!

Forward sweep to calculate node voltages and loads with use of branch
currents calculated in previous step. k=k+1

max|[VE ™ - v®| < g or
I>kimax ?

Fig. 13.10. Flowchart of backward-forward distribution state estimation.
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Measurement handling and bad data detection

The calculated values are compared with measurements: voltages, branch currents
and power flows. If the difference exceeds the assumed threshold the measurement is
suspected as bad data and replaced by calculated value.

Example 13.3
For the radial system shown in Fig. 13.6 find the node voltages and branch currents
estimates with use of the backward-forward sweep methods.

v @ 2 [

| !

Fig. 13.11. Example simple radial distribution system. e voltage measurement.

Branch impedance/admittance parameters:
2.4388+j6.1727 0.4132+j3.2579 0.4132+ j3.2579

=Zpns =107 0.4132+ j3.2579 2.4388+j6.1727 0.4132+j3.2579 |,
0.4132+3.2579 0.4132+j3.2579 2.4388+ j6.1727
1.1352-71.7887  -0.4725+j0.5248 -0.4725+ j0.5248

Yonrs =Yonrs =10°[-0.4725+j0.5248  1.1352-j1.7887 -0.4725+j0.5248 |.

-0.4725+j0.5248 -0.4725+j0.5248 1.1352-1.7887

Z

Zabe,12

Load pseudomeasurements obtained from load estimation step are in Tab. 13.3.

Tab. 13.7. Load pseudomeasurements for network in Fig. 13.6.

i Pwh Qwi7 Pb:i’ Qb’h Pc:i’ Qc:b
p-u. p-u. p.u. p-u. p.-u. p-u.
3 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 | 0.0640 0.0128 0.0040 0.0018 0.0010 0.0028
1 | 0.0180 0.0048 0.0180 0.0048 0.0180 0.0048

Voltage at main feeder as reference: ¥, =1.0[1 exp(j27/3) exp(—j2z/3)[
Convergence criterion is assumed as max(JAx [) < 10™.

237



1. Backward sweep

The voltage at node 1 is set to the flat start value:

Ve 1.0 1.0000
VO =1y =] 1.0exp(27/3) |=| - 0.5000 + j0.8660
V| | 1.0exp(-j27/3| |—0.5000 - j0.8660
s.Y - :
I, Ll(l) -1, 1(1) _ L’(]O) _ [0.0180 + J0.0048j —0.0180- j0.0048 .
’ ’ V., 1.0000
S - ’
1, Ll(l) =1, 1(1) = _bﬂ(lo) = 00180+ J(_)'0048 =-0.0048+ j0.0180,
’ * v, —0.5000 + 0.8660
S i ’
1,0=1,"= _L-,(10) _ 0.0180+]9.0048 —0.0132-0.0132.
’ ’ V., ~0.5000 — j0.8660
I, ,, =[0.0180 - j0.0048 -0.0048+j0.0180 -0.0132-0.0132]"

Voltage in node 2:

(0) (0)
X abe,2 :X abe,1 +Zabc,12

2.4388 +j6.1727

+107°1 04132+ j3.2579

0.4132+j3.2579
0.0180 —j0.0048

x| -0.0048 +j0.0180 | =
-0.0132-3j0.0132

Load current in node 2

§a,2

1.0000
=—0.5000+ j0.8660 | +
—0.5000 - j0.8660

0.4132+33.2579 0.4132+j3.2579
2.4388+j6.1727 0.4132+ j3.2579 | x
0.4132+j3.2579 2.4388+j6.1727
1.0000 + j0.0001

-0.5000 + j0.8661

-0.5001- j0.8660

I(l)

=abc,L1

. +30. ’ .
1,0 =| e | o[ QO0FIOIES ) _ g 5640 50,012,
2\ Ves 10000+ j0.0001

0.0040 +j0.0018

lb,l(]) :( §b,2

l

zb,l(‘”} B ( 0.5000 + j0.8661

J =-0.0004 +j0.0044 ,

0.0100 + j0.0028

1
I()

=abc2

=[0.0640-j0.0128

238

s ‘
L= =5 = : =-0.0074- j0.0073 .
T, 20.5001 - j0.8660

-0.0004 + j0.0044 -0.0074-j0.0073]"



Branch current
0.0180 — j0.0048 0.0640 - j0.0128 0.0820- j0.0176
I, =1, , +I{ ,=[-0.0048+j0.0180 +| - 0.0004 + j0.0044 | =| - 0.0053 + j0.0224
-0.0132-j0.0132| | -0.0074-j0.0073 | | -0.0206 - j0.0204

Voltage in node 3:
1.0000 + j0.0001

Vo =V +Zys L, =|-0.5000 + j0.8661 |+
-0.5001- j0.8660

2.4388+j6.1727 0.4132+j3.2579 0.4132+j3.2579
+107°| 0.4132+j3.2579 2.4388+j6.1727 0.4132+j3.2579 | x
0.4132+33.2579 0.4132+j3.2579 2.4388+ j6.1727

0.0820-3j0.0176 1.0003 + j0.0004
x| -0.0053+j0.0224 |=| -0.5001+ j0.8663
-0.0206 - j0.0204 -0.4999 - j0.8660

2. Forward sweep

Note, that the f'in superscript denotes forward direction of sweep.

Node 3 is considered as reference and X(l)abcﬁ and needs to be replaced by reference
voltage. The remaining node voltages are updated with use of branch currents
calculated in forward sweep:

1.0000 + j0.0000
Va2 =V a3 =Z, 5,15, =|-0.5000 + j0.8660 |+
-0.5000 - j0.8660
2.4388+6.1727 0.4132+j3.2579 0.4132+j3.2579
~107|0.4132+j3.2579 2.4388+j6.1727 0.4132+j3.2579 |x
0.4132+j3.2579 0.4132+j3.2579 2.4388+j6.1727
0.0820 - j0.0176 1.0002 + j0.0004
x| -0.0053 +j0.0224 | =| - 0.5001 + j0.8660
-0.0206 - j0.0204 | | -0.4999 - j0.8661
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1.0002 + j0.0004
V1=V = Z,.,10 , =|-0.5001+j0.8660 |+
-0.4999 - j0.8661

2.4388+j6.1727 0.4132+j3.2579 0.4132+ j3.2579
+107°1 0.4132+j3.2579 2.4388+j6.1727 0.4132+j3.2579 |x
0.4132+j3.2579 0.4132+j3.2579 2.4388+j6.1727

0.0180 - j0.0048 1.0000 + j0.0000
x| -0.0048 +j0.0180 |=|-0.5000 + j0.8661
-0.0132-;0.0132 -0.5001 - j0.8660

The convergence checking:

max{max(ve, -V [} max(ve, -v@ | max(ve, -v [)=054310¢ <10

The convergence is reaches after one iteration. Otherwise the calculations needs to

be repeated for updated voltage values until meeting the performance.
Backward-forward sweep algorithm is very fast and efficient for state estimation

and load flow calculations in radial feeders.

PROBLEMS

13.1. Calculate state estimation for radial distribution system with lateral link as
shown in Fig. P.13.1 with the use of three phase WLS node voltage

formulation.

— —

Fig. P.13.1. Radial distribution system with laterals. ® - voltage magnitude measurement.

Branch are assumed to be three phase line sections with impedance/admittance
parameters (in p.u.):
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Zabe 2 = Lape23 = Labeps =
2.4388+j6.1727 0.4132+ j3.2579 0.4132+ j3.2579

=107 0.4132+j3.2579 2.4388+i6.1727 0.4132+ j3.2579

0.4132+j3.2579 0.4132+j3.2579 2.4388+ j6.1727

Yave12 =Y ape23 =Y apepsa =
1.1352-j1.7887 -0.4725+j0.5248 -0.4725+ j0.5248

=10%|-0.4725+j0.5248 1.1352-j1.7887 -0.4725+0.5248 |’

_0.4725+j0.5248 -0.4725+j0.5248 1.1352-1.7887

Voltage measurement at main feeder (in p.u.):
v, =1.0[1 exp(jZ;r/3) exp(—jZ;r/3)]T.
Measurements weights (elements of R matrix) are set to 1.

Convergence criterion is assumed as max(JAx [) < 10~
Load psedomeasurements are shown in Tab. P.13.1.

Tab. P.13.1. Load pseudomeasurements.

Pa:i, Qa:i, Pb:i> Qb’h Pc’i7 Qc’i7
p.u. p.u. p.u. p.u. p.u. p.u.

0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.060 0.015 0.004 0.002 0.001 0.002
0.020 0.004 0.020 0.004 0.020 0.004

N INOST B (O 2

13.2. Calculate state estimation for the distribution system described in problem
13.1, as shown in Fig. P.13.2 with WLS branch current as state variables.
Voltage at main feeder as reference (in p.u.):

V,=1001 exp(j2z/3) exp(-j2z/3)]
Power flow in branch 1-2: Pa,1 2 =Pb,1 2 =Pc,1 2 =0.080,

Ous12=0ps12=0.12=0.017
Measurements weights (elements of R matrix) are set to 1.

Convergence criterion is assumed as max(JAx [) < 107
Load pseudomeasurements are shown in Tab. P.13.2.
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T
U

Fig. P.13.2. Radial distribution system with laterals. B - active/reactive power measurement.

Tab. P.13.2. Load pseudomeasurements (in p.u.).

[13.1]

[13.2]

[13.3]

[13.4]

[13.5]

[13.6]
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i Pa7i7 Qa7i7 Pb’i’ Qbm Pcaia Qwi,
p-u p-u p.u p-u p.u p-u
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.064 0.0128 0.004 0.0018 0.001 0.0028
4 0.018 0.0048 0.018 0.0048 0.018 0.0048
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14. ESTIMATION OF LOADS IN DISTRIBUTION SYSTEM

The procedure of load estimation in distribution power systems provides static real
and reactive load estimates for each node in the system given synchronized
measurements [14.1]—[14.10 ].

These procedures require possession of such data as:

* customer information (type, location, etc.),
* historical data (billing data, monthly power consumption in kWh, etc.),
* load forecasts (at the 5-minute, 15-minute and hourly basis),
* load profiles,
*  real-time measurements:
— load data,
— bus voltages,
* switch status,
* control device status/settings.

In load estimation for power distribution systems the following issues are
considered:

— the load-driven nature of power distribution system: there is no need to
maintain system voltages if no loads are connected,

— the interdependence between system states and loads,
— three-phase modelling,
— operating and loading constraints,
— on-line measurements.
Methods for load estimation can be classified as follows:
— simple load estimation methods [14.4 ],
— Distribution State Estimation (DSE) based methods [14.3], [14.9], [14.10],
— statistical load modelling techniques [14.2], [14.6],
— fuzzy set based methods[14.1], [14.5], [14.7],
— a Bayesian linear model method [14.8].

14.1. SIMPLE LOAD ESTIMATION METHODS

Simple load estimation methods are based on historic data or operator’s experience
[14.4]. They allocate load to individual line sections, using:

— monthly peak load readings,
— transformer peak load analysis,
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— existing diversified load curves.
Such methods are more suitable for peak load estimation. They give results which
are affected by diversity of load groups and coincidence of peak loads.

14.2. DISTRIBUTION STATE ESTIMATION BASED METHODS

There are two approaches used in DSE based methods [14.3], [14.9], [14.10]:
— distribution load estimation is a by-product of DSE,

— distribution load estimation is a beginning step in a two-step method, which
combines load allocation and DSE techniques.

The two-step method with use of distribution state estimation assumes that:
— the network is balanced, and single phase analysis is used,

in the first step, loads are allocated according to billing data and typical load
curves,

in the second step, apart from on-line measurements, the rough load estimates
from the first step are used as load pseudo-measurements,

— in the second step, WLS (Weighted Least Squares) state estimation is
performed,

real and reactive loads are computed based on state estimates.

14.2.1. EXAMPLE OF LOAD ESTIMATION WITH THE USE OF WLS
ESTIMATION METHODS

Weighted least square is also used for load estimation [14.3], [14.9], [14.10]. State
variable vector comprises conventional system states and parameters related to the
loads. For the loads the following relationship is taken into account:

S,=S"+AS°, (14.1)

where: S, = [IN’“ I’N’L,2 IN’M ém Qz.z Qm]r— a vector of load estimates,
S - an initial load vector,
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A= ! - load parameter matrix,

XQ
n — a number of nodes.
In practical conditions, load parameters and other quantities (branch current,
voltages, loads) may vary in specific range and load estimation task can be considered

as constrained optimization problem. Load estimation can be expressed as:
minJ(V,4) = [z—h(V,A)] R [z-A(V,0)] . (14.2)

subject to:

f(V,a)=0,

A< A, <2 for each bus k,

v <y, (V,a)< V™ for each bus ,

1™ < I,(V,L)< I™ for each bus £,

P (V,0)+ Q(V,1)< 87 ™ for each feader i,,
where: z — a measurement vector,

A(V, &) — a measurement function,
V —anode voltage vector;

_ P P o] o|T
N E O VA A Y
R - a covariance matrix.

The problem can be solved with use of sequential unconstrained penalty function
technique.

14.3. STATISTICAL LOAD MODELLING TECHNIQUE

Statistical load modelling technique expresses the variation of active power
demand in radial networks [14.2], [14.6]. Such methods allow for a measure of
uncertainty in load estimations and are used for probabilistic distribution state
estimation in radial networks. They assume that:
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— the network is balanced, single phase analysis is used, and no operating and
loading constraints are considered,
— class-specific daily load curves that model the behaviour of loads as a function
of season, day-of-week, hour, and temperature, are used.
The considered methods have performance characteristics, which significantly
depend upon the time of the day, the size of the network, the number of the customer
groups and the locations of each group of loads.

14.3.2. EXAMPLE OF STATISTICAL LOAD ESTIMATION

A simple method of the load estimation concerns on using substation power flows
to different load points by using weighting coefficients resulting from transformer
capacity [14.2]:

p_p| TG | (14.3)

Y1C,

iel,,

where: i €l,, — a number of nodes,
I, —asetofnodes served by power flowing through the node m,
P; —areal power demand at the node i,
P, —areal power flow measurement at the node m,
TC; — a transformer capacity at the node i.
However, transformer capacity is not recognized as adequate for estimation and
an average daily customer is introduced:

P=P| ——|. (14.4)
e

iel,,

where: ADC; — the average daily customer at the node i usually defined as monthly
energy consumption divided by number of days in a billing period.
To take into consideration real-time load changes the load model factor LMF stated
to group of customers is used:

. E{LMF, }4DC,, | (145

it = Tma 3 ZE{LMF,-J}ADQ’/

iel,, jelc

where: /. — a set of load classes,
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t —atime of analysis,
ADC;; —ademand consumption at the node 7 for a load belonging to class j,
LMF;, —aload model factor for the group j at the time ¢.

The factor LMF is derived from normalized daily load curves obtained from
historical-data statistical analysis made for all the distinguished customer classes.
Accuracy of the statistical approach depends on time of the day, number of customers
belonging to the certain class, availability of historical data etc. A reactive power of
a load can be estimated by an approximate power factor.

14.4. FUZZY SET BASED METHODS

The characteristic feature of the methods is modelling system uncertainty and also
inexactness and random nature of customer demands [14.1], [14.5], [14.7].
One can distinguish the following approaches:

— application of a fuzzy regression model,
— utilization of operator experience and expert knowledge,
— application of neural network and fuzzy set techniques.

14.4.1. APPLICATION OF A FUZZY REGRESSION MODEL

The following characteristic features of the approach based on application of a
fuzzy regression model can be enumerated:

— the applied model expresses the correlation between a substation peak active
load and supplied customer active loads in radial networks,
— single phase modelling is used in radial distribution systems,

— system voltages, operating and loading constraints are not considered.

14.4.2. UTILIZATION OF OPERATOR EXPERIENCE
AND EXPERT KNOWLEDGE

The approach, which assumes utilization of operator experience and expert
knowledge, can be characterized as follows:

1. Linguistic description for the size of loads is utilized.

2. The load current at a bus is estimated as a fuzzy variable described by the
membership function.

3. Single phase modelling is used in radial distribution systems.
4. System voltages, operating and loading constraints are not considered.
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14.4.3. APPLICATION OF NEURAL NETWORK
AND FUZZY SET TECHNIQUES

The approach, based on application of neural network and fuzzy set techniques is
proposed for active demand estimation in radial networks. Neural network and fuzzy
set techniques are applied to generate standard load curves for classes of customers
based on their monthly energy consumption and a large set of data of load curves
obtained from measurement data. Loading constraints are incorporated in the method.
As it is in the case of the previously-presented approaches also in the case of the
considered approach, system voltages and operating constraints are not considered.
Actual real power losses are neglected in the estimator.

14.5. OTHER METHODS FOR LOAD ESTIMATION

Other methods for load estimation are:
— Bayesian estimator used to estimate normalized load curves [14.8],

— a weighted least absolute value estimation method introduced to decrease the
effect of gross errors in measurements [14.3].

14.6. REMARKS ON METHODS FOR LOAD ESTIMATION

Generally, the methods can be categorized into two groups by problem
formulations:

— load estimation is formulated as a post-processing procedure of state
estimation,

— power flows or customer demands are defined as the estimated variables of the
load estimation problem.

In the second case, load estimation is a procedure which is independent from DSE.
Characterising the first group of the methods for load estimation, one can state:

1. The DSE based methods belong to this group.

2. Loads decide about system states, therefore methodology which treats load
estimation as a by-product of DSE, may not provide satisfactory results.

Characteristics of the second group of the methods for load estimation are as
follows:

* In this group, there are:

statistical load modelling methods,
— the Bayesian linear model method,

fuzzy set based methods,
the WLAYV estimation method.

249



The loads (power flow/customer demand) are estimated directly.

These methods separate loads from system states, which simplifies the
interdependence between system states and loads.

General remarks on methods for load estimation

None of the methods formally considers operating and loading constraints, such as
power flow equations and thermal limits of conductors/cables/switches.

1.

14.1.
14.2.

14.3.
14.4.

14.5.
14.6.
14.7.
14.8.

[14.1]

[14.2]

[14.3]
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Most of the methods are designed for radial networks or exploit the radial
structure.

None of the methods rigorously studies the effects of the radial structure on
the problem of load estimation and takes advantage of them.

PROBLEMS

What is a purpose of estimation of loads in distribution system?

What data are inputs for procedures of estimation of loads in distribution
system?

What issues are considered in load estimation for power distribution systems?
How can we classify methods for load estimation for power distribution
systems?

Characterize simple load estimation methods.

What are main features of distribution state estimation based methods?

Shortly describe statistical load modelling technique.

Give different solution of load estimation for power distribution systems with
the use of the idea of fuzzy sets.
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