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Abstract. Finite mixtures of probability distributions may be successfully used in the 

modeling of probability distributions of incomes. These distributions are typically heavy 

tailed and positively skewed. This article deals with the problem of determining the number 

of components in mixture modeling. This paper considers the likelihood of ratio-based 

testing of the null hypothesis of homogeneity in mixture models. The number of compo-

nents is an important parameter in the applications of finite mixture models.  
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1. Introduction 

Finite mixtures of probability distributions may be successfully used in 

the modeling of probability distributions of incomes. These distributions are 

typically heavy tailed and positively skewed [Kot 1996]. 

Income distribution, as any other probability distribution, is completely 

determined by the cumulative distribution F(x) or density functions f(x). 

2. Income distribution 

The study of income distribution has a long history. The probability 

modeling of income distribution started with the work of Italian economist 

Vilfredo Pareto in 1897 and his work, Cours d’ economie politique. He 

described the principle which states that for many events, roughly 80% of 

the effects come from 20% of the causes. The original observation was in 
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connection with population wealth. Pareto noticed that 80% of Italy’s land 

was owned by 20% of the population. He carried out several surveys on a 

variety of other countries and found a similar distribution. This is nowadays 

known as a Pareto law. Since the work of Pareto distribution, a large num-

ber of models have been introduced to describe the distribution of incomes. 

Lognormal Distribution 

Two parameter lognormal distribution is given by the density 
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If a random variable Y has a lognormal distribution, LN(µ, σ
2
) then a varia-

ble log(Y) has a normal distribution with expectation µ and variance σ
2
. In 

empirical studies of wage and income distributions they are considered as 

three-parameter distribution, which in addition µ and σ there is a third pa-

rameter τ. The parameter τ is the theoretical minimal value of Y. The  central 

moments of the two-parameter distribution are given by 
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The maximum likelihood estimates m and s
2
 for the parameter µ and the 

parameter σ are 
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Gamma Distribution 

The gamma (more precisely, the Pearson type III) distribution is cer-

tainly among the five most popular distributions in applied statistics when 

unimodal and positive data are available. Here we shall briefly sketch the 

basic properties of the gamma distribution and concentrate on aspects more 

closely related to size and income distributions. 

The density of the gamma distribution is 
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where α, β > 0, with α being a shape and β a scale parameter. The likelihood 

equations for a simple random sample of size n are 
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These can be solved iteratively, and indeed procedures for estimation in the 

gamma distribution are nowadays available in many statistical software 

packages. The Gini coefficient is given by [McDonald and Jensen 1979] 
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Pareto Distributions 

The classical Pareto distribution is defined in terms of its c.d.f. 
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The density is 

 0)( 0

1

0   xxxxxf  ,   (8) 

where α > 0 is a shape parameter (also measuring the heaviness of the right 

tail) and x0 is a scale. The expected value of a random variable following 

a Pareto distribution is 
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The variance of a random variable following a Pareto distribution is 
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Burr Distributions 

The c.d.f.’s of all Burr distributions satisfy the differential equation 

 )()](1)[()( xgxFxFxF  ,  (11) 

where F is distribution and g is some nonnegative function. The most wide-

ly known of the (non-uniform) Burr distributions is the Burr XII distribu-

tion, frequently just called the Burr distribution. The density is 



Grzegorz Sitek 

 
82 

 
1])/(1[

)/(
)(












xx

x
xf for 0, 0, 0, 0,x         (12) 

where α and   are a shape parameter and  scale parameter. 

3. Maximum Likelihood Method 

To use the method of maximum likelihood, one first specifies the joint 

density function for all observations. For an independent and identically 

distributed sample, this joint density function is 
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The maximum likelihood estimate (MLE) of θ is the value of θ that 

maximizes (13): it is the value that makes the observed data the “most prob-

able”. Rather than maximizing this product which can be quite tedious, one 

often uses the fact that the logarithm is an increasing function so it will be 

equivalent to maximizing the log likelihood. As the sample size increases to 

infinity, sequences of maximum-likelihood estimators have the following 

properties [Fisz 1969]: consistency, asymptotic normality, efficiency, 

it achieves the Cramér-Rao lower bound when the sample size tends to 

infinity. 

4. Fitting income distributions 

Fitting distributions to data is a common task in statistics and consists 

in choosing a probability distribution modeling the random variable, as well 

as finding parameter estimates for that distribution. The fitdistr function 

estimates distribution parameters by maximizing the likelihood function 

using the optim function. Data on basic salaries are taken from the book 

“Analiza ekonometryczna kształtowania się płac w Polsce w okresie trans-

formacji”. Computations of goodness-of-fit can be judged using Akaike 

information criterion. 

 AIC = −2*l(ψ) + 2*k,   (14) 

where l(ψ) – log-likelihood function, k – number of parameters. 

If different models are compared, the smaller the value of AIC the       

better the fit. When fitting continuous distributions, two goodness-of-fit 

statistics: Cramer-von Mises and Kolmogorov-Smirnov are classically 

considered. 
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Table 1. Goodness-of-fit statistics 

Theoretical distribution AIC 
Statistic  

Kolmogorov-Smirnov 

Statistic  

Cramer-von Mises 

Lognormal 18 812,21 0,10089280     4,06621720 

Gamma 19 275,35 0,15255850 10,6059535 

Burra B12 18 560.90 0,04670285     0,53944619 

Pareto 20 016,83 0,32876380 39,1321924 

Source: own calculations. 

On the basis of the table above, we conclude that the best quality of the 

fit to the empirical data is obtained in the case of distribution Burr B12, and 

the worst for the Pareto distribution. 

 

Fig. 1. Histogram and theoretical densities 

Source: own elaboration. 
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5. Finite Mixture Models 

Suppose X to be a positive value random variable with continuous dis-

tribution. The density function f is given as a weighted average of K compo-

nent densities )( xf j with mixing proportions j  [Jajuga 1990]: 
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depend on p-dimensional (in general unknown) vector parameters j . For 

the estimation of unknown parameters (from a random sample xi, i = 1,…,n) 

the maximum likelihood estimation is usually used in order to obtain the 

estimate of the parameter. From (13) it follows that the likelihood function  

is equal to 
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Now we want to maximize the complete data log likelihood  
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1 . For this, we actually need to introduce a La-

grange multiplier. This gives us the likelihood function of: 
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First, we have to find the  partial first derivatives of 0L  and set them equal 

to zero. 

The task of maximizing the likelihood function can be solved using the 

EM algorithm. This is a numeric procedure that consists of two steps. The 

first step is called Expectation (probabilities πj are estimated) and the second 

one Maximization, where estimated values from the first step are used in 
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order to find new approximations of parameters  . These two steps are 

repeated until a solution is found. Generally, EM algorithm does not guaran-

tee the absolute maximum of the logarithmic likelihood function but only 

the local extreme [Titterington, Smith, Makov 1985]. In the model for com-

plete data associated with the model, each random vector Ci = (Xi; Zi), where 

( , 1,2,..., )i ijZ Z j K   and }1,0{ijZ  is a Bernoulli random variable indi-

cating that individual i comes from component j. Since each individual 

comes from exactly one component, this implies 



K

j

ijZ
1

1  and 

jijZP  )1( . The complete-data density for one observation is thus  
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Instead of the observed log-likelihood the EM algorithm iteratively maxim-

izes the operator 

  ),)(log)( )()( tt xChEQ   , (20) 

where )(t  is the current value  at iteration t, and the expectation is with 

respect to the distribution )|( xck of c given x, for the value )(t  of the 

parameter.  

E-step: compute )( )(tQ  . 

M-step: set )(maxarg )()1( tt Q  
  . 

E-step: Calculate the “posterior” probabilities (conditional on the data 

and )(t ) of component inclusion, 
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for ni ,...,2,1  and Kj ,...,2,1 . 

Numerically, it can be dangerous to implement Equation 21 exactly as 

written due to the possibility of the indeterminate form 0/0 in cases where xi 

is so far from any of the components that all )()(

i

t

j xf   values result in 

a numerical underflow to zero. Thus, many of the routines in mixtools 

[Benaglia et al. 2009] actually use the equivalent expression 
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M-step for   
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6. Modeling the income distributions using    

a mixture of gamma densities 

The parameters of the mixture distribution is estimated using function 

gammmixEM. The function implements the algorithm in mixtools. Set the 

following parameter estimates 

1 2 1 2 1 20,779 0,221, 12,823, 1.487, 0,025, 0,001.            

The AIC criterion values lead to the conclusion that the quality of fit-

ting in the case of mixtures (AIC = 18606)  is better than in the case of a 

single distribution (AIC = 19275). 

 

Fig. 2. Theoretical probabilities. Mixture of gamma 

Source: own elaboration. 
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Fig. 3. Theoretical probabilities. Gamma and Burr distribution 

Source: own elaboration. 

 

Fig. 4. Gamma Mixture Components 

Source: own elaboration. 
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7. Test for homogeneity in gamma mixture models 

We consider two-parameter gamma density [Wong, Li 2012]: 
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where   and   are shapes and scale parameters, respectively. Given a set 

of independent and identically distributed data, we are interested in testing 

the homogeneity hypothesis 0H against  the alternative hypothesis of a two-

component gamma mixture model 
1H where   

),;()(:0 xfxfH  , 

),;()1(),;()(: 2221111  xfxfxfH   

and 10    is a mixing proportion. For a parametric hypothesis testing 

problem, it is customary to use the ordinary Likelihood Ratio Test (LRT) 

based on the statistic which is defined as  

1 1 2 2
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is the log-likelihood function and ̂  is the MLE of parameter  . It is well 

known that the consistency of the MLE, obtained by maximizing (24) di-

rectly is not guaranteed. This motivates a penalized procedure coined by 

Chen and Chen [Chen, Chen 2001], based on the modified log-likelihood 

function  

 )}1(4log{),,,,(),,,,( 22112211   cLLp
,  (25) 

where c is a positive constant corresponding to the level of modification. An 

alternative penalty function )211log( c  was suggested by Li [2009].  

Denote by p̂ the penalized MLE of  obtained by maximizing () given 

a suitable value of c. The MLRT statistic is  
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Under 0H , the asymptotic distribution of 
p

nLR degenerates to zero with 

a weight 0 < p < 1 and has 
2

2 distribution with a weight 1–p, 
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 kkk dd /)(ln)()(  , and iZ is a symmetric random matrix whose 

elements  
2

00

)1(

0

)2(

]1,1[ }loglog)({)( ii XZ    

 )}(log)({ 1

0000

)1(1

0]2,1[ iii XXZ      (30) 

21

00

2

00]2,2[ )( ii XZ    . 

The limiting distribution in (27) is known as chi-bar-square distribu-

tions. From the definition of iU  in (28), we observe its dependence on 

random vector iY and random matrix iZ given by (29) and (30), respectively, 

which are related to the parameter ),( 00  under 0H . In addition the esti-

mates of p may also depend on n as the random matrix concerned involves 

a summation of n random matrices. 

8. Conclusions 

In the paper the use of the mixtures of gamma distributions is proposed as 

a suitable model for the incomes. The concept of mixture distributions is very 

applicable to income data, as these values form usually a very non-homogenous 

set. The AIC criterion values lead to the conclusion that the quality of fitting 
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in the case of mixtures gamma distributions is better than in the case of 

a single gamma distribution. 

We investigate the modified likelihood test for homogeneity in two-

component gamma mixture models. The limiting distribution of the test 

statistic is the parameter-dependent chi-bar-square  distributions given by 

a degeneration to zero with weight p and a chi-square distributions with two 

degrees of freedom with weight 1–p. 
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