e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Tool Based Support of
the Pattern Instance Creation

Lubomir Majtas*

*Faculty of Informatics and Information Technologies, Institute of Informatics and Software Engineering,
Slovak University of Technology

majtas@fiit.stuba.sk

Abstract

Patterns introduce very useful way of improving the quality of the software development process.
Nowadays modeling tools and techniques provide some kind of support for modeling with pattern
instances, but these are often based on manual pattern creation and connection to the rest of
the model. Our approach presents the support of pattern instance creation on the model level in
semi automatic way that simplifies the whole process. The main idea of this approach is that the
developer should assign the domain dependent parts of pattern and specify the requirements over
the pattern variants. The rest of the pattern instance is to be created by the machine.

1. Introduction

Pattern introduction [1] had large asset for more
areas. Probably the most familiar pattern’s ful-
fillment in the software engineering was intro-
duced by the work of GoF [12], where the au-
thors identified and in detail described 23 de-
sign patterns. Their description of each pat-
tern contains the verbal description of its main
idea, the example of its appropriate usage (in-
cluding the source codes), the description of
solution it offers and discussion about its al-
ternatives and consequences of its usage. The
main part of description is presentation of the
pattern model according to the OMT/UML
diagrams. The authors provided patterns’ ex-
planations by examples and textual descrip-
tion so the catalog means a useful knowledge
base for software professionals. On the other
hand they did not try to present any “com-
puter friendly” knowledge that could be basis for
automation of typical pattern processes which
are:

— Creating of pattern custom instances,

— Validating existing pattern instances,

— Identification of pattern instances in existing
codes.

To solve this drawback, there were presented

many other works that extend the original cat-

alog by the different models that are trying to

capture the core structure of patterns, e.g. [11],

13, [7].

In this paper we would like to introduce the
approach that would support developers in their
work with pattern instances. Nowadays model-
ing tools and techniques provide some kind of
support for modeling with pattern instances,
but these are often based on manual pattern
instance creation and connection to the rest of
the model. Our approach presents the support
of pattern instance creation at the model level
in semi automatic way that simplifies the whole
process. The core idea of the approach is that the
developer should assign the domain dependent
parts of pattern and specify the requirements
over the pattern variants. The rest of the pat-
tern instance should be generated automatically.
In this paper we will analyze the processes tak-
ing place while creating the pattern instance. We
will identify the places where can be this process

90

Lubomir Majtas

automated. Finally we will provide our approach
of automation in a way that will support but not
limit the developers.

2. Process of the Pattern Instance
Creation

Process of the pattern instance creation means
the application of the solution offered by the pat-
tern to the environment of the developed soft-
ware system. The inputs of this process are the
actual environment of the developed software
and the general description of the pattern. As
the output we consider modified software sys-
tem extended by correctly created instance of
the pattern.

We distinguish two activities that are nec-
essary to follow out while creating the pattern
instance [15]: abstract and general pattern in-
stance needs to be concretized and specialized.
At the first moment both activities seem to be
similar, but it is not so. Each one moves the
first idea of the pattern application to the final
instance, while it is necessary to follow up both,
to be able to declare the pattern instance as the
correct one. Differences between these activities
are presented in the Figure 1, where the degrees
of generality and abstraction are being presented
in two dimensional space (degree of generality
horizontally, degree of abstraction vertically).

The created instance is becoming more con-
crete when it contains more building blocks cre-
ating the correct instance. To the beginning
abstract idea of the pattern application there
are subsequently being added classes, their at-
tributes, methods and relations until instance
becomes complete. Specialization of the instance
means the movement of the general pattern de-
scription to the context of the developed system.
The specialization follows such modifications of
the pattern instance that make the instance do-
main specific and subsequently specific for the
current software system. As the examples of the
specialization steps we can consider definitions
of roles’ participants count, naming of the par-
ticipants or creating the relations between par-
ticipants according to the domain.

In our approach we look for possibilities for
automation of the pattern instance creation. We
see higher potential in the process of concretiza-
tion than in process of specialization. The spe-
cialization is based on the ability of developer to
move the pattern to the particular target soft-
ware environment. It can be seen as a domain
based pattern description, what we consider as
almost impossible to be performed by the ma-
chine. There can be found only minimal space
for automation of this process. On the other
hand, there is a potential for tool based support
of concretization process. When the pattern in-
stance is correctly specialized, its concretization
is often based more on pattern structure descrip-
tion than on developer’s skills. It means that
there is a space for automation of this process.

2.1. Pattern Roles, Domain Dependency

Patterns are often being described as a collection
of cooperating roles. These roles can be often
divided into two groups: roles dealing with the
domain of the created software system (domain
roles) and roles performing the pattern’s infras-
tructure (infrastructure roles). The domain roles
can be considered as the “hot spots” while they
can be modified, added or deleted according
to the requirements of the particular software
environment. The roles performing the pattern
infrastructure are not changing frequently be-
tween the pattern instances. Their purpose is
to glue the domain roles together to be able to
perform desired common functionality.

One of the main contributions of the whole
pattern approach is that it allows thinking at the
higher level of abstraction. Developers do not
have to always keep in mind all details about
the solution, they can work with the pattern in-
stance as with single unit hiding unnecessary
complexity. When the developer thinks about
applying the pattern to the project, first thing
he needs to decide is how to connect pattern
instance to the context of the software. He does
so be specifying the domain roles’ participants.
The other issues are often second-rate at that
moment. Table 1 describes selected patterns and

Tool Based Support of the Pattern Instance Creation

91

abstraction level A

of a pattern

concept +

design

code

X abstract & general

X concrete & specific

| | »

single application
specific

domain specific

| I =
generality level

general of a pattern

Figure 1. Two dimensional space of generality and abstraction [15]

Table 1. Specialization of the domain dependent pattern roles

Pattern

Domain dependent roles

Description

Composite

Leaf and its Operations

Leafs and their operations provide all domain depen-
dent functionality. Everything else is just infrastruc-
ture allowing the hierarchical access to the leaf in-
stances.

Chain of
Responsibility

HandleRequest, Ancestor

The domain dependent is the business logic process-
ing the event and the ancestor to which should be the
unprocessable event passed.

Decorator

Concrete Component,
Concrete Decorator

The domain dependent are the Concrete Component
(which often exists before Decorator pattern applica-
tion) and functionality of Concrete Decorator partici-
pants that provide extended functionality to the Con-
crete Component.

Flyweight

Concrete Flyweight

Concrete Flyweight provides all domain dependent
functionality. The rest is infrastructure for storing in-
stances in memory and providing access to them.

Proxy

Real Subject, Proxy

The domain dependent is the Real Subject (which of-
ten exists before Proxy pattern application) and func-
tionality of Proxy participants that provide access to
the Real Subject.

their roles from the perspective of the domain

dependency.

tomizing instance according our needs. By the
variability we do not understand definition of
participants playing defined roles.

2.2. Pattern Variability

As the pattern variability we understand the
possibility to provide patterns functionality in
slightly different ways. Each variant of the pat-
tern has its own pros and cons and therefore the
decision which variant to select does not need to
be easy. Selecting the proper variant is part of
pattern instantiation process, when we are cus-

General understanding of the patterns does
not always satisfy the ideas of their authors.
Many developers understand design patterns
only as constant templates with strictly speci-
fied purpose of each class, attribute or method.
However the original idea was to discuss a prob-
lem and offer a solution. Examples provided
with pattern description were never meant as
the only best solutions. Their purpose was to

92

Lubomir Majtas

Table 2. Examples of possible variants of pattern instances

Pattern Variability description

Abstract Factory Class structures do not differ much. Majority of variants are dealing with
realizations of ConreteFactories: they can be implemented normally or as
Singletons, they can employ Factory Method or Prototype patterns.

Adapter There are more different variations how can Target, Adapter and Adaptee
communicate together.

Bridge Possible variants: Omitting the Implementer interface in case of the only
one Concretelmplementor.

Chain of References to the successor can be maintained commonly in Handler or

responsibility custom for each ConcreteHandler. Handler can be a class with default for-
warding functionality or just an interface.

Flyweight The Flyweight interface can be omitted.

provide hint, to show one of many possible ways
of idea realization.

When we look closer on the patterns from
the GoF catalog, we can distinguish differences
of examples generality between patterns. On the
one side stands Singleton. It is very simple with
accurate example that is not keeping much space
for different variations while it prescribes all de-
sired functionality. On the other side we can
see patterns such as Memento. Their examples
are very general; they do not provide expected
functionality but only briefly draft the solutions.
Their concrete instances can be far different
from the presented examples. In the middle of
these extremes stands majority of the patterns.
Their examples are able to provide desired func-
tionality while they are keeping a space for their
customization. Typical representatives are Com-
posite, Observer or Decorator.

From the perspective of tool based support
of instantiation, it is very difficult to create sup-
port for instantiation of pattern with very gen-
eral examples. It would be very difficult (if it is
even possible) to automatically instantiate fully
functional Memento that would fit to the rest of
the system. On the other hand there are mini-
mal difficulties for pattern with strictly defined
structure keeping minimal space for variability.
Pattern such as Singleton can be automatically
instantiated with minimal efforts. The simple
template based instantiation would be sufficient.
For the majority of patterns the simple template
based approach cannot cover all known variabil-
ity, such approach cannot be considered as suf-
ficient. In this case we need to employ approach
that is based on templates that are created ac-

cording the user needs. In Table 2 we present
examples of possible variabilities of selected GoF
design patterns.

2.3. Pattern Instantiation Support
in CASE Tools

Many existing CASE tools are trying to pro-
vide some kind of support in pattern instan-
tiation process. The level of such support dif-
fers. Often they allow inserting of example pat-
tern instances to the model. The others can
run wizards through which developer can spec-
ify the participant count of the selected roles
and specify the name for each one. In general
the support is based on single template, where
the developer can or cannot specify the partic-
ipants before the creation of the instance. Ad-
vanced CASE tools are tacking the informa-
tion about pattern occurrence (often by UML
Collaboration element). This helps the further
developers to identify the pattern with min-
imal effort and thereby it reduces the risk
of instance damage that can happen by im-
proper modifications in later project phases
(e.g. maintenance). However, these tools do not
try to automate the process pattern instan-
tiation — participants of all roles need to be
specified by developers. Alike the support for
other kinds of customizations is often omitted;
it is left to developers’ knowledge and expe-
rience to modify the instance according their
needs.

Employing the automation of pattern instan-
tiation in CASE tools can lead to the following
benefits:

Tool Based Support of the Pattern Instance Creation

93

— Developers do not need to perform typical
modifications manually. By minimizing the
effort that needs the developer to perform
to create pattern instance or by giving him
possibility to select the proper pattern vari-
ant they can save time and avoid mistakes,
so the instantiation process becomes more ef-
fective.

— Developers do not need to know all pattern
complexity or inner structure. They can fo-
cus on the domain dependent context of the
pattern; they “do not need to care” about
the rest. This can help the inexperienced de-
velopers with pattern application, and in this
way support them to utilize patterns in their
everyday work.

— Developers can be informed about possible
variants. Sometimes developers do not have
to know about existence of different pat-
tern variant. When they are informed im-
mediately about more possibilities they can
choose most proper variant without former
knowledge about it. Developers are able to
get best from the pattern application.

3. Our Approach of the Tool Based
Support

In the previous sections we have described why
should we consider the tool based support for
the pattern instance creation and where are the
spots for the automation. In this section we
will describe how can be such automation pro-
vided. We focus on two different ways of sup-
port. The first one is dealing with the process of
instance creation, it lets the developer to define
domain based participants and automatically
supplement infrastructure participants to form a
valid instance. The second one provides support
for pattern variability; it informs the developer
about possible variants of the pattern, asks for
desired ones and automatically reasons the valid
configuration according the developer’s choice.
The result of this step is the role based model of
the proper pattern configuration, which comes
as an input for the first mentioned support.

3.1. Pattern Inner Structure Description

To be able to provide machine based pattern
processing, we require precise models of the pat-
terns’ inner structures. We are using custom role
based models which are defining the collabora-
tions between the roles that perform the prede-
fined functionality. As the roles we do not con-
sider only ones typically played by classes but
also ones which participants are attributes or
methods. Only the definitions of the roles do
not capture whole pattern inner structure and
therefore cannot be used as the blueprint for the
machine based pattern instance creation. The
very important parts of the pattern structure
are the definitions of the inner structure con-
straints. These constraints associate roles that
are somehow linked together. Example of such
constraints can be clearly seen in the Abstract
Factory pattern where the roles createProduct()
of Abstract Factory and Abstract Product are
linked together. It means that there has to be
the same count of participants of this role where
each participant of the createProduct() role is
responsible for creation of the appropriate par-
ticipant of the Abstract Product. The exact def-
initions of constraints are very important in the
process of machine based pattern instantiation
while they help to specify the count of all par-
ticipants and set the proper links between them.

We have identified and capture in our models the

following relationships which are bases of con-

straints:

1. Inheritance — inheritance between classes,

2. Association — associations between classes,

3. Overriding — in case of inheritance where the
one method role overrides the other method
role,

4. Method delegation — one role invokes other
role to delegate the functionality,

5. Instance creation — role creates the instances
of other role,

6. Class linked with its members — role which
participants are regularly classes and can be
played by more than one participant needs
to be explicitly linked with its method and
attribute roles.

94

Lubomir Majtas

Some roles are part of definition of more than
one constraint. For example in the Abstract Fac-
tory pattern the count of participant of role Con-
crete Product is dependent on count of partic-
ipants of roles Concrete Factory and Abstract
Product. We say that the dimension [13] of the
role Concrete Factory is two because it is part
of two different constraints.

3.2. Algorithm of the Pattern Instance
Creation

Our process of pattern instance creation is based
on supplementing the incomplete pattern in-
stance defined by developer. As the inputs the
algorithm requires proper role based pattern
model (according to the previous section) and
the partially created pattern instance contain-
ing some participants of the domain role. The
algorithm progressively adds the missing partic-
ipant to comply the pattern’s inner structure
description and all constraints of the pattern.
The output of the algorithm is the model of pat-
tern instance containing all participants that are
meeting all constraints.

The algorithm stores information about all
participants which are part of the pattern in-
stance at the moment. Moreover it stores in-
formation about instances of all constraints
connecting the linked corresponding partici-
pants. Some roles are present in more con-
straints (their dimension is more than one)
what causes that instances of constraints
overlap over the participants of such roles.
Therefore the algorithm stores the informa-
tion about instances of constraints in the
n-dimensional structure where n is the maxi-
mum dimension of all pattern roles (the GoF
pattern do not have roles with dimension
more than 2). We call this structure Partici-
pant Constraint Matrix (PCM). Each dimen-
sion of this matrix corresponds to one pat-
tern constraint. Lines in this dimension rep-
resent the instances of constraints. These in-
stances of constraints link corresponding par-
ticipants according to the constraint. Lines
cross in the places of more dimensional par-
ticipants. Examples of partially filled Par-

ticipant Constraint Matrix are depicted in

the Figures 2, 3 and 4.

In the following section we describe the steps
of the algorithm creating the pattern instance.
We will describe the algorithm also on example,
each step will contain example of execution re-
sults of this step. In our example we will create
the instance of the pattern Composite. As the
input we get the incomplete instance containing
only partial definitions of two participants of the
domain role Leaf: Leafl containing the Opera-
tionl() and Leaf2 containing the Operation2().
The algorithm will create the correct instance
according these inputs. The algorithm takes the
following steps:

1. Add participants of non constrained roles.
Create the participants of the roles that are
not concerned in any constraint. For each
role create exactly one participant and name
it as the role. Create the links that are re-
lated to the new participants.

Example: Add the participants of roles Com-

ponent, Composite, Composite’s childs and

links between them: generalization and asso-
ciation.

2. Create the empty Participant Constraint Ma-
triz. Create the empty PCM according to the
definition of pattern constraints.

3. Initialize the PCM according to the current
of the pattern instance. Fill the PCM with
already created the participants.

Example: Fill the PCM as depicted in the

Figure 2.

4. while (the PCM contains empty fields)

a) Add participant to fill one empty field of
PCM. Select one empty field of the PCM
and create the participant that will fit
to this field. When selecting the empty
fields, start with class participants and
continue with association and method
participants. Prefer empty fields with
lower dimension.

Example: In the first iteration create the
participant of role Component’s Opera-
tion().

b) Add information related to the added
participant. Fill the information about
the new participant and add connections

Tool Based Support of the Pattern Instance Creation

95

Operation() overriding
constraint

Figure 2. Initial Pattern Constraint Matrix for incomplete instance of pattern Composite

Operation() overriding
constraint

Figure 3. Extended of Pattern Constraint Matrix after adding Component’s Operation()

Operation() overriding
constraint

Leaf members constraint

operation>>

operation=>

operation>>

Leaf1's
Operation1()

<<] eaf>> <<l eaf>>
Leaf1 Leaf2
<<Component's | «<<Composite's <<Leafs <<l eaf's

operation>>

<<Component's
operation>>

<<Composite's
operation>>

<<Leafs
operation>>

<<Leaf's
operation>=>

Leaf2's
Operation2()

Leaf members constraint

<<l eaf>> <<l eaf>>
Leaf1 Leaf2
<<Component's | «<Composite's <<Leafs <<l eaf's

operation>>

operation>>

operation>>

operation>=>

Component's Leaf1's
Operation1() Operation1()
<<Component's | «<Composite's <<Leafs << eaf's

operation==>

operation>>

operation>>

operation=>

Leaf2's
Operation?2()

Leaf members constraint

<<lLeaf>> <<lLeaf>>
Leaf1 Leaf2
<<Component's | <<Com posite's <<Leaf's <<Leaf's

operation>>

operation>>

operation>>

operation>>

Component's Composite's Leafl's Leaf2's
Operation1() Operation1() Qperation1() Operation1()
<<Component's | <<Com posite's <<Leaf's <<Leaf's

operation>>

Components
Operation2()

operation>>

Composite's
Operation2()

operation>>

Leaft's
Operation2()

operation>==>

Leaf2's
Operation2()

Figure 4. Pattern Constraint Matrix for complete instance of pattern Composite

96

Lubomir Majtas

with the other participants that are re-
lated to the new one, e.g. generalization,
overriding, association, delegation, etc.
Example: Connect the participant with
Leaf’s Operationl() with overriding re-
lationship. Name the participant Oper-
ationl() because the overriding relation-
ship needs the same name of the linked
participants. Extended PCM by this step
is depicted in the Figure 3.

After successful execution of the algorithm
the pattern model of the instance is created. It
complies with all rules and constraints coming
from the pattern description. The created model
keeps information about the role that partici-
pants play and therefore can be used for further
source code generation of the pattern instance.
PCM for the complete pattern instance is de-
picted in the Figure 4.

3.3. Pattern Variability

As mentioned in previous sections patterns are
not simple units with the only one valid tem-
plate. Most of them are highly customizable al-
lowing changes in their example templates in
many different ways. In this section we describe
the approach of employing the variability to the
instantiation process. The result of this step is
role based model describing the customized pat-
tern template that stands as an input for previ-
ous algorithm.

3.3.1. Variability Modeling

To capture possible variability, we are employ-
ing feature modeling technique that was origi-
nally designed for the product-line engineering
[6]. It is important for capturing and manag-
ing commonalities and variabilities in product
lines throughout all stages of product-line engi-
neering. In early stages it is used for scoping of
product line (i.e. deciding which features should
be supported by a product line). In product-line
design, the variation captured from feature mod-
els are mapped to product-line architecture com-
mon for all parallel product lines. In the prod-
uct development, feature models can drive re-

quirements elicitation and analysis, help in es-
timating development cost and effort, and pro-
vide a basis for automated product configura-
tion. Feature models are also important in gen-
erative software development which is trying
to automate application engineering based on
system families.

In our approach we use the feature models
to capture possible variants of the patterns. The
model depicted in the Figure 5 presents selected
variabilities of the Composite pattern. It says
for example that participant of the role Compo-
nent can be either the interface or the abstract
class or that the processing method of the Com-
posite’s children role can be omitted, present
only in the Composite or in the whole struc-
ture. The feature model also presents relations
between the features. For example it is not pos-
sible to omit these processing methods when the
Composite’s children is private attribute. Such
configuration would disable the whole pattern’s
functionality because the structure would be-
come unmodifiable.

The presented model is considered only as an
example. It does not cover all the variabilities
such as the way of Composite’s children collec-
tion realization.

3.3.2. Configuration Reasoning

When creating a pattern instance, developer
needs to specify his requirements dealing the
variability. The target is to specify whole fea-
ture selection (also called product configura-
tion), which is a group of desired functional ca-
pabilities that constitute a complete configura-
tion of an application and adhere to the con-
straints specified in the feature model. We do
not want to force the user to provide information
about each feature whether he wishes to employ
it or not. We give him a chance to specify which
features he wishes to employ and the rest of the
configuration is set by the tool. The final con-
figuration has to fulfill all constraints defined by
the feature model, so if the developer’s require-
ments do not meet these constraints or do not
allow creation of valid configuration, the devel-
oper has to be asked to change his preferences.

Tool Based Support of the Pattern Instance Creation

97

B Composite
Feature[0..1]

Y Componet role realization

Feature Group <1-1>

[A]

l)

[Fea?ure Group <1-1»
[a]

% Children role visibility

"% Children list manipulation
Feature Group <1-1>

Public

Interface Abstract class]
Feature[0..1] Feature [0..1] Feature[0..1]
Ay
Feature [0..1]
¢ Parent tracking
Feature Group <0-1>
Y

GetParent() realization in Component

Feature [0..1] Feature[0..1]

B Private or Protected

{~]

J

Feature [0..1]

Processing methods only in Composite
Feature [0..1]

A
v

No processing methods
Feature [0..1]

B GetParent() realization in Leaf and Composite

Figure 5. Feature model example capturing the Composite pattern variability

To reason a valid configuration we trans-
form the feature model and partial configuration
based on developers preferences to Constraint
Specification Problem (CSP) environment and
apply existing CSP solver to reason final con-
figuration or to notify us about impossibility
to finish this task. To create the CSP from
a feature model we apply transformation rules
specified in [2]. As the CSP solver we chose
Choco CSP [4] which is an open source Java
based software.

3.3.3. Final Model

When the configuration is set up, we are able to
provide concrete role based model of the pattern
instance. The variants represented in the feature
model have several possible impacts to the final
instance, while they can:

Prescribe the role based model

Specify the occurrence of the role, whether
participants of the role should be part of
pattern instance or not.

Specify the position of the role. For exam-
ple specify, whether the operation should

be present in parent class or only in child

classes.
Define the implementation aspects relevant
for code generation
Specify the form of participants’ real-
izations. For example they can specify
whether class role would be played by class
or interface or whether list will be realized
as array, linked list, map or something else.
Specify the participants’ visibilities: Pub-
lic/Private/Protected.
The definition of the roles occurrence or positions
prescribes the output role based model. It is pro-
vided by reduction of the general pattern tem-
plate containing all variability roles. This tem-
plate contains all roles including the conditions
when should be these role applied (which feature
needs to be part of the configuration to activate
the variability role). The Figure 6 contains such
template for the Composite pattern according the
features presented in the Figure 5. The variability
roles are filled grey and the activating features are
placed next to them as a bold text. According the
current configuration, the variability roles with
features that are not contained in the configura-

98

Lubomir Majtas

Add child >\

=

GetParent()/

GetParent()

Returns

o

Belongs to realization in Leaf A
Belongs to and Composite /
Processing 9 Parent
methods only in Belongs to \

Composite = 5 N
/Composite _ a Composite’ s\
Bell t =)
emove child s AN 4 N \Operahon()/

Overrides Belongs to s

\Parent tracking
etParent()

/ e
Type of /<
/ \ Belongs to /
(Children) Inheritance / Realization Returns Overrides
\ I _r
/,,,,JL = e / GetParent()
T\ Overrides Parent \ realization in
Add child)\,\\ Type of 2 - Belongs to \ / Component A
Belongs to, T - peof— /’/ \Y\
By g Component) Belongs to el
Processing P / Type of \ Operation() /
methods in e s e —
Component Sl A y A
/f/”\\\ \\ Parent
Overrid - /
verdes Remove child) sy]
\ y Returns
e GetParent()
; i realization in Leaf)
Inheritance / Realization and Composite L Overrides
_— — Belongs to
T . GetParent()>
Add child =
Processing Belongs to Belongs fo
methods in 2 ot s
Component \
\/’ Leaf \‘~ Belongs to {Leaf's Operation()
Belongs to g . / \ /
Remove child \'—— — =

Figure 6. Role based template of the Composite pattern extended by variability roles

tion will be omitted, the rest will form the final
role based model according the input configura-
tion.

As an example, when we take the Compos-
ite’s feature model from the Figure 5 and select
the following variants: Parent tracking — Get-
Parent() realization in Component and the Chil-
dren list manipulation — No processing methods.
The final role base model representing the con-
figuration received from the previous inputs is
depicted in the Figure 7.

3.4. Overall Instantiation Process

Presented approaches form a complex process
of computer aided pattern instantiation deliber-
ating the pattern variability. It consists of the
following steps:

Inquire the user about pattern he wishes to
instantiate;

Inquire the desired domain participants;
Inquire the desired variants of the pattern;
Reason pattern configuration;

Create the role based model for the reasoned
configuration;

Supplement all missing participants from the
incomplete user specification according the
actual role based model;

Create the instance of the pattern.

In general the user is inquired for the domain
dependent information and customizations while
thetool creates the pattern instance satisfying the
user needs. The architecture scheme of the overall
approach is sketched in the Figure 8. The general
input for the entire process is role based pattern
model containing all variability roles. Variabil-

G

Tool Based Support of the Pattern Instance Creation

99

/Composne\ — Composi;j
/ \\ / Qperation()
Belongs to /'/ﬁ”\r S gl
/ /\\GetPare@
Belongs to e e
Ch 1 Idren\ Inheritance / Realization Retﬁ Overrides

D

~

Type of

N component)

Component

Belongs to

Inheritance / Realization

//7 7\'\\
‘ Parent /\
Typeof— c
ypeo Belongs to- %Ompon®
g Qperatiorw
Overrides
Belongs to-

< Leaf \><

{Leaf's Opera@

Figure 7. Example of output role based model according the custom configuration

ity support module reduces this model into the
concrete role based model for the custom pattern
configuration inferred from developer’s variants
selection. Pattern instance creation module takes
this model and according to it and developer’s
specification of domain dependent participants
creates the final pattern instance. This final in-
stance reflects the developer’s variants selection
and pattern domain specialization.

3.5. Realization

The presented approach was partially imple-
mented and verified. It was realized as the
plug-in of the Rational Software Modeler which
is based on open source platform Eclipse. The
Figure 9 contains screenshots of the model be-
fore and after the execution of the overall pat-
tern instantiation process. As the inputs for this
scenario we have used the inputs of the examples
presented in former sections.

4. Related Work

Different approaches of automating the pattern
utilization in software projects were introduced

by the other authors. O Cinnéide et. al. [5]
have presented a methodology for the creation of
behavior-preserving design pattern transforma-
tions and applied this methodology to GoF de-
sign patterns. The methodology is taking place
in refactoring process when it provides descrip-
tions of transformations to modify the spots
for pattern instance placement (so called pre-
cursors) by the application of so called mi-
cropatterns to the final pattern instances. While
O Cinnéide’s approach is supposed to guide the
developers to pattern employment in the phase
of refactoring (based on source code analysis),
Briand et. al. [3] are trying identify the spots for
pattern instance in design phase (based on UML
model analysis). They provide semi-automatic
suggestion mechanism based on decision tree
combining evaluation the automatic detection
rules with user queries.

There exist several approaches introducing
their own tool based support for the pattern
instantiation. El Boussaidi et. al. [10] present
model transformations based on Eclipse EMF
and JRule framework. Wang et. al. [16] pro-
vide similar functionality by XSLT based trans-
formations of the models stored in XMI-Light
format. Both approaches can be considered as

100

Lubomir Majtas

N

|
\ Variability support Role based pattern model
module for custom configuration /
/ /
V8

Role based model including \
all variability roles /

N
Pattern instance creation Model with customized \ i
module pattern instance / Code generator

Figure 8. Architecture overview of the overall approach

the single template driven while they are fo-
cusing most on the transformation process and
do not set a space for the pattern customiza-
tions. More advanced method was introduced
by Mapelsden et. al [14]. Their approach sup-
ports instance configuration by specifying the
role participants including those playing more
dimensional roles. All of these approaches are
based on strict forward participants generation
— participants of all roles are created accord-
ing the single template. Our approach accen-
tuates on collaboration between the developer
and the CASE tool. We do not intent to create
all pattern participants. We let the developer
define the ones he needs and subsequently we
infer and create the rest ones to form a valid
instance. We do not force the developer to our
solution, we let the template and the final in-
stance be customized according the developers’
needs.

All the former approaches were focusing on
the creation of pattern instances. The ones pre-
sented by Dong et. al. presume the presence of
the pattern instances in the model. They are
providing the support for the evolution of the
existing pattern instances resulting from the ap-
plication changes. The first one [8] implemen-
tation employs QVT based model transforma-
tions, the other one [9] does the some by the
XSLT transformations over the model stored as
XMI. However, both are working with the single
configuration pattern template allowing only the
changes in presence of hot spots participants.
Other possible variabilities are omitted.

We have not found any approach regarding
the feature modeling application in pattern in-
stantiation area. The feature models were suc-
cessfully employed in other areas, for example
in automation attempt of enterprise application
configuration presented by White et. al. [17].

5. Conclusion and the Future Work

In this paper we have presented our approach
dealing with a tool based support for pattern
instance creation. Our key concept was to cre-
ate such methodology that would help the devel-
opers with application of the pattern solution
to their software but allow them to customize
the pattern according their needs. We were try-
ing to handle two different courses while more
generative parts often mean less space for cus-
tomization and vice versa. We believe that our
approach balances these opposing courses into
final solution in a way that forms useful a tool
for developers interested in pattern employment.

In the future we would like to extent the cre-
ated pattern instance model with behavioral in-
formation. The correctly created instance would
be represented class diagram together with se-
quence diagram. The main building blocks of
such behavioral model will be method invoca-
tion and delegation, instance creation together
with structural blocks such as condition or it-
eration over collection. Also we would like to
prepare definitions of more GoF design pattern
to evaluate the algorithm on the larger scale.

Tool Based Support of the Pattern Instance Creation 101

«Leaf»
(3 Leafl

«Pattern Instance»
<> Composite

Pattern Parameters @ «Operation» Operationl ()

Composite
Component [1]: & «Leaf»
Operation [*]: © GLf::Q
Leaf [1..*]: DleLeafl Leaf2

oL

Composite [1]: @ «Operation» Operation2 ()

- parent
«Pattern Instance» 1
“*Composite
P «Component»
Pattern Parameters) (C] Component i
Composite 1

® «Operation» Operation] ()

Component[1] : Gﬁf_’omponent ® «Operation» Operation2 () ~ childs
Operation [*]: @ EOperationl Operation2 ® «GetParent» GetParent ()
p— « = L= 18- 0 - .
| Leaf[L: ©FlLeafl Leaf2 |
Composite [1] : OEIComposite
1
«Leaf» «leafs «Compos‘iten
O Leafl O Leaf2 © Composite

® Operationl ()
® Operation2 ()

® Operationl ()
©® Operation2 ()

® Operationl ()
® Operation2 ()

Figure 9. Screenshots of models before and after the overall process execution

We are thinking about other patterns that can
be input for the algorithm. It could be applica-
ble on all patterns that are at the design level
of abstraction and their inner structure can be
described by relation based constraints. Candi-
dates for such patterns are for example the J2EE
design patterns.

[5]

M. O Cinnéide and P. Nixon. Automated
software evolution towards design patterns.
In Proceedings of the 4th International Work-
shop on Principles of Software Evolution, pages
162-165, Vienna, Austria, 2001. ACM.

K. Czarnecki, S. Helsen, and U. Eisenecker.
Staged configuration through specialization and
multilevel configuration of feature models.
Software Process: Improvement and Practice,

References 10(2)143*169, 2005.
[7] J. Dietrich and C. Elgar. A formal description of
[1] C. Alexander, S. Ishikawa, and M. Silverstein. 4 design patterns using owl. In ASWEC ’05: Pro-

Pattern Language: Towns, Buildings, Construc-
tion. Oxford University Press, August 1977.

ceedings of the 2005 Australian conference on
Software Engineering, pages 243-250, Washing-

[2] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. ton, DC, USA, 2005. IEEE Computer Society.
Automated reasoning on feature models. In [8] J. Dong and S. Yang. Qvt based model transfor-
LNCS, Advanced Information Systems Engi- mation for design pattern evolutions. In IMSA
neering: 17th International Conference, CAiSE 06 : Proceedings of the 10th IASTED interna-
2005. Springer, 2005. tional conference on Internet and multimedia

[3] L. C. Briand, Y. Labiche, and A. Sauve. Guid- systems and applications, pages 16-22, 2006.
ing the application of design patterns based on [9] J. Dong, S. Yang, and K. Zhang. A model trans-
UML models. In ICSM ’06: Proceedings of the formation approach for design pattern evolu-
22nd IEEE International Conference on Soft- tions. In ECBS ’06: Proceedings of the 13th An-
ware Maintenance, pages 234—243, Washington, nual IEEE International Symposium and Work-
DC, USA, 2006. IEEE Computer Society. shop on Engineering of Computer Based Sys-

[4] Choco constraint programming system. http: tems, pages 80-92, Washington, DC, USA, 2006.

/ /choco.sourceforge.net /.

IEEE Computer Society.

102

Lubomir Majtas

[10]

G. El Boussaidi and H. Mili. A model-driven
framework for representing and applying de-
sign patterns. In COMPSAC °07: Proceed-
ings of the 81st Annual International Computer
Software and Applications Conference, pages
97-100, Washington, DC, USA, 2007. IEEE
Computer Society.

R. B. France, D.-K. Kim, S. Ghosh, and E. Song.
A UML-based pattern specification technique.
IEEE Trans. Softw. Eng., 30(3):193-206, 2004.
E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Pro-
fessional, 1995.

J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun.
Precise modeling of design patterns in UML.
In ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering,
pages 252261, Washington, DC, USA, 2004.
IEEE Computer Society.

D. Mapelsden, J. Hosking, and J. Grundy. De-
sign pattern modelling and instantiation using
dpml. In CRPIT ’02: Proceedings of the Forti-

[15]

[16]

eth International Conference on Tools Pacific,
pages 3—11, Darlinghurst, Australia, Australia,
2002. Australian Computer Society, Inc.

M. Smolarovd, P. Navrat, and M. Bielikova.
A technique for modelling design pat-
terns. In JCKBSE ’98: Proceedings of the
Knowledge-Based Software Engineering, pages
89-97. I0S Press, 1998.

X.-B. Wang, Q.-Y. Wu, H-M. Wang, and
D.-X. Shi. Research and implementation of
design pattern-oriented model transformation.
In ICCGI ’07: Proceedings of the International
Multi-Conference on Computing in the Global
Information Technology, page 24, Washington,
DC, USA, 2007. IEEE Computer Society.

J. White, D. C. Schmidt, K. Czarnecki,
C. Wienands, G. Lenz, E. Wuchner, and
L. Fiege. Automated model-based configura-

tion of enterprise java applications. In EDOC
"07: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Con-
ference, page 301, Washington, DC, USA, 2007.
IEEE Computer Society.

