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Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease and the results of previous treatment with cy-
totoxic drugs have not been satisfactory. This situation has prompted investigations into novel approaches.
The breakthrough in therapy brought by all-trans retinoic acid (ATRA) in acute promyelocytic leukemia
(APL) and tyrosine kinase inhibitors in neoplasms with the Philadelphia chromosome has encouraged the
search for other effective targeted therapies. Among the tested substances are higher molecular mass drugs
such as antibodies and various small molecules: kinase inhibitors, cell pathway inhibitors and epigenetic
modulators. So far, the U.S. Food and Drug Administration (FDA) has approved the antibody-drug conjugate
gemtuzumab ozogamycin (GO), the tyrosine kinase inhibitor midostaurin and the IDH2 inhibitor enasidenib.
These studies have led to a better understanding of the mechanisms of leukemogenesis and may soon al-
low for differentiating treatments depending on baseline mutational complements. Some innovative drugs
described in this article have strong therapeutic potential, but there is still a long way to go before actual
success in targeted treatment.
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Acute myeloid leukemia (AML) occurs in 3—4 people
out of 100,000 with a median age of 67 years. The 5-year
survival rate is 20%.! The course of the disease depends
on many factors, including cytogenetics, molecular genet-
ics, comorbidity score, and the patient’s age. Long-term
survival rates for patients <65 years of age and >65 years
of age are 40% and 5%, respectively.? Complete remission
(CR) is achieved in 66% of elderly patients; in this group,
the disease reoccurs in 16% of cases.? Allogenic stem cell
transplantation provides a chance for recovery from AML
and longer overall survival (OS). The unsatisfactory results
of previous AML treatment have encouraged the study
of intracellular mechanisms that prolong the survival
of leukemic cells and their resistance to apoptotic stimuli.
These genetic changes have inspired the search for an ef-
fective targeted therapy. The first drug of this kind was
all-trans retinoid acid (ATRA) in acute promyelocytic leu-
kemia (APL), directed against the fusion of the genes PML
and RARA caused by t(15;17). The use of ATRA, especially
with arsenic trioxide (ATO), has spectacularly improved
OS and disease-free survival (DFS).*®> Another turning
point was the discovery of BCR-ABL kinase inhibitors.
BCR-ABL kinase is formed by t(9;22), which is the most
common mutation for chronic myeloid leukemia (CML),
but which also occurs in acute myeloid leukemia (ALL) and
in AML. Philadelphia chromosome-positive acute myeloid
leukemia (AML Ph+) comprises 0.5-3% of AML cases.

The experiments conducted on leukemic cell lines, ani-
mal models and in clinical trials have led to the discov-
ery of substances that can be classified according to their
structure as having high or low molecular mass.® The data
is presented in Table 1.

High molecular mass drugs

Gemtuzumab ozogamicin (GO, Mylotarg) is an immu-
noconjugate compound created by the CD33 antibody,
which is present on the surface of the myeloblasts in over
90% of AML cases and is toxic to DNA calicheamicin.’
An epitope for GO, CD33 antigen, occurs in many ex-
pression and functional variants, and only some of these
epitopes are sensitive to the cytotoxicity caused by GO.®
Despite GO withdrawal caused by toxicity in early clinical
trials, subsequent trials have renewed the interest in this
drug. In a meta-analysis of prospective phase III trials,
it was proven that the use of GO in inductive therapy
in variable age groups prolongs relapse-free survival (RES)
with tolerable adverse effects. Overall survival elongation
thanks to GO was proven in most clinical trials in age-
differentiated groups, but the benefit for patients with ad-
verse cytogenetics is controversial. Promising effects were
observed among fit patients >50 years old and >60 years
old not qualified for allogenic stem cell transplantation
(alloSCT). The results of these trials suggest the advantage
of using GO in bridge therapy before alloSCT with other
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Table 1. Targeted drugs in AML treatment

Target | Drug | Group
gemtuzumab
0zogamycin,
(b33 lintuzumab, high molecular mass
vadastuximab talirine drugs
CD33,CD3 AMG 330
1*-generation:
sorafenib, midostaurin,
lestaurtinib, sunitinib,
tandutinib, pacritinib;
FLT3 2nd-generation:
quizartinib,
crenolamid, ponatinib, tyrosine
PLX3397, gliteritinib, kinase
JH-IX-179 inhibitors
PLK1 volasertib
CDK flavopiridol
AURK alisertib, barasertib
PIM AZD1208, SGI-1776 [0
molecular
IDH cenasidenib mass
GLl GANTG! drugs
BCL-2 navitoclax, venetoclax | ce|l pathway
NAE pevonedistat inhibitors
topoisomerase Il vosaroxin
BET QOTX015, ARV-825
LSD1 ORY-1001, GSK2879552
HDAC pabinostat, vorinostat
DOTLIL pinometostat epigenetic
modulators
PD1/PDLI1 nivolumab
MDM?2 RG7112, idasanutlin

FLT3 — FMS-like tyrosine kinase-3; PLK1 — polo-like kinase 1; CDK - cyclin-
dependent kinases; AURK — aurora kinase; PIM — proviral insertion

in +murine; IDH — isocitrate dehydrogenase; GLI - glioma; BCL-2 - B-cell
lymphoma 2; NAE — NEDD8 activating enzyme; BET — bromodomain
and extraterminal; LSD1 - lysine-specific demethylase; HDAC — histone
deacetylase; PD1/PDL1 — programmed death-1/programmed death-1
ligand.

cytostatics.”!% Promising results were achieved with GO
applied in AML relapse after stem cell transplantation
(SCT) therapy. On September 1, 2017, the U.S. Food and
Drug Agency (FDA) approved GO for treatment in adults
with newly diagnosed CD33+ AML.

BI 836858, lintuzumab (SGN-33; HuM195) and vadas-
tuximab talirine are new anti-CD33 antibodies. Lintuzum-
ab used with standard chemotherapy resulted in OS pro-
longation in a group of previously untreated patients who
were unfit for intensive chemotherapy, aged 60—87 years,
with an intermediate or adverse prognosis.!!? The use
of vadastuximab talirine is undergoing a phase III trial
in a group of elderly patients.

AMG 330 (bispecific T-cell engager antibody [BiTE])
is a new antibody directed against both CD33 and CD3,
which are present on the surface of T lymphocytes. Bi-
specific T-cell engager antibody was created to engage
the cytotoxic response of T cells against leukemic cells
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in order to avert their immunological escape.'® It showed
the best results among previously untreated AML patients
with standard prognosis. In addition, tetravalent bispecific
anti-CD33/CD3, bispecific anti-CD3 and C-type lectin-like
molecule-1 (CCL-1), which can be found on most leukemic
cells, are being investigated in animals.**

Ulocuplumab (BMS-936564/MDX-1338) is a monoclo-
nal antibody which inhibits the binding of the CXC che-
mokine receptor 4 (CXCR4) to stimulate migration from
the bone marrow to peripheral blood stromal cell-derived
chemokine CXC motifligand 12 (CXCL12). CXCR4 is over-
expressed on AML blasts, among others. CXCR4 inhibition
restricts AML cell growth and induces their apoptosis.
In the first clinical trial on patients with relapsed/refrac-
tory AML, ulocuplumab in combination with mitoxan-
trone, etoposide and cytarabine led to CR with incomplete
marrow recovery (CRi) in 51% of the group of 73 patients.'®
In December 2015, the FDA decided to use ulocuplumab
as an orphan drug.

Low molecular mass drugs

The FMS-like tyrosine kinase-3 (FLT3) gene mutations
FLT3-ITD and FLT3-TDK occur in 30% and 7% of AML
cases, respectively. The FLT3 kinase inhibitors may be
divided into 1%- and 2"¢-generation drugs. The first group
(1-generation) are polykinase inhibitors, while the newer
drugs are more selective molecules, which makes them
safer and more effective.!® The mutated FLT3 gene has
variable sensitivity to different drugs.!”

Sorafenib is a multikinase inhibitor. It inhibits C-RAF,
FLT3, VEGFR2, VEGFR3, and PDGFR family kinases.
The action of sorafenib is amplified by the activation of
p-AMPK by metformin, which potentiates the proapop-
totic and antiproliferative effect. Glycolysis inhibition also
plays a synergistic role, which has been proven in an ani-
mal model.!® According to the National Comprehensive
Cancer Network (NCCN) guidelines, sorafenib is used
in the treatment of refractory/recurrent AML, in mono-
therapy or with other drugs. Despite a higher response
rate in FLT3+ patients than in FLT3- patients, sorafenib
does not influence OS. In addition, it is not effective in el-
derly patients. When added to standard chemotherapy
in patients younger than 60 years, sorafenib prolongs
DFS." Moreover, sorafenib is effective before and after
SCT it prolongs DFS and OS, maintains remission in sus-
tained therapy after SCT in 100% of patients, and has
a hematological response >90% in AML recurrence af-
ter SCT.2°-22 Promising effects have been reported from
combining sorafenib with hypomethylating agents, ATRA
or homoharringtonin, especially in refractory AML.23-2%
The greatest antiproliferative and proapoptotic accuracy
in preclinical trials on human leukemic cell lines was dem-
onstrated with a composite of 3 kinase inhibitors: FLT3
(sunitinib), PI3K (PE-04691502) and GLI1/2 (GANT61).2°
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The use of sunitinib with standard inductive and life-sus-
taining therapy showed no benefits because of toxicity.
The combination of FLT3 and AKT inhibitors is associated
with the induction of resistance due to the protective effect
of stroma on leukemia cells.

Lestaurtinib is a multikinase inhibitor whose targets
include JAK-2. Added to a standard first-line FLT3+ AML
therapy, it does not provide any benefits.?”

Midostaurin used in monotherapy or in combination
with different cytostatics in intensive chemotherapy has
prolonged OS with tolerable toxicity in FLT3+ AML pa-
tients: studies include the addition of midostaurin in in-
ductive or consolidative therapy, in sustaining therapy,
in AML relapse, and in bridge therapy before SCT.?8-3!
The greatest benefits were observed in a group of patients
who did not qualify for SCT previously untreated with
FLT3 inhibitors. A promising effect was achieved in pre-
clinical trials by a combination of ATRA and midostaurin
due to the synergic effect against leukemic cells. Midostau-
rin combined with other drugs was registered by the FDA
in the treatment of refractory/relapsed AML with the FLT3
mutation.*?

Crenolamid represents a new, selective FLT3 kinase
inhibitor group. It is currently in phase II trials. There
is a possible synergy in using it with sorafenib against leu-
kemic cells.

Quizartinib (AC220) has a high affinity for wild-type
and mutated FLT3 kinase and has successfully completed
phase I trials on a pediatric FLT3+ AML population.3?
Its activity was demonstrated in refractory/relapse AML.
AKN 028, a dose-dependent FLT3 kinase inhibitor that
stops the cell cycle, is still being investigated. Gliteritinib
is a selective FLT3/ASXL1 inhibitor. Used in a group
of 80 patients with refractory/relapse FLT3+ AML, it re-
sulted in a 55% response rate and it doubled OS. Gliteritinib
is currently under investigation in supportive care and
rescue therapy. Kinase inhibitors may generate second-
ary mutations.3* In trials on human leukemic cells, FLT3
mutations resistant to AC220 and sorafenib succumbed
to a new kinase inhibitor, TT-3002. New molecules are
being investigated, for example, AMG 925.

Volasertib (BI6727) is a polo-like kinase (PLK) inhibitor.
Polo-like kinases play a key role in mitosis. There is higher
PLK expression in AML, Hodgkin lymphoma (HL), non-
small-cell lung cancer (NSCLC), and breast cancer, and its
concentration correlates with mortality.?® In preclinical
trials on leukemic cells acquired from patients, volasertib
proved effective in monotherapy and with antimetabo-
lites, hypomethylating agents and quizartinib. Associated
with small doses of cytarabine, it increased CR and DFS
in a previously untreated group of patients who, in the in-
vestigators’ opinion, were unfit for intensive chemotherapy.
In 2016, volasertib was called a breakthrough drug in the
treatment of AML by the FDA.3¢

Flavopiridol (alvocidib) is a cyclin-dependent kinase
(CDK), which induces cell cycle arrest and apoptosis
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in leukemic cells. The latest studies show no benefits over
standard chemotherapy in previously untreated AML pa-
tients with an intermediate or adverse prognosis.

Alisertib (MLN8237) is an orally taken aurora kinase A
(AurKA) inhibitor. Its synergy with cytarabine has been
proven in preclinical tests. In phase II studies on a group
of refractory/relapsed AML patients who did not qualify
for standard chemotherapy, the disease was stabilized
in nearly half of the patients.

Barasertib is an aurora kinase B (AurKB) inhibitor.
It is more effective in prolonging OS in patients >60 years
of age, but is more toxic in comparison with cytarabine.
AZD1208 is an inhibitor of all proviral insertion in +mu-
rine (PIM) kinases, which in correlation with PIM1 ex-
pression inhibits the growth of 5 of the 14 AML cell lines,
including FLT3-ITD+. The PIM kinase inhibitors show
synergy with mTOR and AKT inhibitors in suppressing
leukemic cells and in sensitizing AML cells to topoisom-
erase Il inhibitors.?” SGI-1776 acts similarly; it has also
been tested in NCL2 inhibition.

Cell pathway inhibitors

Isocitrate dehydrogenase (IDH) takes part in lipid metabo-
lism and the Krebs cycle, and it catalyzes the transformation
of isocitrate to a-ketoglutarate. The IDH1 and IDH?2 gene
mutations occur in 11% and 12% of AML cases, respectively.
Enasidenib (AG-221/CC-90007) is the first selective IDH2
inhibitor to induce the differentiation of leukemic cells.38-4
Enasidenib is taken orally and is active in monotherapy.
It has been well-tolerated in phase II studies on patients
with refractory/relapsed AML and has achieved an overall
response rate (ORR) of 40% with a median response dura-
tion of 6 months.*! On August 1, 2017, enasidenib was ap-
proved by the FDA for the treatment of adult patients with
relapsed/refractory AML with the IDH2 mutation.

The expression of the glioma (GLI) family transcription
factors, which are the last part of the Hedgehog prolifera-
tive signal pathway, is a negative prognostic factor in AML.
This finding has inspired the search for GLI inhibitors.*?
The small-molecule inhibitor GANT®61 is currently being
studied.*®

Navitoclax (ABT-263) is a BCL-2, BCL-XL and BCL-W
protein family inhibitor. Its antitumor activity is restricted
by adverse effects. Venetoclax (ABT-199) is a small-mole-
cule antiapoptotic BCL-2 protein inhibitor which is regis-
tered by the FDA for treating chronic lymphocytic leuke-
mia (CLL) and AML.* In a high-risk recurrent/refractory
AML patient group, a 38% response rate was achieved,
half of these being complete responses according to the
International Working Group (IWG) criteria.?®

There have been studies on molecules influencing the
suppressor protein p53 pathway, for instance, the HDM2
inhibitor CGMO097, which neutralizes the p53-inhibiting
effect of HDM2 on AML cells.
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Tosedostat is an aminopeptidase inhibitor that blocks
the destruction and rebuilding of intercellular proteins.
It is undergoing phase II trials. It was demonstrated
on a group of patients >60 years of age with relapsed/refrac-
tory AML that tosedostat is active in monotherapy, dose-
independently. In the same group with a negative progno-
sis, tosedostat combined with cytarabine and azacitidine
achieved a 30% ORR. Used on elderly patients in inductive
therapy with cytarabine or decitabine, it resulted in a CR
or CRi of more than 50%.%°

Pevonedistat (MLN4924) is an NEDDS8-activating
enzyme (NAE) inhibitor that controls the destruction
of many proteins taking part in the cell cycle, signal trans-
duction, the destruction of DNA, or the stress response, for
example, p53, p27, cyclin E, c-MYC, phospho-IkBa, CDT-1,
NRF-2, and HIF-1a. In preclinical tests, pevonedistat was
effective in monotherapy in amplifying cytarabine action,
but there was only a 20% response rate.

Vosaroxin is a topoisomerase Il inhibitor which is essen-
tial for cell survival. Vosaroxin induces DNA destruction
and is most effective among elderly patients diagnosed
with AML or myelodysplastic syndrome (MDS). Phase III
trials showed that vosaroxin prolongs survival by about
6 weeks.*”

OTXO015 is a BRD2/3/4 inhibitor indispensable for leuke-
mic clone survival of c-MYC. OTX015 used in conjunction
with pabinostat and azacitidine showed synergic activity
towards KASUMI AML cell lines. ARV-825 was more ef-
fective against AML post-myeloproliferative cell lines than
OTXO015. Both drugs are in phase I trials.*®

Epigenetic modulators

Lysine-specific demethylase 1 (LSD1) is a histone de-
methylase.* Its expression has been demonstrated in many
neoplasms and it plays a role in the self-renewal of AML
stem cells. LSD1 inhibition leads to the inhibition of tu-
mor growth and metastasis. ORY-1001 and GSK2879552
are tranylcypromine-derivative LSD1 inhibitors, both
in phase I trials.”%5!

Panobinostat (LBH589) induces AML cell apoptosis
in vitro by inhibiting the expression of repair proteins
(e.g., BRCA1, CHK1 and RAD51), increasing the efficien-
cy of cytarabine and daunorubicin, and it is promising
in t(8;21) AML due to the pathological AML1/ETO protein
that recruits histone deacetylases.>?

Vorinostat (suberoylanilidehydroxamic acid [SAHA])
promotes cell cycle inhibition and arrested growth, and
induces differentiation and AML cell apoptosis. In phase
[T trials with cytarabine on AML/MDS patients with severe
concomitant diseases, there was a median OS >7 months
with acceptable toxicity.>

Histone deacetylase inhibitors, such as pracinostat and
entinostat, are under investigation in AML patients.>*%

Rearranged mixed lineage leukemia (rMLL) is associated
with an aggressive disease course and a poor response
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to multidrug chemotherapy, which is caused by a higher
expression of HOXA9 and MEIS1.%® Pinometostat (EPZ-
5676) is a histone methyltransferase DOT1L enzyme in-
hibitor. DOTIL is the rMLL target gene. Pinometostat
is undergoing phase I trials.>”

The programmed death-1 (PD-1) receptor occurs on acti-
vated T cells and after binding with its programmed death
1 or2ligand (PDL-1, PDL-2), it suppresses T cell cytotoxic
activity. This immunological escape has been presented
in many cell lines, including AML. High PDL-1 expression
correlates with an unfavorable course. Nivolumab is a PDL-
1 inhibitor which has been approved by the FDA for treat-
ing non-small-cell lung cancer, melanoma and renal can-
cer. Nivolumab with azacitidine is now in phase II studies
in relapsed AML patients. A remission rate of 18% was
achieved in elderly patients with tolerable side effects.>®

The suppressor gene p53 is called a genome warden due
to its prevention of the replication of defective genome
material and it leads to apoptosis. The destruction of the
p53 protein is proceeded by ubiquitination after connect-
ing with the MDM2 protein. A high MDM2 concentration
with wild-type p53 appears in about 90% of AML types.
RG 7112 is a 1%-generation MDM2 inhibitor. In phase I
clinical studies, RG 7112 was effective in refractory/re-
lapsed AML and in CLL.»

Idasanutlin (R7388) is a selective, next-generation
MDM2 inhibitor. There were promising effects of phase I
trials in refractory/relapsed AML: the higher the MDM?2
expression was, the better the response to the drug was.*°
Idasanutlin is better tolerated than RG 7112.

Despite the growing interest awakened by targeted
therapy in AML treatment, the current results are un-
satisfactory. Undoubtedly, this is due to the complexity
of leukemogenic mechanisms. There is potential for fur-
ther investigations and clinical studies to improve AML
therapy. Allin all, each study brings us closer to achieving
success in AML therapy.
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